Solutions for Discussion 01b：Friday，August 28， 2020
Version： 1.11
CS／ECE 374：Algorithms \＆Models of Computation，Fall 2020
Give regular expressions for each of the following languages over the alphabet $\{0,1\}$ ．
1 All strings containing the substring 000.
｜Solution：$(0+1)^{*} 000(0+1)^{*}$
2 All strings not containing the substring 000 ．
\｜Solution：$(1+01+001)^{*}(\varepsilon+0+00)$
｜Solution：$(\varepsilon+0+00)(1(\varepsilon+0+00))^{*}$
3 All strings in which every run of 0 s has length at least 3 ．
【 Solution：$\left(1+0000^{*}\right)^{*}$
\｜Solution：$(\varepsilon+1)\left(\left(\varepsilon+0000^{*}\right) 1\right)^{*}\left(\varepsilon+0000^{*}\right)$
4 All strings in which 1 does not appear after a substring 000 ．
｜Solution：$(1+01+001)^{*} 0^{*}$
5 All strings containing at least three 0 s ．
【 Solution：$(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*}$
【 Solution： $1^{*} 01^{*} 01^{*} 0(0+1)^{*}$ or $(0+1)^{*} 01^{*} 01^{*} 01^{*}$
6 Every string except 000．（Hint：Don＇t try to be clever．）
Solution：Every string $w \neq 000$ satisfies one of three conditions：Either $|w|<3$ ，or $|w|=3$ and $w \neq 000$ ，or $|w|>3$ ．The first two cases include only a finite number of strings，so we just list them explicitly．The last case includes all strings of length at least 4 ．

$$
\begin{gathered}
\varepsilon+0+1+00+01+10+11 \\
+001+010+011+100+101+110+111 \\
+(1+0)(1+0)(1+0)(1+0)(1+0)^{*}
\end{gathered}
$$

｜Solution：$\varepsilon+0+00+(1+01+001+000(1+0))(1+0)^{*}$
7 All strings w such that in every prefix of w ，the number of 0 s and 1 s differ by at most 1 ．
｜Solution：Equivalently，strings that alternate between 0s and 1s：$(01+10)^{*}(\varepsilon+0+1)$
8 （Hard．）All strings containing at least two 0 s and at least one 1.
Solution：There are three possibilities for how such a string can begin：
－Start with 00 ，then any number of 0 s，then 1 ，then anything．
－Start with 01 ，then any number of 1 s ，then 0 ，then anything．
－Start with 1 ，then a substring with exactly two 0 s，then anything．
All together： $000^{*} 1(0+1)^{*}+011^{*} 0(0+1)^{*}+11^{*} 01^{*} 0(0+1)^{*}$
Or equivalently：$\left(000^{*} 1+011^{*} 0+11^{*} 01^{*} 0\right)(0+1)^{*}$

Solution:

There are three possibilities for how the three required symbols are ordered:

- Contains a 1 before two $0 \mathrm{~s}:(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*}$
- Contains a 1 between two 0 s: $(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*}$
- Contains a 1 after two 0 s: $\quad(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*}$

So putting these cases together, we get the following:

$$
\begin{aligned}
&(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} \\
&+(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*} 0(0+1)^{*} \\
&+(0+1)^{*} 0(0+1)^{*} 0(0+1)^{*} 1(0+1)^{*}
\end{aligned}
$$

9 (Hard.) All strings w such that in every prefix of w, the number of 0 s and 1 s differ by at most 2 .
Solution: $\left(0(01)^{*} 1+1(10)^{*} 0\right)^{*} \cdot\left(\varepsilon+0(01)^{*}(0+\varepsilon)+1(10)^{*}(1+\varepsilon)\right)$
10 (Really hard.) All strings in which the substring 000 appears an even number of times.
(For example, 0001000 and 0000 are in this language, but 00000 is not.)

Solution:

Every string in $\{0,1\}^{*}$ alternates between (possibly empty) blocks of 0 s and individual 1 s ; that is, $\{0,1\}^{*}=\left(0^{*} 1\right)^{*} 0^{*}$. Trivially, every 000 substring is contained in some block of 0 s. Our strategy is to consider which blocks of 0 s contain an even or odd number of 000 substrings.
We have
Let X denote the set of all strings in 0^{*} with an even number of 000 substrings. We easily observe that

$$
X=\left\{0^{n} \mid n=1 \text { or } n \text { is even }\right\}=0+(00)^{*} .
$$

Observe that X contains the empty string.
Let $Z_{\text {odd }}$ denote the set of all strings in 0^{*} with an odd number of 000 substrings. We easily observe that

$$
Z_{\text {odd }}=\left\{0^{n} \mid n>1 \text { and } n \text { is odd }\right\}=000(00)^{*} .
$$

We have that $0^{*}=X+Z_{\text {odd }}$ and therefore $\{0,1\}^{*}=\left(\left(X+Z_{\text {odd }}\right) 1\right)^{*}\left(X+Z_{\text {odd }}\right)$.
Finally, let L denote the set of all strings in $\{0,1\}^{*}$ with an even number of 000 substrings. A string $w \in\{0,1\}^{*}$ is in $L \Longleftrightarrow$ an even number of blocks of 0 s in w are in $Z_{\text {odd }}$. The remaining blocks of 0 s are all in X. To keep things "simpler", let

$$
E=(X 1)^{*}=\left(\left(0+(00)^{*}\right) 1\right)^{*}
$$

be a run of blocks with even number of 000 , ending with a 1 if it is non-empty.
We thus have that

$$
\begin{aligned}
L & =Z_{\text {odd }} 1 Z_{\text {odd }} \\
& +E Z_{\text {odd }} 1 E Z_{\text {odd }}+ \\
& +E Z_{\text {odd }} 1 E Z_{\text {odd }} 1 E \\
& +\left(E Z_{\text {odd }} 1 E Z_{\text {odd }} 1 E\right)^{*} \\
& +E Z_{\text {odd }} 1\left(E Z_{\text {odd }} 1 E Z_{\text {odd }} 1 E\right)^{*} Z_{\text {odd }}
\end{aligned}
$$

Setting $M=\left(E Z_{\text {odd }} 1 E Z_{\text {odd }} 1 E\right)^{*}$, this simplifies to

$$
L=M+E Z_{\text {odd }} 1 M Z_{\text {odd }}
$$

To see why this is correct, consider the last run of zeros with odd number of 000 . If it is not the last run of zeros, in the string, then one can argue that M applies. Otherwise, the other expression applies, but then we need to get the first occurrence of $Z_{\text {odd }}$ before entering M - thus, the second expression.
Plugging in $E=\left(\left(0+(00)^{*}\right) 1\right)^{*}$ and $Z_{\text {odd }}=000(00)^{*}$, yields

$$
M=\left(\left(\left(0+(00)^{*}\right) 1\right)^{*} 000(00)^{*} 1\left(\left(0+(00)^{*}\right) 1\right)^{*} 000(00)^{*} 1\left(\left(0+(00)^{*}\right) 1\right)^{*}\right)^{*}
$$

As such, L is

$$
\begin{aligned}
L= & \left(\left(\left(0+(00)^{*}\right) 1\right)^{*} 000(00)^{*} 1\left(\left(0+(00)^{*}\right) 1\right)^{*} 000(00)^{*} 1\left(\left(0+(00)^{*}\right) 1\right)^{*}\right)^{*} \\
+ & \left(\left(0+(00)^{*}\right) 1\right)^{*} 000(00)^{*} \\
& 1\left(\left(\left(0+(00)^{*}\right) 1\right)^{*} 000(00)^{*} 1\left(\left(0+(00)^{*}\right) 1\right)^{*} 000(00)^{*} 1\left(\left(0+(00)^{*}\right) 1\right)^{*}\right)^{*} 000(00)^{*},
\end{aligned}
$$

which I am sure was your first guess.
Whew!

