Algorithms \& Models of Computation

 CS/ECE 374, Spring 2019
Non-deterministic Finite Automata (NFAs)

Lecture 4
Thursday, January 24, 2019

Part I

NFA Introduction

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state a on same letter a $\in \Sigma$ multiple possible states
- No transitions from q on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state \boldsymbol{q} on same letter $\boldsymbol{a} \in \boldsymbol{\Sigma}$ multiple possible states
- No transitions from \boldsymbol{q} on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

Non-deterministic Finite State Automata (NFAs)

Differences from DFA

- From state \boldsymbol{q} on same letter $\boldsymbol{a} \in \boldsymbol{\Sigma}$ multiple possible states
- No transitions from \boldsymbol{q} on some letters
- ε-transitions!

Questions:

- Is this a "real" machine?
- What does it do?

NFA behavior

Machine on input string \boldsymbol{w} from state \boldsymbol{q} can lead to set of states (could be empty)

- From q_{e} on 1
- From q_{ε} on 0
- From q_{0} on ε
- From $\boldsymbol{a}_{\varepsilon}$ on 01
- From q_{00} on 00

NFA behavior

Machine on input string \boldsymbol{w} from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on $\mathbf{1}$
- From q_{e} on 0
- From q_{0} on ε
- From $\boldsymbol{q}_{\varepsilon}$ on 01
- From a_{00} on 00

NFA behavior

Machine on input string \boldsymbol{w} from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on 1
- From $\boldsymbol{q}_{\varepsilon}$ on $\mathbf{0}$
- From q_{0} on ε
- From q_{ε} on 01
- From 9_{00} on 00

NFA behavior

Machine on input string \boldsymbol{w} from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on 1
- From $\boldsymbol{q}_{\varepsilon}$ on $\mathbf{0}$
- From q_{0} on ε
- From q_{ε} on 01
- From q_{00} on 00

NFA behavior

Machine on input string \boldsymbol{w} from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on 1
- From $\boldsymbol{q}_{\varepsilon}$ on $\mathbf{0}$
- From q_{0} on ε
- From $\boldsymbol{q}_{\varepsilon}$ on 01
- From qoo on 00

NFA behavior

Machine on input string \boldsymbol{w} from state \boldsymbol{q} can lead to set of states (could be empty)

- From $\boldsymbol{q}_{\varepsilon}$ on 1
- From $\boldsymbol{q}_{\boldsymbol{\varepsilon}}$ on $\mathbf{0}$
- From q_{0} on ε
- From $\boldsymbol{q}_{\varepsilon}$ on 01
- From \boldsymbol{q}_{00} on $\mathbf{0 0}$

NFA acceptance: informal

Informal definition: An NFA N accepts a string \boldsymbol{w} iff some accepting state is reached by N from the start state on input \boldsymbol{w}.

> The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N)=\{w \mid N$ accepts $w\}$.

NFA acceptance: informal

Informal definition: An NFA N accepts a string \boldsymbol{w} iff some accepting state is reached by N from the start state on input \boldsymbol{w}.

The language accepted (or recognized) by a NFA N is denote by $L(N)$ and defined as: $L(N)=\{w \mid N$ accepts $w\}$.

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in $\mathbf{1 * 0 1}^{*}$ accepted?
- What is the language accepted by N?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is 100 accepted?
- Are all strings in $\mathbf{1}^{*} 01$ accepted?
- What is the language accepted by N ?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is $\mathbf{1 0 0}$ accepted?
- Are all strings in $1^{*} 01$ accepted?
- What is the language accepted by N ?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is $\mathbf{1 0 0}$ accepted?
- Are all strings in $\mathbf{1 * 0}^{*} \mathbf{0 1}$ accepted?
- What is the language accepted by N ?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is $\mathbf{1 0 0}$ accepted?
- Are all strings in $\mathbf{1}^{*} 01$ accepted?
- What is the language accepted by \boldsymbol{N} ?

> Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is $\mathbf{1 0 0}$ accepted?
- Are all strings in $\mathbf{1}^{*} 01$ accepted?
- What is the language accepted by \boldsymbol{N} ?

> Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

NFA acceptance: example

- Is 01 accepted?
- Is 001 accepted?
- Is $\mathbf{1 0 0}$ accepted?
- Are all strings in $\mathbf{1}^{*} \mathbf{0 1}$ accepted?
- What is the language accepted by N ?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is not accepted.

Simulating NFA

Example the first

(N1)

Run it on input ababa. Idea: Keep track of the states where the NFA might be at any given time.

Simulating NFA

Example the first

Remaining input: ababa.

Simulating NFA

Example the first

Remaining input: ababa.

Remaining input: baba.

Simulating NFA

Example the first

Remaining input: baba.

Simulating NFA

Example the first

Remaining input: baba.

Remaining input: aba.

Simulating NFA

Example the first

Remaining input: aba.

Simulating NFA

Example the first

Remaining input: aba.

Remaining input: ba.

Simulating NFA

Example the first

Remaining input: $\boldsymbol{b a}$.

Simulating NFA

Example the first

Remaining input: ba.

Remaining input: \boldsymbol{a}.

Simulating NFA

Example the first

Remaining input: a.

Simulating NFA

Example the first

Remaining input: \boldsymbol{a}.

Remaining input: ε.

Simulating NFA

Example the first

Remaining input: ε.
Accepts: ababa.

Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- $\boldsymbol{\Sigma}$ is a finite set called the input alphabet,
- $\boldsymbol{\delta}: Q \times \boldsymbol{\Sigma} \cup\{\varepsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of $Q)$,
- $s \in Q$ is the start state,
- $\boldsymbol{A} \subseteq \boldsymbol{Q}$ is the set of accepting/final states.
$\delta(q, a)$ for $a \in \Sigma \cup\{\varepsilon\}$ is a subset of Q - a set of states.

Reminder: Power set

For a set Q its power set is: $\mathcal{P}(Q)=2^{Q}=\{X \mid X \subseteq Q\}$ is the set of all subsets of Q.

Example

$$
Q=\{1,2,3,4\}
$$

$$
\mathcal{P}(Q)=\left\{\begin{array}{c}
\{1,2,3,4\}, \\
\{2,3,4\},\{1,3,4\},\{1,2,4\},\{1,2,3\}, \\
\{1,2\},\{1,3\},\{1,4\},\{2,3\},\{2,4\},\{3,4\}, \\
\{1\},\{2\},\{3\},\{4\}, \\
\{ \}
\end{array}\right\}
$$

Example

- $\boldsymbol{Q}=\left\{q_{\varepsilon}, q_{0}, q_{00}, q_{p}\right\}$
- $\Sigma=\{0,1\}$
- $s=q_{\varepsilon}$
- $A=\left\{a_{n}\right\}$

Example

- $Q=\left\{q_{\varepsilon}, q_{0}, q_{00}, q_{p}\right\}$
- $\Sigma=\{0,1\}$
- $s=q_{\varepsilon}$
- $A=\left\{a_{n}\right\}$

Example

- $Q=\left\{q_{\varepsilon}, q_{0}, q_{00}, q_{p}\right\}$
- $\boldsymbol{\Sigma}=\{0,1\}$
- $s=q_{\varepsilon}$
- $A=\left\{a_{n}\right\}$

Example

- $Q=\left\{q_{\varepsilon}, q_{0}, q_{00}, q_{p}\right\}$
- $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$
- $s=q_{\varepsilon}$
- $A=\left\{a_{n}\right\}$

Example

- $Q=\left\{q_{\varepsilon}, q_{0}, q_{00}, q_{p}\right\}$
- $\boldsymbol{\Sigma}=\{\mathbf{0}, \mathbf{1}\}$
- δ
- $s=q_{\varepsilon}$
- $A=\left\{q_{p}\right\}$

Example

- $Q=\left\{q_{\varepsilon}, q_{0}, q_{00}, q_{p}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=q_{\varepsilon}$
- $A=\left\{q_{p}\right\}$

Example

- $Q=\left\{q_{\varepsilon}, q_{0}, q_{00}, q_{p}\right\}$
- $\Sigma=\{0,1\}$
- δ
- $s=q_{\varepsilon}$
- $A=\left\{q_{p}\right\}$

Example

- $Q=\left\{q_{\varepsilon}, q_{0}, q_{00}, q_{p}\right\}$
- $\boldsymbol{\Sigma}=\{0,1\}$
- δ
- $s=q_{\varepsilon}$
- $\boldsymbol{A}=\left\{q_{p}\right\}$

Example

- $Q=\left\{q_{\varepsilon}, q_{0}, q_{00}, q_{p}\right\}$
- $\boldsymbol{\Sigma}=\{0,1\}$
- δ
- $s=q_{\varepsilon}$
- $A=\left\{q_{p}\right\}$

Example

Transition function in detail...

$$
\begin{array}{ll}
\delta\left(q_{\varepsilon}, \varepsilon\right)=\left\{q_{\varepsilon}\right\} & \delta\left(q_{0}, \varepsilon\right)=\left\{q_{0}, q_{00}\right\} \\
\delta\left(q_{\varepsilon}, 0\right)=\left\{q_{\varepsilon}, q_{0}\right\} & \delta\left(q_{0}, 0\right)=\left\{q_{00}\right\} \\
\delta\left(q_{\varepsilon}, 1\right)=\left\{q_{\varepsilon}\right\} & \delta\left(q_{0}, 1\right)=\{ \} \\
\delta\left(q_{00}, \varepsilon\right)=\left\{q_{00}\right\} & \delta\left(q_{p}, \varepsilon\right)=\left\{q_{p}\right\} \\
\delta\left(q_{00}, 0\right)=\{ \} & \delta\left(q_{p}, 0\right)=\left\{q_{p}\right\} \\
\delta\left(q_{00}, 1\right)=\left\{q_{p}\right\} & \delta\left(q_{p}, 1\right)=\left\{q_{p}\right\}
\end{array}
$$

Extending the transition function to strings

(1) NFA $N=(Q, \Sigma, \delta, s, A)$
(3) $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup\{\varepsilon\}$.
(3) Want transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$
($\delta^{*}(q, w)$: set of states reachable on input w starting in state q.

Extending the transition function to strings

(1) NFA $N=(Q, \Sigma, \delta, s, A)$
(2) $\delta(\boldsymbol{q}, a)$: set of states that N can go to from \boldsymbol{q} on reading $a \in \boldsymbol{\Sigma} \cup\{\varepsilon\}$.
(3) Want transition function $\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)$
(3) $\delta^{*}(q, w)$: set of states reachable on input w starting in state q.

Extending the transition function to strings

(1) NFA $N=(Q, \Sigma, \delta, s, A)$
(2) $\delta(\boldsymbol{q}, a)$: set of states that N can go to from \boldsymbol{q} on reading $a \in \boldsymbol{\Sigma} \cup\{\varepsilon\}$.
(3) Want transition function $\delta^{*}: Q \times \boldsymbol{\Sigma}^{*} \rightarrow \mathcal{P}(Q)$
(${ }^{*} \delta^{*}(q, w)$: set of states reachable on input w starting in state q.

Extending the transition function to strings

(1) NFA $N=(Q, \Sigma, \delta, s, A)$
(2) $\delta(\boldsymbol{q}, a)$: set of states that N can go to from \boldsymbol{q} on reading $a \in \boldsymbol{\Sigma} \cup\{\varepsilon\}$.
(3) Want transition function $\delta^{*}: Q \times \boldsymbol{\Sigma}^{*} \rightarrow \mathcal{P}(Q)$
(a) $\delta^{*}(q, w)$: set of states reachable on input w starting in state \boldsymbol{q}.

Extending the transition function to strings

Definition

For NFA $N=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ and $\boldsymbol{q} \in Q$ the $\boldsymbol{\operatorname { r e a c h }}(\boldsymbol{q})$ is the set of all states that \boldsymbol{q} can reach using only $\boldsymbol{\varepsilon}$-transitions.

Extending the transition function to strings

Definition

For NFA $N=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ and $\boldsymbol{q} \in Q$ the $\boldsymbol{\operatorname { c r e a c h }}(\boldsymbol{q})$ is the set of all states that \boldsymbol{q} can reach using only $\boldsymbol{\varepsilon}$-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \boldsymbol{\Sigma}^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\epsilon \operatorname{reach}(q)$
- if $w=a$ where $a \in \Sigma$

Extending the transition function to strings

Definition

For NFA $N=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ and $\boldsymbol{q} \in Q$ the $\boldsymbol{\operatorname { c r e a c h }}(\boldsymbol{q})$ is the set of all states that \boldsymbol{q} can reach using only ε-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \boldsymbol{\Sigma}^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\epsilon \operatorname{reach}(q)$
- if $\boldsymbol{w}=\boldsymbol{a}$ where $\boldsymbol{a} \in \boldsymbol{\Sigma}$

$$
\delta^{*}(q, a)=\cup_{p \in \operatorname{\epsilon reach}(q)}\left(\cup_{r \in \delta(p, \mathrm{a})} \epsilon \text { reach }(r)\right)
$$

- if $W=a x$,
$\delta^{*}(q, w)=\cup_{p \in \operatorname{\epsilon reach}(q)}\left(\cup_{r \in \delta(p, a)} \delta^{*}(r, x)\right)$

Extending the transition function to strings

Definition

For NFA $N=(Q, \boldsymbol{\Sigma}, \boldsymbol{\delta}, \boldsymbol{s}, \boldsymbol{A})$ and $\boldsymbol{q} \in \boldsymbol{Q}$ the $\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$ is the set of all states that \boldsymbol{q} can reach using only $\boldsymbol{\varepsilon}$-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \boldsymbol{\Sigma}^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\varepsilon, \delta^{*}(q, w)=\epsilon \operatorname{reach}(q)$
- if $\boldsymbol{w}=\boldsymbol{a}$ where $a \in \boldsymbol{\Sigma}$

$$
\delta^{*}(q, a)=\cup_{p \in \operatorname{\epsilon reach}(q)}\left(\cup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r)\right)
$$

- if $w=a x$,

$$
\delta^{*}(q, w)=\cup_{p \in \operatorname{\epsilon reach}(q)}\left(\cup_{r \in \delta(p, a)} \delta^{*}(r, x)\right)
$$

Formal definition of language accepted by \mathbf{N}

Definition

A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.

Definition

The language $L(N)$ accepted by a NFA $N=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ is

$$
\left\{w \in \boldsymbol{\Sigma}^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\} .
$$

Important: Formal definition of the language of NFA above uses δ *

 and not δ. As such, one does not need to include ε-transitions closure when specifying δ, since δ^{*} takes care of that.
Formal definition of language accepted by \mathbf{N}

Definition

A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.

Definition

The language $L(N)$ accepted by a NFA $N=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ is

$$
\left\{w \in \boldsymbol{\Sigma}^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\} .
$$

Important: Formal definition of the language of NFA above uses $\boldsymbol{\delta}^{*}$ and not $\boldsymbol{\delta}$. As such, one does not need to include ε-transitions closure when specifying δ, since δ^{*} takes care of that.

Example

What is:

- $\delta^{*}(s, \epsilon)$
- $\delta^{*}(s, 0)$
- $\delta^{*}(c, 0)$
- $\delta^{*}(b, 00)$

Example

What is:

- $\delta^{*}(s, \epsilon)$
- $\delta^{*}(s, 0)$
- $\delta^{*}(c, 0)$
- $\delta^{*}(b, 00)$

Example

What is:

- $\delta^{*}(s, \epsilon)$
- $\delta^{*}(s, 0)$
- $\delta^{*}(c, 0)$
- $\delta^{*}(b, 00)$

Example

What is:

- $\delta^{*}(s, \epsilon)$
- $\delta^{*}(s, 0)$
- $\delta^{*}(c, 0)$
- $\delta^{*}(b, 00)$

Another definition of computation

Definition

$\boldsymbol{q} \xrightarrow{\boldsymbol{w}} \boldsymbol{N} \boldsymbol{p}$: State \boldsymbol{p} of NFA \boldsymbol{N} is reachable from \boldsymbol{q} on \boldsymbol{w} there exists a sequence of states $r_{0}, r_{1}, \ldots, r_{k}$ and a sequence $x_{1}, x_{2}, \ldots, x_{k}$ where $x_{i} \in \boldsymbol{\Sigma} \cup\{\varepsilon\}$, for each i, such that:

- $r_{0}=q$,
- for each $i, r_{i+1} \in \delta\left(r_{i}, x_{i+1}\right)$,
- $r_{k}=p$, and
- $w=x_{1} x_{2} x_{3} \cdots x_{k}$.

Definition

$$
\delta^{*} N(q, w)=\left\{p \in Q \mid q \xrightarrow{w}_{N} p\right\} .
$$

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in theory to prove many theorems
- Very important in practice directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

Part II

Constructing NFAs

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

Example

Strings that represent decimal numbers.

Example

Strings that represent decimal numbers.

Example

- \{strings that contain CS374 as a substring \}
- \{strings that contain CS374 or CS473 as a substring \}
- \{strings that contain CS374 and CS473 as substrings\}

Example

- \{strings that contain CS374 as a substring \}
- \{strings that contain CS374 or CS473 as a substring \}
- \{strings that contain CS374 and CS473 as substrings\}

Example

- \{strings that contain CS374 as a substring \}
- \{strings that contain CS374 or CS473 as a substring \}
- \{strings that contain CS374 and CS473 as substrings \}

Example

$L_{k}=\{$ bitstrings that have a $1 k$ positions from the end $\}$

A simple transformation

Theorem

For every NFA \mathbf{N} there is another NFA \mathbf{N}^{\prime} such that $L(N)=L\left(N^{\prime}\right)$ and such that N^{\prime} has the following two properties:

- N^{\prime} has single final state f that has no outgoing transitions
- The start state s of N is different from \boldsymbol{f}

Part III

Closure Properties of NFAs

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Closure under union

Theorem

For any two NFAs \mathbf{N}_{1} and $\mathbf{N}_{\mathbf{2}}$ there is a NFA \mathbf{N} such that $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$.

Closure under union

Theorem

For any two NFAs \mathbf{N}_{1} and $\mathbf{N}_{\mathbf{2}}$ there is a NFA \mathbf{N} such that $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$.

Closure under concatenation

Theorem

For any two NFAs \mathbf{N}_{1} and $\mathbf{N}_{\mathbf{2}}$ there is a NFA \mathbf{N} such that $L(N)=L\left(N_{1}\right) \cdot L\left(N_{2}\right)$.

Closure under concatenation

Theorem

For any two NFAs \mathbf{N}_{1} and $\mathbf{N}_{\mathbf{2}}$ there is a NFA \mathbf{N} such that $L(N)=L\left(N_{1}\right) \cdot L\left(N_{2}\right)$.

Closure under Kleene star

Theorem
 For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Closure under Kleene star

Theorem
 For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Does not work! Why?

Closure under Kleene star

Theorem
 For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Does not work! Why?

Closure under Kleene star

Theorem
 For any NFA N_{1} there is a NFA N such that $L(N)=\left(L\left(N_{1}\right)\right)^{*}$.

Part IV

NFAs capture Regular Languages

Regular Languages Recap

Regular Languages

\emptyset regular
$\{\epsilon\}$ regular
\{a\} regular for $\boldsymbol{a} \in \boldsymbol{\Sigma}$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are
R^{*} is regular if R is

Regular Expressions

\emptyset denotes \emptyset
ϵ denotes $\{\epsilon\}$
a denote $\{a\}$
$\mathbf{r}_{1}+\mathbf{r}_{2}$ denotes $R_{1} \cup R_{2}$
$\mathbf{r}_{1} \mathbf{r}_{\mathbf{2}}$ denotes $\boldsymbol{R}_{1} \boldsymbol{R}_{\mathbf{2}}$
\mathbf{r}^{*} denote \boldsymbol{R}^{*}

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

NFAs and Regular Language

Theorem
 For every regular language L there is an NFA \mathbf{N} such that $L=L(N)$.

Proof strategy:

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Base cases: $\emptyset,\{\varepsilon\},\{a\}$ for $a \in \boldsymbol{\Sigma}$.

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=r_{1}+r_{2}$.
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence $L(N)=L(r)$
- $r=r_{1} \cdot r_{2}$. Use closure of NFA languages under concatenation - $r=\left(r_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=r_{1}+r_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(\boldsymbol{r}_{1}\right)$ and $L\left(N_{2}\right)=L\left(\boldsymbol{r}_{2}\right)$. We have already seen that

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=r_{1}+r_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence $L(N)=L(r)$

- $r=r_{1} \cdot r_{2}$. Use closure of NFA languages under concatenation
- $r=\left(r_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=r_{1}+r_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence
$L(N)=L(r)$

- $\boldsymbol{r}=\boldsymbol{r}_{\mathbf{1}} \bullet \boldsymbol{r}_{\mathbf{2}}$. Use closure of NFA languages under concatenation
- $r=\left(r_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=r_{1}+r_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence
$L(N)=L(r)$

- $r=r_{1} \bullet r_{2}$. Use closure of NFA languages under concatenation
- $r=\left(r_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=r_{1}+r_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence
$L(N)=L(r)$

- $r=r_{1} \bullet r_{2}$. Use closure of NFA languages under concatenation
- $r=\left(r_{1}\right)^{*}$.
anguages under Kleene star

NFAs and Regular Language

- For every regular expression r show that there is a NFA N such that $L(r)=L(N)$
- Induction on length of r

Inductive cases:

- r_{1}, r_{2} regular expressions and $r=r_{1}+r_{2}$.

By induction there are NFAs N_{1}, N_{2} s.t
$L\left(N_{1}\right)=L\left(r_{1}\right)$ and $L\left(N_{2}\right)=L\left(r_{2}\right)$. We have already seen that there is NFA N s.t $L(N)=L\left(N_{1}\right) \cup L\left(N_{2}\right)$, hence
$L(N)=L(r)$

- $r=r_{1} \bullet r_{2}$. Use closure of NFA languages under concatenation
- $r=\left(r_{1}\right)^{*}$. Use closure of NFA languages under Kleene star

Example

$(\varepsilon+0)(1+10)^{*}$

$$
\rightarrow(\varepsilon+0) \rightarrow(1+10)^{*}
$$

Example

Example

Final NFA simplified slightly to reduce states

