Solutions for Discussion 07a: Wednesday, October 7, 2020
Version: $\mathbf{1 . 0}$
CS/ECE 374: Algorithms \& Models of Computation, Fall 2020
Describe recursive backtracking algorithms for the following problems. Don't worry about running times.
1 Longest increasing subsequence. Given an array $A[1 . . n]$ of integers, compute the length of a longest increasing subsequence. A sequence $B[1 . . \ell]$ is increasing if $B[i]>B[i-1]$ for every index $i \geq 2$.
For example, given the array

$$
\langle 3, \underline{1}, \underline{4}, 1, \underline{\mathbf{5}}, 9,2, \underline{\mathbf{6}}, 5,3,5, \underline{8}, \underline{9}, 7,9,3,2,3,8,4,6,2,7\rangle
$$

your algorithm should return the integer 6 , because $\langle 1,4,5,6,8,9\rangle$ is a longest increasing subsequence (one of many).

Solution:

[\#1 of ∞] Add a sentinel value $A[0]=-\infty$. Let $\operatorname{LIS}(i, j)$ denote the length of the longest increasing subsequence of $A[j \ldots n]$ where every element is larger than $A[i]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } j \leq n \text { and } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LIS}(0,1)$.

Solution:

[\#2 of ∞] Add a sentinel value $A[n+1]=-\infty$. Let $\operatorname{LIS}(i, j)$ denote the length of the longest increasing subsequence of $A[1 \ldots j]$ where every element is smaller than $A[j]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } i<1 \\ \operatorname{LIS}(i-1, j) & \text { if } i \geq 1 \text { and } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i-1, j), 1+\operatorname{LIS}(i-1, i)\} & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LIS}(n, n+1)$.

Solution:

[\#3 of ∞] Let $L I S(i)$ denote the length of the longest increasing subsequence of $A[i \ldots n]$ that begins with $A[i]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(i)= \begin{cases}1 & \text { if } A[j] \leq A[i] \text { for all } j>i \\ 1+\max \{\operatorname{LIS}(j)\} j>i \text { and } A[j]>A[i] & \text { otherwise }\end{cases}
$$

(The first case is actually redundant if we define $\max \varnothing=0$.) We need to compute $\max _{i} \operatorname{LIS}(i)$.

Solution:

[\#4 of ∞] Add a sentinel value $A[0]=-\infty$. Let $\operatorname{LIS}(i)$ denote the length of the longest increasing subsequence of $A[i \ldots n]$ that begins with $A[i]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(i)= \begin{cases}1 & \text { if } A[j] \leq A[i] \text { for all } j>i \\ 1+\max \{\operatorname{LIS}(j)\} j>i \text { and } A[j]>A[i] & \text { otherwise }\end{cases}
$$

(The first case is actually redundant if we define $\max \varnothing=0$.) We need to compute $\operatorname{LIS}(0)-1$; the -1 removes the sentinel $-\infty$ from the start of the subsequence.

Solution:

[\#5 of ∞] Add sentinel values $A[0]=-\infty$ and $A[n+1]=\infty$. Let $\operatorname{LIS}(j)$ denote the length of the longest increasing subsequence of $A[1 \ldots j]$ that ends with $A[j]$. This function obeys the following recurrence:

$$
\operatorname{LIS}(j)= \begin{cases}1 & \text { if } j=0 \\ 1+\max \{\operatorname{LIS}(i)\} i<j \text { and } A[i]<A[j] & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LIS}(n+1)-2$; the -2 removes the sentinels $-\infty$ and ∞ from the subsequence.

2 Longest decreasing subsequence. Given an array $A[1 . . n]$ of integers, compute the length of a longest decreasing subsequence. A sequence $B[1 . . \ell]$ is decreasing if $B[i]<B[i-1]$ for every index $i \geq 2$.
For example, given the array

$$
\langle 3,1,4,1,5, \underline{9}, 2, \underline{\mathbf{6}}, 5,3, \underline{\mathbf{5}}, 8,9,7,9,3,2,3,8, \underline{4}, 6, \underline{\mathbf{2}}, 7\rangle
$$

your algorithm should return the integer 5 , because $\langle 9,6,5,4,2\rangle$ is a longest decreasing subsequence (one of many).

Solution:

[one of many] Add a sentinel value $A[0]=\infty$. Let $L D S(i, j)$ denote the length of the longest decreasing subsequence of $A[j \ldots n]$ where every element is smaller than $A[i]$. This function obeys the following recurrence:

$$
\operatorname{LDS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LDS}(i, j+1) & \text { if } j \leq n \text { and } A[i] \leq A[j] \\ \max \{L D S(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LDS}(0,1)$.

Solution:

[clever] Multiply every element of A by -1 , and then compute the length of the longest increasing subsequence using the algorithm from problem 1.

3 Longest alternating subsequence.

Given an array $A[1 . . n]$ of integers, compute the length of a longest alternating subsequence. A sequence $B[1 . . \ell]$ is alternating if $B[i]<B[i-1]$ for every even index $i \geq 2$, and $B[i]>B[i-1]$ for every odd index $i \geq 3$.
For example, given the array

$$
\langle\underline{\mathbf{3}}, \underline{1}, \underline{4}, \underline{1}, \underline{\mathbf{5}}, 9, \underline{2}, \underline{\mathbf{6}}, \underline{\mathbf{5}}, 3,5, \underline{8}, 9, \underline{7}, \underline{9}, \underline{\mathbf{3}}, 2,3, \underline{8}, \underline{4}, \underline{\mathbf{6}}, \underline{2}, \underline{7}\rangle,
$$

your algorithm should return 17 , because $\langle 3,1,4,1,5,2,6,5,8,7,9,3,8,4,6,2,7\rangle$ is a longest alternating subsequence (one of many).

Solution:

[one of many] We define two functions:

- Let $L A S^{+}(i, j)$ denote the length of the longest alternating subsequence of $A[j \ldots n]$ whose first element (if any) is larger than $A[i]$ and whose second element (if any) is smaller than its first.
- Let $L A S^{-}(i, j)$ denote the length of the longest alternating subsequence of $A[j \ldots n]$ whose first element (if any) is smaller than $A[i]$ and whose second element (if any) is larger than its first.

These two functions satisfy the following mutual recurrences:

$$
\begin{aligned}
& L A S^{+}(i, j)= \begin{cases}0 & \text { if } j>n \\
L A S^{+}(i, j+1) & \text { if } j \leq n \text { and } A[j] \leq A[i] \\
\max \left\{L A S^{+}(i, j+1), 1+L A S^{-}(j, j+1)\right\} & \text { otherwise }\end{cases} \\
& L A S^{-}(i, j)= \begin{cases}0 & \text { if } j>n \\
L A S^{-}(i, j+1) & \text { if } j \leq n \text { and } A[j] \geq A[i] \\
\max \left\{L A S^{-}(i, j+1), 1+L A S^{+}(j, j+1)\right\} & \text { otherwise }\end{cases}
\end{aligned}
$$

To simplify computation, we consider two different sentinel values $A[0]$. First we set $A[0]=-\infty$ and let $\ell^{+}=L A S^{+}(0,1)$. Then we set $A[0]=+\infty$ and let $\ell^{-}=L A S^{-}(0,1)$. Finally, the length of the longest alternating subsequence of A is $\max \left\{\ell^{+}, \ell^{-}\right\}$.

Solution:

[one of many] We define two functions:

- Let $L A S^{+}(i)$ denote the length of the longest alternating subsequence of $A[i \ldots n]$ that starts with $A[i]$ and whose second element (if any) is larger than $A[i]$.
- Let $L A S^{-}(i)$ denote the length of the longest alternating subsequence of $A[i \ldots n]$ that starts with $A[i]$ and whose second element (if any) is smaller than $A[i]$.

These two functions satisfy the following mutual recurrences:

$$
\begin{aligned}
& L A S^{+}(i)= \begin{cases}1 & \text { if } A[j] \leq A[i] \text { for all } j>i \\
1+\max \left\{L A S^{-}(j)\right\} j>i \text { and } A[j]>A[i] & \text { otherwise }\end{cases} \\
& L A S^{-}(i)= \begin{cases}1 & \text { if } A[j] \geq A[i] \text { for all } j>i \\
1+\max \left\{L A S^{+}(j)\right\} j>i \text { and } A[j]<A[i] & \text { otherwise }\end{cases}
\end{aligned}
$$

We need to compute $\max _{i} \max \left\{L A S^{+}(i), L A S^{-}(i)\right\}$.

To think about later:

1 Given an array $A[1 . . n]$ of integers, compute the length of a longest convex subsequence of A.

Solution:

Let $L C S(i, j)$ denote the length of the longest convex subsequence of $A[i \ldots n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

$$
\operatorname{LCS}(i, j)=1+\max \{\operatorname{LCS}(j, k)\} j<k \leq n \text { and } A[i]+A[k]>2 A[j]
$$

Here we define $\max \varnothing=0$; this gives us a working base case. The length of the longest convex subsequence is $\max _{1 \leq i<j \leq n} L C S(i, j)$.

Solution:

[with sentinels] Assume without loss of generality that $A[i] \geq 0$ for all i. (Otherwise, we can add $|m|$ to each $A[i]$, where m is the smallest element of $A[1 \ldots n]$.) Add two sentinel values $A[0]=2 M+1$ and $A[-1]=4 M+3$, where M is the largest element of $A[1 \ldots n]$.
Let $L C S(i, j)$ denote the length of the longest convex subsequence of $A[i \ldots n]$ whose first two elements are $A[i]$ and $A[j]$. This function obeys the following recurrence:

$$
L C S(i, j)=1+\max \{L C S(j, k)\} j<k \leq n \text { and } A[i]+A[k]>2 A[j]
$$

Here we define $\max \varnothing=0$; this gives us a working base case.
Finally, we claim that the length of the longest convex subsequence of $A[1 \ldots n]$ is $\operatorname{LCS}(-1,0)-2$.
Proof: First, consider any convex subsequence S of $A[1 \ldots n]$, and suppose its first element is $A[i]$. Then we have $A[-1]-2 A[0]+A[i]=4 M+3-2(2 M+1)+A[i]=A[i]+1>0$, which implies that $A[-1] \cdot A[0] \cdot S$ is a convex subsequence of $A[-1 \ldots n]$. So the longest convex subsequence of $A[1 \ldots n]$ has length at most $\operatorname{LCS}(-1,0)-2$.
On the other hand, removing $A[-1]$ and $A[0]$ from any convex subsequence of $A[-1 \ldots n]$ laves a convex subsequence of $A[1 \ldots n]$. So the longest subsequence of $A[1 \ldots n]$ has length at least $\operatorname{LCS}(-1,0)-2$.

2 Given an array $A[1 . . n]$, compute the length of a longest palindrome subsequence of A.

Solution:

[naive] Let $\operatorname{LPS}(i, j)$ denote the length of the longest palindrome subsequence of $A[i \ldots j]$. This function obeys the following recurrence:

$$
L P S(i, j)=\left\{\begin{array}{ll}
0 & \left.\begin{array}{l}
\text { if } i>j \\
1 \\
\max \left\{\begin{array}{l}
\text { if } \\
1
\end{array}\right. \\
\max \left\{\begin{array}{c}
L P S(i+1, j) \\
L P S(i, j-1)
\end{array}\right\} \\
2+L P S(i+1, j-1) \\
L P S(i+1, j) \\
L P S(i, j-1)
\end{array}\right\}
\end{array} \quad \begin{array}{l}
\text { if } i<j \text { and } A[i] \neq A[j]
\end{array}\right.
$$

We need to compute $\operatorname{LPS}(1, n)$.

Solution:

[with greedy optimization] Let $\operatorname{LPS}(i, j)$ denote the length of the longest palindrome subsequence of $A[i \ldots j]$. Before stating a recurrence for this function, we make the following useful observation. ${ }^{1}$

Claim 0.1. If $i<j$ and $A[i]=A[j]$, then $\operatorname{LPS}(i, j)=2+\operatorname{LPS}(i+1, j-1)$.
Proof: Suppose $i<j$ and $A[i]=A[j]$. Fix an arbitrary longest palindrome subsequence S of $A[i \ldots j]$. There are four cases to consider.

- If S uses neither $A[i]$ nor $A[j]$, then $A[i] \bullet S \bullet A[j]$ is a palindrome subsequence of $A[i \ldots j]$ that is longer than S, which is impossible.
- Suppose S uses $A[i]$ but not $A[j]$. Let $A[k]$ be the last element of S. If $k=i$, then $A[i]$ • $A[j]$ is a palindrome subsequence of $A[i \ldots j]$ that is longer than S, which is impossible. Otherwise, replacing $A[k]$ with $A[j]$ gives us a palindrome subsequence of $A[i \ldots j]$ with the same length as S that uses both $A[i]$ and $A[j]$.
- Suppose S uses $A[j]$ but not $A[i]$. Let $A[h]$ be the first element of S. If $h=j$, then $A[i]$ • $A[j]$ is a palindrome subsequence of $A[i \ldots j]$ that is longer than S, which is impossible. Otherwise, replacing $A[h]$ with $A[i]$ gives us a palindrome subsequence of $A[i \ldots j]$ with the same length as S that uses both $A[i]$ and $A[j]$.
- Finally, S might include both $A[i]$ and $A[j]$.

In all cases, we find either a contradiction or a longest palindrome subsequence of $A[i \ldots j]$ that uses both $A[i]$ and $A[j]$.

Claim 1 implies that the function $L P S$ satisfies the following recurrence:

$$
\operatorname{LPS}(i, j)= \begin{cases}0 & \text { if } i>j \\ 1 & \text { if } i=j \\ \max \{\operatorname{LPS}(i+1, j), \operatorname{LPS}(i, j-1)\} & \text { if } i<j \text { and } A[i] \neq A[j] \\ 2+\operatorname{LPS}(i+1, j-1) & \text { otherwise }\end{cases}
$$

We need to compute $\operatorname{LPS}(1, n)$.

