1 Let L be an arbitrary regular language.
1.A. Prove that the language palin $(L)\left\{w \mid w w^{R} \in L\right\}$ is also regular.
1.B. Prove that the language $\operatorname{drome}(L)\left\{w \mid w^{R} w \in L\right\}$ is also regular.

2 Suppose F is a fooling set for a language L. Argue that F cannot contain two distinct string x, y where both are not prefixes of strings in L.
3 Prove that the language $\left\{0^{i} 1^{j} \mid \operatorname{gcd}(i, j)=1\right\}$ is not regular.
4 Consider the language $L=\{w:|w|=1 \bmod 5\}$. We have already seen that this language is regular. Prove that any DFA that accepts this language needs at least 5 states.
5 Consider all regular expressions over an alphabet Σ. Each regular expression is a string over a larger alphabet $\Sigma^{\prime}=\Sigma \cup\{\emptyset$-Symbol, ϵ-Symbol,,$+()$,$\} . We use \emptyset$-Symbol and ϵ-Symbol in place of \emptyset and ϵ to avoid confusion with overloading; technically one should do it with,$+($,$) as well. Let$ R_{Σ} be the language of regular expressions over Σ.
5.A. Prove that R_{Σ} is not regular.
5.B. Prove that R_{Σ} is a CFL by giving a CFG for it.

6 Regular languages?
6.A. Prove that the following languages are not regular by providing a fooling set. You need to prove an infinite fooling set and also prove that it is a valid fooling set.
6.A.i. $L=\left\{0^{k} 1^{k} w w \mid 0 \leq k \leq 3, w \in\{0,1\}^{+}\right\}$.
6.A.ii. Recall that a block in a string is a maximal non-empty substring of identical symbols. Let L be the set of all strings in $\{0,1\}^{*}$ that contain two blocks of 0 s of equal length. For example, L contains the strings 01101111 and 01001011100010 but does not contain the strings 000110011011 and 00000000111 .
6.A.iii. $L=\left\{0^{n^{3}} \mid n \geq 0\right\}$.
6.B. Suppose L is not regular. Show that $L \cup L^{\prime}$ is not regular for any finite language L^{\prime}. Give a simple example to show that $L \cup L^{\prime}$ is regular when L^{\prime} is infinite.

7 Describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
7.A. $\quad\left\{a^{i} b^{j} c^{k} d^{\ell} \mid i, j, k, \ell \geq 0\right.$ and $\left.i+\ell=j+k\right\}$.
7.B. $L=\{0,1\}^{*} \backslash\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. In other words the complement of the language $\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.

8 Let $L=\left\{0^{i} 1^{j} 2^{k} \mid k=2(i+j)\right\}$.
8.A. Prove that L is context free by describing a grammar for L.
8.B. Prove that your grammar is correct. You need to prove that if $L \subseteq L(G)$ and $L(G) \subseteq L$ where G is your grammar from the previous part.

Solved problem

9 Let L be the set of all strings over $\{0,1\}^{*}$ with exactly twice as many 0 s as 1 s .
9.A. Describe a CFG for the language L.
(Hint: For any string u define $\Delta(u)=\#(0, u)-2 \#(1, u)$. Introduce intermediate variables that derive strings with $\Delta(u)=1$ and $\Delta(u)=-1$ and use them to define a non-terminal that generates L.)

Solution:

$S \rightarrow \varepsilon|S S| 00 S 1|0 S 1 S 0| 1 S 00$
9.B. Prove that your grammar G is correct. As usual, you need to prove both $L \subseteq L(G)$ and $L(G) \subseteq L$.
(Hint: Let $u_{\leq i}$ denote the prefix of u of length i. If $\Delta(u)=1$, what can you say about the smallest i for which $\Delta\left(u_{\leq i}\right)=1$? How does u split up at that position? If $\Delta(u)=-1$, what can you say about the smallest i such that $\Delta\left(u_{\leq i}\right)=-1$?)

Solution:

We separately prove $L \subseteq L(G)$ and $L(G) \subseteq L$ as follows:
Claim 4.1. $L(G) \subseteq L$, that is, every string in $L(G)$ has exactly twice as many 0 s as $1 s$.
Proof: As suggested by the hint, for any string u, let $\Delta(u)=\#(0, u)-2 \#(1, u)$. We need to prove that $\Delta(w)=0$ for every string $w \in L(G)$.

Let w be an arbitrary string in $L(G)$, and consider an arbitrary derivation of w of length k. Assume that $\Delta(x)=0$ for every string $x \in L(G)$ that can be derived with fewer than k productions. ${ }^{1}$ There are five cases to consider, depending on the first production in the derivation of w.

- If $w=\varepsilon$, then $\#(0, w)=\#(1, w)=0$ by definition, so $\Delta(w)=0$.
- Suppose the derivation begins $S \rightarrow S S \rightarrow^{*} w$. Then $w=x y$ for some strings $x, y \in$ $L(G)$, each of which can be derived with fewer than k productions. The inductive hypothesis implies $\Delta(x)=\Delta(y)=0$. It immediately follows that $\Delta(w)=0 .{ }^{2}$
- Suppose the derivation begins $S \rightarrow 00 S 1 \rightarrow^{*} w$. Then $w=00 x 1$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x)=0$. It immediately follows that $\Delta(w)=0$.
- Suppose the derivation begins $S \rightarrow 1 S 00 \rightarrow{ }^{*} w$. Then $w=1 x 00$ for some string $x \in L(G)$. The inductive hypothesis implies $\Delta(x)=0$. It immediately follows that $\Delta(w)=0$.
- Suppose the derivation begins $S \rightarrow 0 S 1 S 1 \rightarrow^{*} w$. Then $w=0 x 1 y 0$ for some strings $x, y \in L(G)$. The inductive hypothesis implies $\Delta(x)=\Delta(y)=0$. It immediately follows that $\Delta(w)=0$.
In all cases, we conclude that $\Delta(w)=0$, as required.

Claim 4.2. $L \subseteq L(G)$; that is, G generates every binary string with exactly twice as many 0s as $1 s$.

Proof: As suggested by the hint, for any string u, let $\Delta(u)=\#(0, u)-2 \#(1, u)$. For any string u and any integer $0 \leq i \leq|u|$, let $\boldsymbol{u}_{\boldsymbol{i}}$ denote the i th symbol in u, and let $\boldsymbol{u}_{\leq i}$ denote the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0 s as 1 s. Assume that G generates every binary string x that is shorter than w and has twice as many 0 s as 1 s . There are two cases to consider:

- If $w=\varepsilon$, then $\varepsilon \in L(G)$ because of the production $S \rightarrow \varepsilon$.
- Suppose w is non-empty. To simplify notation, let $\Delta_{i}=\Delta\left(w_{\leq i}\right)$ for every index i, and observe that $\Delta_{0}=\Delta_{|w|}=0$. There are several subcases to consider:
- Suppose $\Delta_{i}=0$ for some index $0<i<|w|$. Then we can write $w=x y$, where x and y are non-empty strings with $\Delta(x)=\Delta(y)=0$. The induction hypothesis implies that $x, y \in L(G)$, and thus the production rule $S \rightarrow S S$ implies that $w \in L(G)$.
- Suppose $\Delta_{i}>0$ for all $0<i<|w|$. Then w must begin with 00 , since otherwise $\Delta_{1}=-2$ or $\Delta_{2}=-1$, and the last symbol in w must be 1 , since otherwise $\Delta_{|w|_{-1}}=-1$. Thus, we can write $w=00 x 1$ for some binary string x. We easily observe that $\Delta(x)=0$, so the induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 00 S 1$ implies $w \in L(G)$.
- Suppose $\Delta_{i}<0$ for all $0<i<|w|$. A symmetric argument to the previous case implies $w=1 x 00$ for some binary string x with $\Delta(x)=0$. The induction hypothesis implies $x \in L(G)$, and thus the production rule $S \rightarrow 1 S 00$ implies $w \in L(G)$.
- Finally, suppose none of the previous cases applies: $\Delta_{i}<0$ and $\Delta_{j}>0$ for some indices i and j, but $\Delta_{i} \neq 0$ for all $0<i<|w|$.

Let i be the smallest index such that $\Delta_{i}<0$. Because Δ_{j} either increases by 1 or decreases by 2 when we increment j, for all indices $0<j<|w|$, we must have $\Delta_{j}>0$ if $j<i$ and $\Delta_{j}<0$ if $j \geq i$.

In other words, there is a unique index i such that $\Delta_{i-1}>0$ and $\Delta_{i}<0$. In particular, we have $\Delta_{1}>0$ and $\Delta_{|w|-1}<0$. Thus, we can write $w=0 x 1 y 0$ for some binary strings x and y, where $|0 x 1|=i$.

We easily observe that $\Delta(x)=\Delta(y)=0$, so the inductive hypothesis implies $x, y \in L(G)$, and thus the production rule $S \rightarrow 0 S 1 S 0$ implies $w \in L(G)$.
In all cases, we conclude that G generates w.
Together, Claim 1 and Claim 2 imply $L=L(G)$.
Rubric: 10 points:

- part $(\mathrm{a})=4$ points. As usual, this is not the only correct grammar.
- part $(\mathrm{b})=6$ points $=3$ points for $\subseteq+3$ points for \supseteq, each using the standard induction
template (scaled).
10 Prove that the following language is not regular. Recall that a run in a string is a maximal nonempty substring of identical symbols. Let L be the set of all strings in Σ^{*} that contains exactly one run that its length is the number of runs in the string. A few examples about L :
- L contains any string of the form $1^{4} 0^{5} 0^{+} 1^{6} 1^{+} 0^{7}$ (such a string contains 4 runs).
- L contains any string of $\left\{1^{i} 0001^{i} \mid i \geq 4\right\}$.
- L contains the string 011000.
- L does not contain the string 01100011110.
- L contains the string 011000111100000 .
- L does not contain strings of the form $0^{i} 10^{i} 1$.

Solution:

As suggested by the example strings, consider the string $w_{1}=011$, and $w_{i}=w_{i-1} 0^{2 i-1} 1^{2 i}$, for $i>1$. Indeed w_{i} contains $2 i$ runs all of distinct lengths (i.q., $1,2, \ldots, 2 i$). As such $w_{i} \in L$, for all i.

Now, let

$$
F=\left\{w_{i} \mid i \geq 1\right\} \subseteq L
$$

Observe that w_{i} ends with a 1 . As such, $w_{i} 0^{2 i+1} \in L$, but $w_{j} 0^{2 i+1} \notin L$, for any $j \neq i$. We conclude that F is an infinite fooling set for L.

Solution:

Intuitively, it is clear this language is not regular because there is unbounded counting going on.

The idea with such languages is to find some subset of the language that should be regular (if the original language is regular), and find a fooling set for this subset - hopefully this subset would work for the original language. In our case, consider the language

$$
K=L \cap(01)^{+} 0^{i}=\left\{(01)^{i} 0^{2 i+1} \mid i \geq 1\right\}
$$

If L was regular, then K would be regular (because regular languages are closed under intersection). But K is not regular, but of the following fooling set:

$$
F=\left\{w_{i}=(01)^{i} \mid i \geq 1\right\}
$$

Observe that for any $i \neq j$, we have that

$$
w_{i} 0^{2 i+1} \in K \subseteq L w_{j} 0^{2 i+1} \notin L
$$

Indeed, $w_{j} 0^{2 i+1}$ has $2 j+1$ runs, but no run of length $2 j+1$. Thus F is a fooling set for L (and K), proving that both languages are not regular.

