
Solutions for Discussion 3a: Wednesday, September 9, 2020
Version: 1.0 CS/ECE 374: Algorithms & Models of Computation, Fall 2020

1 Consider the following “maze”:

1 2 3
4
5

6

7
A robot starts at position 1 – where at every point in time it is allowed to move only to adjacent cells.
The input is a sequence of commands V (move vertically) or H (move horizontally), where the robot is
required to move if it gets such a command. If it is in location 2, and it gets a V command then it must
move down to location 4. However, if it gets command H while being in location 2 then it can move either
to location 1 or 3, as it chooses.

An input is invalid , if the robot get stuck during the execution of this sequence of commands, for any
sequence of choices it makes. For example, starting at position 1, the input HVH is not valid. (The robot
was so badly designed, that if it gets stuck, it explodes and no longer exists.)

1 A. Starting at position 1, consider the (command) input HV V . Which location might the robot be in?
(Same for HV V V and HV V V H.)

Solution:
HV V : 2 or 5.
HV V V : 4.
HV V V H: This is an invalid input. The robot can not be in any valid location.

1 B. Draw an NFA that accepts all valid inputs.

Solution:

1 2
H
H

3
H

4

V

H
6

V

V
5

V
V

7
H

V

H

1 C. The robot solves the maze if it arrives (at any point in time) to position 7. Draw an NFA that accepts
all inputs that are solutions to the maze.

Solution:

1
7

V,H
2

H
H

3
H

4
V

H
6

V

V
5

V H
V

V

1



1 D. (Extra - not for discussion section.) Write a regular expression which is all inputs that are valid
solutions to the maze.
(See here for notes of how to solve such a question.)

2 Let L = {w ∈ {a, b}∗ | a appears in some position i of w, and a b appears in position i+ 2} .

2 A. Create an NFA N for L with at most four states.

Solution:
The following NFA N accepts the language. The machine starts at state q0. On seeing the symbol
a, the NFA has the choice of either staying at q0 or to check if it is followed, 2 positions later,
with a b.

q0start q1 q2 q3
a

a, b

a, b b

a, b

2 B. Using the “power-set” construction, create a DFA M from N . Rather than writing down the sixteen
states and trying to fill in the transitions, build the states as needed, because you won’t end up with
unreachable or otherwise superfluous states.

Solution:
Using the “power-set” construction, we obtain the following DFA M .

{q0}start {q0, q1} {q0, q1, q2}

{q0, q2} {q0, q3}

{q0, q2, q3}

{q0, q1, q3}

{q0, q1, q2, q3}
a

b

a

ba

b a

b

a

b

ab
a

b

a

b

2 C. Now directly design a DFA M ′ for L with only five states, and explain the relationship between M
and M ′.

Solution:
The DFA M ′ is as follows. M ′ remembers the last two symbols seen so far.

2

https://courses.engr.illinois.edu/cs374/fa2017/extra_notes/01_nfa_to_reg.pdf


• q′0 is the start state. M ′

• q′1 corresponds to having seen ba as the last two symbols (or just a if this is the first symbol).
• q′2 corresponds to having seen aa as the last two symbols.
• q′3 is the accepting state.
• q′4 corresponds to having seen ab as the last two symbols.

q′0start q′1 q′2 q′3

q′4

a

b

a

b

b

a a, b

a

b

Note that if we contract all the accepting to states in M (from part (b)) to one state, then we
obtain M ′.

For the rest of the problems assume that L is an arbitrary regular language.

3 Prove that the language reverse(L) :=
{
wR

∣∣ w ∈ L} is regular. Hint: Consider a DFA M that accepts L
and construct a NFA that accepts reverse(L).

Solution:
Let M = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an NFA M ′ = (Σ, Q′, s′, A′, δ′) that
accepts reverse(L) as follows.

Q′ := Q ∪ {t} (here t is a new state not in Q)
s′ := t

A′ := {s}
δ′(t, ε) = A

∀q ∈ Q, a ∈ Σ δ′(q, a) =
{
q′ ∈ Q

∣∣ δ(q′, a) = q
}

M ′ is obtained from M by reversing all the directions of the edges, adding a new state t that becomes
the new start state that is connected via ε edges to all the original accepting states. There is a single
accepting state in M ′ which is the start state of M . To see that M ′ accepts reverse(L) you need to see
that any accepting walk of M ′ corresponds to an accepting walk of M .

Another way to show that reverse(L) is regular is via regular expressions. For any regular expression r
you can construct a regular expression r′ such that L(r′) = reverse(L) using the inductive definition of
regular languages. We ignore the base cases as exercise and consider the inductive cases.

• If r1 and r2 are regular expressions and r′1 and r′2 are regular expressions for the reverse languages
then the reverse for r1 + r2 is r′1 + r′2.

3



• For r1r2 we have r′2r′1.

• For (r1)∗ we have (r′1)∗.

4 Prove that the language insert1(L) := {x1y | xy ∈ L} is regular.
Intuitively, insert1(L) is the set of all strings that can be obtained from strings in L by inserting exactly
one 1. For example, if L = {ε,OOK!}, then insert1(L) = {1, 1OOK!, O1OK!, OO1K!, OOK1!, OOK!1}.

Solution:
Let M = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an NFA M ′ = (Σ, Q′, s′, A′, δ′) that
accepts insert1(L) as follows:

Q′ := Q× {before, after}
s′ := (s, before)

A′ :=
{

(q, after)
∣∣ q ∈ A}

δ′((q, before), a) =

{{
(δ(q, a), before), (q, after)

}
if a = 1{

(δ(q, a), before)
}

otherwise

δ′((q, after), a) =
{

(δ(q, a), after)
}

M ′ nondeterministically chooses a 1 in the input string to ignore, and simulates M running on the rest
of the input string.

• The state (q, before) means (the simulation of) M is in state q and M ′ has not yet skipped over a
1.

• The state (q, after) means (the simulation of) M is in state q and M ′ has already skipped over a
1.

Solutions for extra problems

5 Prove that the language delete1(L) := {xy | x1y ∈ L} is regular.
Intuitively, delete1(L) is the set of all strings that can be obtained from strings in L by deleting exactly
one 1. For example, if L = {101101, 00, ε}, then delete1(L) = {01101, 10101, 10110}.

4



Solution:
Let M = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an NFA M ′ = (Σ, Q′, s′, A′, δ′) with
ε-transitions that accepts delete1(L) as follows:

Q′ := Q× {before, after}
s′ := (s, before)

A′ := {(q, after)} q ∈ A

δ′((q, before), ε) =
{

(δ(q, 1), after)
}

δ′((q, after), ε) = ∅

δ′((q, before), a) =
{

(δ(q, a), before)
}

δ′((q, after), a) =
{

(δ(q, a), after)
}

M ′ simulates M , but inserts a single 1 into M ’s input string at a nondeterministically chosen location.

• The state (q, before) means (the simulation of) M is in state q and M ′ has not yet inserted a 1.

• The state (q, after) means (the simulation of) M is in state q and M ′ has already inserted a 1.

6 Consider the following recursively defined function on strings:

stutter(w) :=

{
ε if w = ε

aa • stutter(x) if w = ax for some symbol a and some string x

Intuitively, stutter(w) doubles every symbol in w. For example:

• stutter(PRESTO) = PPRREESSTTOO

• stutter(HOCUS�POCUS) = HHOOCCUUSS��PPOOCCUUSS

Let L be an arbitrary regular language.

6.A. Prove that the language stutter−1(L) := {w} stutter(w) ∈ L is regular.

Solution:
Let M = (Σ, Q, s, A, δ) be a DFA that accepts L.
We construct an DFA M ′ = (Σ, Q′, s′, A′, δ′) that accepts stutter−1(L) as follows:

Q′ = Q

s′ = s

A′ = A

δ′(q, a) = δ(δ(q, a), a)

M ′ reads its input string w and simulatesM running on stutter(w). Each timeM ′ reads a symbol,
the simulation of M reads two copies of that symbol.

6.B. Prove that the language stutter(L) := {stutter(w)}w ∈ L is regular.

5



Solution:
Let M = (Σ, Q, s, A, δ) be a DFA that accepts L.
We construct an DFA M ′ = (Σ, Q′, s′, A′, δ′) that accepts stutter(L) as follows:

Q′ = Q× ({•} ∪ Σ) ∪ {fail} for some • 6∈ Σ

s′ = (s, •)
A′ = {(q, •)} q ∈ A

δ′((q, •), a) = (q, a)

δ′((q, a), b) =

{
(δ(q, a), •) if a = b

fail if a 6= b

δ′(fail, a) = fail

M ′ reads the input string stutter(w) and simulates M running on input w.

• State (q, •) meansM ′ has just read an even symbol in stutter(w), soM should ignore the next
symbol (if any).

• For any symbol a ∈ Σ, state (q, a) means M ′ has just read an odd symbol in stutter(w), and
that symbol was a. If the next symbol is an a, then M should transition normally; otherwise,
the simulation should fail.

• The state fail means M ′ has read two successive symbols that should have been equal but
were not; the input string is not stutter(w) for any string w.

Solution:
Let R be an arbitrary regular expression. We recursively construct a regular expression stutter(R)
as follows:

stutter(R) :=



∅ if R = ∅
stutter(w) if R = w for some string w ∈ Σ∗

stutter(A) + stutter(B) if R = A+B for some regular expressions A and B
stutter(A) stutter(B) if R = AB for some regular expressions A and B
(stutter(A))∗ if R = A∗ for some regular expression A

To prove that L(stutter(R)) = stutter(L(R)), we need the following identities for arbitrary lan-
guages A and B:
• stutter(A ∪B) = stutter(A) ∪ stutter(B)

• stutter(A •B) = stutter(A) • stutter(B)

• stutter(A∗) = stutter(A)∗

These identities can all be proved by inductive definition-chasing, after which the claim
L(stutter(R)) = stutter(L(R)) follows by induction. We leave the details of the induction proofs
as an exercise for (((((((((

a future semester (((((an exam the reader.
Equivalently, we can directly transform R into stutter(R) by replacing every explicit string w ∈ Σ∗

inside R with stutter(w) (with additional parentheses if necessary). For example:

stutter
(
(1 + ε)(01)∗(0 + ε) + 0∗

)
= (11 + ε)(0011)∗(00 + ε) + (00)∗

Although this may look simpler, actually proving that it works requires the same induction argu-
ments.

6



7 Consider the following recursively defined function on strings:

evens(w) :=


ε if w = ε

ε if w = a for some symbol a
b · evens(x) if w = abx for some symbols a and b and some string x

Intuitively, evens(w) skips over every other symbol in w. For example:

• evens(EXPELLIARMUS) = XELAMS

• evens(AV ADA�KEDAV RA) = V D�EAR.

Once again, let L be an arbitrary regular language.

7.A. Prove that the language evens−1(L) := {w} evens(w) ∈ L is regular.

Solution:
LetM = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an DFA M ′ = (Σ, Q′, s′, A′, δ′) that
accepts evens−1(L) as follows:

Q′ = Q× {0, 1}
s′ = (s, 0)

A′ = A× {0, 1}

δ′((q, 0), a) = (q, 1)

δ′((q, 1), a) = (δ(q, a), 0)

M ′ reads its input string w and simulates M running on evens(w).

• State (q, 0) means M ′ has just read an even symbol in w, so M should ignore the next symbol
(if any).

• State (q, 1) means M ′ has just read an odd symbol in w, so M should read the next symbol
(if any).

7.B. Prove that the language evens(L) := {evens(w)}w ∈ L is regular.

Solution:
Let M = (Σ, Q, s, A, δ) be a DFA that accepts L. We construct an NFA M ′ = (Σ, Q′, s′, A′, δ′) that
accepts evens(L) as follows:

Q′ = Q

s′ = s

A′ = A ∪ {q ∈ Q} δ(q, a) ∩A 6= ∅ for some a ∈ Σ

δ′(q, a) =
⋃
b∈Σ

{
δ
(
δ(q, b), a

)}
M ′ reads the input string evens(w) and simulates M running on string w, while nondeterministi-
cally guessing the missing symbols in w.

• When M ′ reads the symbol a from evens(w), it guesses a symbol b ∈ Σ and simulates M
reading ba from w.

7



• When M ′ finishes evens(w), it guesses whether w has even or odd length, and in the odd case,
it guesses the last character of w.

8


