
HW 11 Due on Wednesday, December 2, 2020 at 10am CST

CS/ECE 374: Algorithms & Models of Computation, Fall 2020 Version: 1.3

31 (100 pts.) My friend, parting time is pending.

The following question is long, but not very hard, and is intended to make sure you understand
the following problems, and the basic concepts needed for proving NP-Completeness.

All graphs in the following have n vertices and m edges.

For each of the following problems, you are given an instance of the problem of size n. Imagine
that the answer to this given instance is “yes”, and that you need to convince somebody that indeed
the answer to the given instance is yes. To this end, describe:

(I) An algorithm for solving the given instance (not necessarily efficient). What is the running
time of your algorithm?

(II) The format of the proof that the instance is correct.
(III) A bound on the length of the proof (its have to be of polynomial length in the input size).
(IV) An efficient algorithm (as fast as possible [it has to be polynomial time]) for verifying,

given the instance and the proof, that indeed the given instance is indeed yes. What is
the running time of your algorithm?

(EXAMPLE)

Shortest Path
Instance: A weighted undirected graph G, vertices s and t and a threshold w.
Question: Is there a path between s and t in G of length at most w?

Solution:

(I) Algorithm: We seen in class the Dijkstra algorithm for solving the shortest path problem
in O(n log n+m) = O(n2) time. Given the shortest path, we can just compare its price to
w, and return yes/no accordingly.

(II) Certificate: A “proof” in this case would be a path π in G (i.e., a sequence of at most n
vertices) connecting s to t, such that its total weight is at most w.

(III) Certificate length: The proof here is a list of O(n) vertices, and can be encoded as a list
of O(n) integers. As such, its length is O(n).

(IV) Verification algorithm: The verification algorithm for the given solution/proof, would
verify that all the edges in the path are indeed in the graph, the path starts at s and ends
at t, and that the total weight of the edges of the path is at most w. The proof has length
O(n) in this case, and the verification algorithm runs in O(n2) time, if we assume the graph
is given to us using adjacency lists representation.

1



31.A. (20 pts.)
Socially Distanced Set
Instance: A graph G, integer k
Question: Is there a distanced set in G of size k? A set X ⊆ V(G) is a distanced
set if no two vertices of X are connected by an edge, or a path of length at most 4.

31.B. (20 pts.)
Edge Independent
Instance: A graph G, a set a parameter k.
Question: Is there a subset of k edges in the graph, such that no pair of edges is
adjacent?

31.C. (20 pts.)
Sum to target
Instance: S: Set of positive integers. t: An integer number (target).
Question: Is there a subset X ⊆ S such that

∑
x∈X x−

∑
y∈S\X y = t?

31.D. (20 pts.)
4DM
Instance: X, Y, Z,W sets of n elements, and T a set of quadruples, such that
T ⊆ X × Y × Z ×W .
Question: Is there a subset S ⊆ T of n disjoint quadruples, such that every element
of X ∪ Y ∪ Z ∪W is covered exactly once by one of the quadruples of S?

31.E. (20 pts.)
SET DISJOINT COVER
Instance: (U,F , k):

U: A set of n elements
F : A family of m subsets of U, s.t.

⋃
X∈F X = U.

k: A positive integer.
Question: Are there k pairwise-disjoint sets S1, . . . , Sk ∈ F that cover U?

Formally, the sets S1, . . . , Sk cover U if
⋃

i Si = U. They are pairwise-disjoint
if for any i 6= j, we have that Si ∩ Sj = ∅.

32 (100 pts.) Clique of SATs

Given an undirected graph G = (V,E), a partition of V into V1, V2, . . . , Vk is a clique cover
of size k if each Vi is a clique in G. CLIQUE-COVER is the following decision problem: given G
and integer k, does G have a clique cover of size at most k?

32.A. (80 pts.) Describe a polynomial-time reduction from CLIQUE-COVER to SAT.

32.B. (20 pts.) Does this prove that CLIQUE-COVER is NP-Complete? You just need to provide
a yes/no answer with clear/concise explanation.

2



33 (100 pts.) No Triangles club.

A subset S of vertices in an undirected graph G is triangle-free if, for every triple of vertices
u, v, w ∈ S, at least one of the three edges uv, uw, vw is absent from G. Prove that finding the
size of the largest triangle-free subset of vertices in a given undirected graph is NP-hard.

Above is a triangle-free subset of 7 vertices.
This is not the largest triangle-free subset in this graph.

3


