
Solutions for Discussion 12a: Friday, November 13, 2020
Version: 1.0 CS/ECE 374: Algorithms & Models of Computation, Fall 2020

1 Suppose we are given both an undirected graph G with weighted edges and a minimum spanning tree T
of G. In all cases, the input to your algorithm is the edge e and its new weight; your algorithms should
modify T so that it is still a minimum spanning tree. Of course, we could just recompute the minimum
spanning tree from scratch in O(|E|+ |V | log |V |) time, but you can do better.

1.A. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge
e ∈ T is decreased.

Solution:
In this case, the given MST T is still a MST. While this may seem obvious, we argue it carefully
here. Let T be the MST, and W be the weight of T . Let e = (u, v), and let the decrease in
weight be d, so that the new cost of T becomes W − d. Let Tu and Tv be the subtrees obtained
by removing e. Now, if T doesn’t remain an MST, then clearly any new MST T ′ must contain
e, for if it did not, then since w(T ′) < W − d < W = w(T), this contradicts the fact that T was
an MST with the original weights. But if T ′ contains e, then the only way it can have cost lower
than W − d is by either connecting the nodes of Tu with less weight than w(Tu), or by connecting
the nodes of Tv with less weight than w(Tv). But Tu and Tv are both MSTs for their node sets,
otherwise T would not have been minimal to begin with. Thus, T ′ cannot have less weight than
W − d.

1.B. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge
e 6∈ T is increased.

Solution:
In this case, the given MST T is still a MST. To see this, consider a run of Kruskal’s algorithm
which produced T . All of the same decisions would be made when e has a higher weight, and
so the same tree will be produced. (This assumes the edge weights are unique. A more subtle
argument is needed if the edge weights are not unique.)

1.C. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge
e ∈ T is increased.

Solution:
Let e = (u, v) and let Tu and Tv be the subtrees obtained by removing e. By doing BFS (ignoring
edge weights) from u and from v , we can determine which vertices are in Tu and which are in Tv

in time O(|V |+ |E|). (Actually, we can do this in O(|V |), since we only need to consider edges of
the tree T , but the next step will take O(|E|) anyway.) Assume we have marked each node with
its membership. Now examine each edge, and keep the minimum weight edge e′ with one endpoint
in Tu and the other in Tv. This can be done in O(|E|) time. The total time is thus O(|V |+ |E|).
(Okay, we could perhaps speed this up by examining only those edges adjacent to vertices of Tu,
thus ignoring edges with both endpoints in Tv.) Can you argue why the resulting tree is an MST?

1.D. Describe an efficient algorithm to update the minimum spanning tree when the weight of one edge
e 6∈ T is decreased.

1

Solution:
Let e = (u, v). Add e to T which will create a unique cycle, which we can find doing BFS in
T ∪ {e} starting from u and ignoring weights. This takes O(|T |) = O(|V |) time. Now remove the
maximum weight edge on that cycle (O(|V |)). Can you argue why the resulting tree is an MST?

2 Let G = (V,E) be an undirected graph where each edge has a weight from the set {1, 10, 25}. Describe a
linear-time algorithm to find an MST of G.
There are two possible solutions, one using a modified Prim’s algorithm, and one using meta-graphs of
connected components.

Solution:
[Modified Prim’s] The idea behind this is that Prim’s grows the spanning tree by maintaining a tree
and adding one vertex to the tree at a time. This works in linear time for us, because the choice of
edge is made efficient without the need to sort. First construct three bags containing 1-weight edges,
10-weight edges, and 25-weight edges respectively . It takes O(E) to build the lists, The find operation
is O(1), the decrease key operation is O(1). Thus, the algorithm runs in O(V + E) time.

Solution:
[Connected Components] Find the connected components in the graph with the smallest weight set of
edges. Shrink them and find the connected components again with edges of next weight, shrink them
and so on. This algorithm also runs in O(V + E) time since we only have 3 distinct edge weights.

2

