
Solutions for Discussion 02b: Friday, September 4, 2020
Version: 1.02 CS/ECE 374: Algorithms & Models of Computation, Fall 2020

Designing DFAs via product construction and designing NFAs.

1 DFA for all strings in which the number of 0s is even and the number of 1s is not divisible by 3.

Solution:
We use a standard product construction of two DFAs, one accepting strings with an even number of
0s, and the other accepting strings where the number of 1s is not a multiple of 3.
The product DFA has six states, each labeled with a pair of integers, one indicating the number 0s
read modulo 2, the other indicating the number of 1s read modulo 3.

Q := {0, 1} × {0, 1, 2}
s := (0, 0)

A := {(0, 1), (0, 2)}

δ((q, r), 0) := (q + 1 mod 2, r)

δ((q, r), 1) := (q, r + 1 mod 3)

In this case, the product DFA is simple enough that we can just draw it out in full. I have drawn the
two factor DFAs (in gray) to the left and above for reference.

00 011 02

10 111 12

000000

1

1

1

1

0

1

00

1

1

0 11 21

1

0 0 0

2 DFA for all strings that are both the binary representation of an integer divisible by 3 and the ternary
(base-3) representation of an integer divisible by 4.

For example, the string 1100 is an element of this language, because it represents 23 + 22 = 12 in binary
and 33 + 32 = 36 in ternary.

Solution:
Again, we use a standard product construction of two DFAs, one accepting binary strings divisible by
3, the other accepting ternary strings divisible by 4. The product DFA has twelve states, each labeled

1



with a pair of integers: The binary value read so far modulo 3, and the ternary value read so far modulo
4.

Q := {0, 1, 2} × {0, 1, 2, 3}
s := (0, 0)

A := {(0, 0)}

δ((q, r), 0) := (2q mod 3, 3r mod 4)

δ((q, r), 1) := (2q + 1 mod 3, 3r + 1 mod 4)

For reference, here is a drawing of the DFA, with the two factor DFAs (in gray) to the left and above; we
would not expect you to draw this, especially on exams. More importantly we would expect you not
to draw this, especially on exams. The states of the factor DFA that maintains ternary-value-mod-4
are deliberately “out of order” to simplify the drawing.

00 011 02

10 11 12

0

20 21 22

03

13

23

0 0

0
1

1

1

1

1

1 1

1 1

1 1
0 0

0 0

0 0 0 0

0 1 2
0

3

0 0

0

1

1

1

1

0

1

0

0 0

1 1

2

1

3 Design an NFA for the language (01)+ + (010)+.

Solution:
The NFA is shown in the figure below.

2



Note that we’ve separated the two cases of either repeated 01, or repeated 010. Why would the NFA
with states labeled 0 and 0′ merged be incorrect?

4 DFA for all strings w such that
(∣∣∣w∣∣∣

2

)
mod 6 = 4.

(
Hint: Maintain both

(∣∣∣w∣∣∣
2

)
mod 6 and

∣∣w∣∣ mod 6.
)

Solution:
Our DFA has 36 states, each labeled with a pair of integers representing

(∣∣∣x∣∣∣
2

)
mod 6 and

∣∣x∣∣ mod 6,
where x is the prefix of the input read so far.

Q := {0, 1, 2, 3, 4, 5} × {0, 1, 2, 3, 4, 5}
s := {(0, 0)}
A := {(4, r) | r ∈ {0, 1, 2, 3, 4, 5}}

δ((q, r), 0) := (q + r mod 6, r + 1 mod 6)

δ((q, r), 1) := (q + r mod 6, r + 1 mod 6)

The transition function exploits the identity
(
n+1
2

)
=
(
n
2

)
+ n.

Solution:
The language is identical to the set of strings w such that

∣∣w∣∣ mod 12 ∈ {4, 7}. This language can be
accepted using a 12-state DFA.

5 (Hard.) All strings w such that F#(10,w) mod 10 = 4, where #(10, w) denotes the number of times 10
appears as a substring of w, and Fn is the nth Fibonacci number:

Fn =


0 if n = 0

1 if n = 1

Fn−1 + Fn−2 otherwise

Solution:

3



Our DFA has 200 states, each labeled with three values:

• Fk mod 10, where k is the number of times we have seen the substring 10.

• Fk+1 mod 10, where k is the number of times we have seen the substring 10.

• The last symbol read (or 0 if we have read nothing yet)

Here is the formal description:

Q := {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} × {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} × {0, 1}
s := {(0, 1, 0)}
A := {(4, r, a) | r ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} and a ∈ {0, 1}}

δ((q, r, 0), 0) := (q, r, 0)

δ((q, r, 1), 0) := (r, q + r mod 10, 0)

δ((q, r, 0), 1) := (q, r, 1)

δ((q, r, 1), 1) := (q, r, 1)

The transition function exploits the recursive definition Fk+1 = Fk + Fk−1.

Solution:
The Fibonacci numbers modulo 10 define a repeating sequence with period 60. So this language can
be accepted by a DFA with “only” 120 states.

Extra problems [no solutions would be provided]

6 Let L = {w ∈ {a, b}∗ | an a appears in some position i of w, and a b appears in position i+ 2}.

6.A. Create an NFA N for L with at most four states.

6.B. Using the “power-set” construction, create a DFA M from N . Rather than writing down the sixteen
states and trying to fill in the transitions, build the states as needed, because you won’t end up with
unreachable or otherwise superfluous states.

6.C. Now directly design a DFA M ′ for L with only five states, and explain the relationship between M
and M ′.

4


