
HW 4: Extra problems Instructors: Kani, Har-Peled, and Miller

CS/ECE 374: Algorithms & Models of Computation, Fall 2020 Version: 1.0

1 Let L be an arbitrary regular language.

1.A. Prove that the language palin(L){w | wwR ∈ L} is also regular.
1.B. Prove that the language drome(L){w | wRw ∈ L} is also regular.

2 Suppose F is a fooling set for a language L. Argue that F cannot contain two distinct string x, y
where both are not prefixes of strings in L.

3 Prove that the language {0i1j | gcd(i, j) = 1} is not regular.

4 Consider the language L = {w : |w| = 1 mod 5}. We have already seen that this language is
regular. Prove that any DFA that accepts this language needs at least 5 states.

5 Consider all regular expressions over an alphabet Σ. Each regular expression is a string over a
larger alphabet Σ′ = Σ∪{∅-Symbol, ε-Symbol,+, (,)}. We use ∅-Symbol and ε-Symbol in place of
∅ and ε to avoid confusion with overloading; technically one should do it with +, (,) as well. Let
RΣ be the language of regular expressions over Σ.

5.A. Prove that RΣ is not regular.
5.B. Prove that RΣ is a CFL by giving a CFG for it.

6 Regular languages?

6.A. Prove that the following languages are not regular by providing a fooling set. You need to
prove an infinite fooling set and also prove that it is a valid fooling set.

6.A.i. L = {0k1kww | 0 ≤ k ≤ 3, w ∈ {0, 1}+}.
6.A.ii. Recall that a block in a string is a maximal non-empty substring of identical symbols.

Let L be the set of all strings in {0, 1}∗ that contain two blocks of 0s of equal length.
For example, L contains the strings 01101111 and 01001011100010 but does not contain
the strings 000110011011 and 00000000111.

6.A.iii. L = {0n3 | n ≥ 0}.
6.B. Suppose L is not regular. Show that L ∪ L′ is not regular for any finite language L′. Give a

simple example to show that L ∪ L′ is regular when L′ is infinite.

7 Describe a context free grammar for the following languages. Clearly explain how they work and
the role of each non-terminal. Unclear grammars will receive little to no credit.

7.A. {aibjckd` | i, j, k, ` ≥ 0 and i+ ` = j + k}.
7.B. L = {0, 1}∗ \ {0n1n | n ≥ 0}. In other words the complement of the language {0n1n | n ≥ 0}.

8 Let L = {0i1j2k | k = 2(i+ j)}.

8.A. Prove that L is context free by describing a grammar for L.
8.B. Prove that your grammar is correct. You need to prove that if L ⊆ L(G) and L(G) ⊆ L

where G is your grammar from the previous part.

1

Solved problem

9 Let L be the set of all strings over {0, 1}∗ with exactly twice as many 0s as 1s.

9.A. Describe a CFG for the language L.(
Hint: For any string u define ∆(u) = #(0, u)− 2#(1, u). Introduce intermediate variables

that derive strings with ∆(u) = 1 and ∆(u) = −1 and use them to define a non-terminal
that generates L.

)
Solution:

S → ε | SS | 00S1 | 0S1S0 | 1S00

9.B. Prove that your grammar G is correct. As usual, you need to prove both L ⊆ L(G) and
L(G) ⊆ L.(
Hint: Let u≤i denote the prefix of u of length i. If ∆(u) = 1, what can you say about the

smallest i for which ∆(u≤i) = 1? How does u split up at that position? If ∆(u) = −1, what
can you say about the smallest i such that ∆(u≤i) = −1?

)
Solution:

We separately prove L ⊆ L(G) and L(G) ⊆ L as follows:

Claim 4.1. L(G) ⊆ L, that is, every string in L(G) has exactly twice as many 0s as 1s.

Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u)−2#(1, u). We need
to prove that ∆(w) = 0 for every string w ∈ L(G).

Let w be an arbitrary string in L(G), and consider an arbitrary derivation of w of
length k. Assume that ∆(x) = 0 for every string x ∈ L(G) that can be derived with fewer
than k productions.1 There are five cases to consider, depending on the first production
in the derivation of w.
• If w = ε, then #(0, w) = #(1, w) = 0 by definition, so ∆(w) = 0.
• Suppose the derivation begins S → SS →∗ w. Then w = xy for some strings x, y ∈

L(G), each of which can be derived with fewer than k productions. The inductive
hypothesis implies ∆(x) = ∆(y) = 0. It immediately follows that ∆(w) = 0.2

• Suppose the derivation begins S → 00S1 →∗ w. Then w = 00x1 for some string
x ∈ L(G). The inductive hypothesis implies ∆(x) = 0. It immediately follows that
∆(w) = 0.

• Suppose the derivation begins S → 1S00 →∗ w. Then w = 1x00 for some string
x ∈ L(G). The inductive hypothesis implies ∆(x) = 0. It immediately follows that
∆(w) = 0.

• Suppose the derivation begins S → 0S1S1 →∗ w. Then w = 0x1y0 for some strings
x, y ∈ L(G). The inductive hypothesis implies ∆(x) = ∆(y) = 0. It immediately
follows that ∆(w) = 0.

In all cases, we conclude that ∆(w) = 0, as required.

2

Claim 4.2. L ⊆ L(G); that is, G generates every binary string with exactly twice as
many 0s as 1s.

Proof: As suggested by the hint, for any string u, let ∆(u) = #(0, u)− 2#(1, u). For any
string u and any integer 0 ≤ i ≤

∣∣u∣∣, let ui denote the ith symbol in u, and let u≤i denote
the prefix of u of length i.

Let w be an arbitrary binary string with twice as many 0s as 1s. Assume that G
generates every binary string x that is shorter than w and has twice as many 0s as 1s.
There are two cases to consider:
• If w = ε, then ε ∈ L(G) because of the production S → ε.
• Suppose w is non-empty. To simplify notation, let ∆i = ∆(w≤i) for every index i, and

observe that ∆0 = ∆∣∣∣∣w∣∣∣∣ = 0. There are several subcases to consider:

– Suppose ∆i = 0 for some index 0 < i <
∣∣w∣∣. Then we can write w = xy, where

x and y are non-empty strings with ∆(x) = ∆(y) = 0. The induction hypothesis
implies that x, y ∈ L(G), and thus the production rule S → SS implies that
w ∈ L(G).

– Suppose ∆i > 0 for all 0 < i <
∣∣w∣∣. Then w must begin with 00, since otherwise

∆1 = −2 or ∆2 = −1, and the last symbol in w must be 1, since otherwise
∆∣∣∣∣w∣∣∣∣−1

= −1. Thus, we can write w = 00x1 for some binary string x. We easily

observe that ∆(x) = 0, so the induction hypothesis implies x ∈ L(G), and thus
the production rule S → 00S1 implies w ∈ L(G).

– Suppose ∆i < 0 for all 0 < i <
∣∣w∣∣. A symmetric argument to the previous

case implies w = 1x00 for some binary string x with ∆(x) = 0. The induction
hypothesis implies x ∈ L(G), and thus the production rule S → 1S00 implies
w ∈ L(G).

– Finally, suppose none of the previous cases applies: ∆i < 0 and ∆j > 0 for some
indices i and j, but ∆i 6= 0 for all 0 < i <

∣∣w∣∣.
Let i be the smallest index such that ∆i < 0. Because ∆j either increases by 1

or decreases by 2 when we increment j, for all indices 0 < j <
∣∣w∣∣, we must have

∆j > 0 if j < i and ∆j < 0 if j ≥ i.
In other words, there is a unique index i such that ∆i−1 > 0 and ∆i < 0. In

particular, we have ∆1 > 0 and ∆∣∣∣∣w∣∣∣∣−1
< 0. Thus, we can write w = 0x1y0 for

some binary strings x and y, where
∣∣0x1∣∣ = i.

We easily observe that ∆(x) = ∆(y) = 0, so the inductive hypothesis implies
x, y ∈ L(G), and thus the production rule S → 0S1S0 implies w ∈ L(G).

In all cases, we conclude that G generates w.

Together, Claim 1 and Claim 2 imply L = L(G).

Rubric: 10 points:
• part (a) = 4 points. As usual, this is not the only correct grammar.
• part (b) = 6 points = 3 points for ⊆ + 3 points for ⊇, each using the standard induction

3

template (scaled).

10 Prove that the following language is not regular. Recall that a run in a string is a maximal non-
empty substring of identical symbols. Let L be the set of all strings in Σ∗ that contains exactly
one run that its length is the number of runs in the string. A few examples about L:
• L contains any string of the form 14050+161+07 (such a string contains 4 runs).
• L contains any string of

{
1i0001i

∣∣ i ≥ 4
}

.
• L contains the string 011000.
• L does not contain the string 01100011110.
• L contains the string 011000111100000.
• L does not contain strings of the form 0i10i1.

Solution:
As suggested by the example strings, consider the string w1 = 011, and wi = wi−10

2i−112i,
for i > 1. Indeed wi contains 2i runs all of distinct lengths (i.q., 1, 2, . . . , 2i). As such wi ∈ L,
for all i.

Now, let
F = {wi | i ≥ 1} ⊆ L.

Observe that wi ends with a 1. As such, wi0
2i+1 ∈ L, but wj0

2i+1 /∈ L, for any j 6= i. We
conclude that F is an infinite fooling set for L.

Solution:
Intuitively, it is clear this language is not regular because there is unbounded counting going

on.
The idea with such languages is to find some subset of the language that should be regular

(if the original language is regular), and find a fooling set for this subset – hopefully this subset
would work for the original language. In our case, consider the language

K = L ∩ (01)+0i =
{
(01)i02i+1

∣∣ i ≥ 1
}
.

If L was regular, then K would be regular (because regular languages are closed under inter-
section). But K is not regular, but of the following fooling set:

F =
{
wi = (01)i

∣∣ i ≥ 1
}
.

Observe that for any i 6= j, we have that

wi0
2i+1 ∈ K ⊆ Lwj0

2i+1 /∈ L.

Indeed, wj0
2i+1 has 2j +1 runs, but no run of length 2j +1. Thus F is a fooling set for L (and

K), proving that both languages are not regular.

4

