
Solutions for Discussion 08a: Wednesday, October 14, 2020
Version: 1.0 CS/ECE 374: Algorithms & Models of Computation, Fall 2020

Dynamic programming problems can be solved using implicit memoization. Here, you are expected to solve
the dynamic programming using explicit memoization (i.e., build the appropriate tables, and fill them in the
right order, etc). In the exams, you would probably be asked to solve dynamic programming using explicit
memoization. For homework 5 you can still use implicit memoization, but this would not be acceptable later
in the course.

Lenny Rutenbar, the founding dean of the new Maximilian Q. Levchin College of Computer Science, has
commissioned a series of snow ramps on the south slope of the Orchard Downs sledding hill1 and challenged
Bill Kudeki, head of the Department of Electrical and Computer Engineering, to a sledding contest. Bill and
Lenny will both sled down the hill, each trying to maximize their air time. The winner gets to expand their
department/college into both Siebel Center and the new ECE Building; the loser has to move their entire
department/college under the Boneyard bridge next to Everitt Lab.

Whenever Lenny or Bill reaches a ramp while on the ground, they can either use that ramp to jump through
the air, possibly flying over one or more ramps, or sled past that ramp and stay on the ground. Obviously, if
someone flies over a ramp, they cannot use that ramp to extend their jump.

1 Suppose you are given a pair of arrays Ramp[1 . . n] and Length[1 . . n], where Ramp[i] is the distance from
the top of the hill to the ith ramp, and Length[i] is the distance that any sledder who takes the ith ramp
will travel through the air.

Describe and analyze an algorithm to determine the maximum total distance that Lenny or Bill can spend
in the air.

Solution:
To simplify boundary cases, let’s add a sentinel ramp at the bottom of the hill with Ramp[n+ 1] =∞.

For any index i, let Next(i) denote the smallest index j such that Ramp[j] > Ramp[i] + Length[i].
Because the array Ramp is sorted, we can compute Next(i) for any index i in O(log n) time using binary
search.

Now let MaxAir(i) denote the maximum distance any sledder can spend in the air starting on the ground
at the ith ramp. We need to compute MaxAir(1) This function satisfies the following recurrence:

MaxAir(i) =


0 if i > n

max

{
MaxAir(i+ 1)

Length[i] + MaxAir(Next(i))

}
otherwise

We can memoize this function into an a one-dimensional array MaxAir[1 . . n + 1], which we can fill
from right to left.

MaxAir(Ramp[1 . . n],Length[1 . . n]):
Ramp[n+ 1]←∞
MaxAir[n+ 1]← 0

for i← n down to 1
next← BinarySearch(Ramp, Ramp[i] + Length[i])
MaxAir[i]← max {MaxAir[i+ 1], Length[i] + MaxAir[next]}

return MaxAir[1]

1The north slope is faster, but too short for an interesting contest.

1



Because of the binary search for Next(i) (here stored in the variable next), the algorithm runs in
O(n logn) time .

Solution:
A completely different solution. Let us compute all the critical values for our problems. They are clearly
xi = Ramp[i] and yi = Ramp[i] + Length[i], for i = 1, . . . , n. We also add special values s = 0 and
t = +∞ to this set. Let us sort these values from left to right. Let Z be the resulting set of values.
We now build a graph on top of these values. For α, β ∈ Z, such that α < β and α, β are consecutive
in the sorted order, we add the edge (α, β) to the graph. We put weight 0 on such edges. We also put
edges (xi, yi), for all i, with weight Length[i]. This results in a directed graph G, that goes from left to
right, and thus has no cycles. We are now looking for the longest weighted path from s to t in G. If
Z =

〈
z1 < z2 < . . . < zm

〉
(here, m = 2n + 2), with z1 = s and zm = t, then let f(zi) be the longest

weighted path starting at zi and ending at t. We have the following

f(zm) = 0

f(zi) = max
(zi,zj)∈E(G)

(
w (zi, zj) + f(zj)

)
,

where w (zi, zj) is the weight assigned to the edge (zi, zj). We are interested in computing f(z1), which
can be computed in O(m) time using memoization. Here, we are using the property that every edge of
the graph is inspected exactly once, and thus we can charge the relevant work to it.

As such, this problem is equivalent to the more general problem of computing the longest path in a
DAG starting from a specific vertex (i.e., s), to another specific vertex (i.e., t).

The running time is dominated by sorting, which takes O(n log n) time.

2 Uh-oh. The university lawyers heard about Lenny and Bill’s little bet and immediately objected. To
protect the university from either lawsuits or sky-rocketing insurance rates, they impose an upper bound
on the number of jumps that either sledder can take.

Describe and analyze an algorithm to determine the maximum total distance that Lenny or Bill can spend
in the air with at most k jumps, given the original arrays Ramp[1 .. n] and Length[1 .. n] and the integer k
as input.

Solution:
Again, add a sentinel ramp Ramp[n+1] =∞, and for any index i, let Next(i) denote the smallest index
j such that Ramp[j] > Ramp[i] + Length[i].

Now let MaxAir(i, `) denote the maximum distance any sledder can spend in the air, starting on the
ground at the ith ramp, using at most ` jumps. We need to compute MaxAir(1, k). This function obeys
the following recurrence:

MaxAir(i, `) =


0 if i > n or j = 0

max

{
MaxAir(i+ 1, `)

Length[i] + MaxAir(Next(i), `− 1)

}
otherwise

We can memoize this function into a two-dimensional array MaxAir[1 . . n+ 1, 0 . . k], which we can fill
by considering rows from bottom to top in the outer loop and filling each row in arbitrary order in the
inner loop.

2



MaxAir(Ramp[1 . . n],Length[1 . . n], k):
Ramp[n+ 1]←∞
for `← 0 to k do

MaxAir[n+ 1, `]← 0

for i← n down to 1
next← BinarySearch(Ramp, Ramp[i] + Length[i])
for `← 0 to k

MaxAir[i, j]← max {MaxAir[i+ 1, `], Length[i] + MaxAir[next, `− 1]}
return MaxAir[1, k]

Because we perform the binary search for Next(i) outside the inner loop, the algorithm runs in
O(n logn + nk) time .

3 To think about later: When the lawyers realized that imposing their restriction didn’t immediately
shut down the contest, they added a new restriction: No ramp can be used more than once! Disgusted by
the legal interference, Lenny and Bill give up on their bet and decide to cooperate to put on a good show
for the spectators.

Describe and analyze an algorithm to determine the maximum total distance that Lenny and Bill can
spend in the air, each taking at most k jumps (so at most 2k jumps total), and with each ramp used at
most once.

Solution:

MaxAir2(Ramp[1 . . n],Length[1 . . n], k):
Ramp[n+ 1]←∞
Length[n+ 1]← 0
for i← n+ 1 down to 1

next← BinarySearch(Ramp, Ramp[i] + Length[i])
for j ← n+ 1 down to i

for `← −1 to k
for m← −1 to k

if ` < 0 or m < 0
Air[i, j, `,m]← −∞

else if i = n+ 1 and j = n+ 1
Air[i, j, `,m]← 0

else if i = j

Air[i, i, `,m]← max

{
Air[i, i+ 1,m, `]

Length[i] + Air[i+ 1,next,m, `− 1]

}
else

Air[i, j, `,m]← max

{
Air[i+ 1, j, `,m]

Length[i] + Air[next, j, `− 1,m]

}
Air[j, i,m, `]← Air[i, j, `,m]

return Air[1, 1, k, k]

Again, add a sentinel ramp Ramp[n+1] =∞, and for any index i, let Next(i) denote the smallest index
j such that Ramp[j] > Ramp[i] + Length[i].

3



Let MaxAir2(i, j, `,m) denote the maximum time that Lenny and Bill can spend in the air if Lenny
starts at ramp i, Bill starts at ramp j, Bill did not jump from ramps i through j− 1 (so Lenny still can
use any of those ramps), Lenny has ` jumps remaining, and Bill has m jumps remaining. (Whew!) We
develop a recurrence for this function as follows:

• The recurrence is based on Lenny’s decision whether or not to jump at ramp i.

• If Bill and Lenny are at the same ramp i, and Lenny decides to jump, then Bill must sled down to
ramp i+ 1. Otherwise, Bill stays at ramp j.

• If Lenny ever sleds or jumps ahead of Bill (that is, if i > j), then (for purposes of computation)
Lenny and Bill swap identities. In particular, if Lenny and Bill ever find themselves at the same
ramp, then no matter what Lenny decides, Bill and Lenny will swap. Thus, “Bill” always means
the sledder further downhill, and “Lenny” always means the sledder further uphill.

This function obeys the following recurrence:

MaxAir2(i, j, `,m) =



MaxAir2(j, i,m, `) if i > j

−∞ if ` < 0 or m < 0

0 if i > n

max

{
MaxAir2(i, i+ 1,m, `)

Length[i] + MaxAir2(i+ 1,Next(i),m, `− 1)

}
if i = j ≤ n

max

{
MaxAir2(i+ 1, j, `,m)

Length[i] + MaxAir2(Next(i), j, `− 1,m)

}
otherwise

We can memoize this function into a four(!)-dimensional array Air[1 . . n+ 1, 1 . . n+ 1,−1 . . k,−1 . . k].
Each entry Air[i, j, `,m] with i ≤ j depends only on entries Air[i′, j′, `′,m′] where either i′ > i, or i′ = i
and j′ > i. Thus, we can fill the array by decreasing i in the outermost loop, decreasing j in the next
loop, and considering ` and m in arbitrary order in the inner two loops. The resulting algorithm (on
the next page) runs in O(n2k2) time .

(This is by far the most complicated dynamic programming algorithm we will see all semester!)

4


