10 (100 pTs.) This is all wrong.
10.A. (30 PTS.) Let $\Sigma=\{a, b\}$. For a word $w=w_{1} w_{2} \ldots w_{n} \in \Sigma^{*}$, let $w_{o}=w_{1} w_{3} w_{5} \ldots w_{2\lceil n / 2\rceil-1}$ be the string formed by the odd characters of w. Prove that the following language is not regular by providing a fooling set. Your fooling set needs to infinite, and you need also to prove that it is a valid fooling set. The language is $L=\left\{w w_{o} \mid w \in \Sigma^{+}\right\}$.
10.B. (30 PTS.) Provide a counter-example for the following claim (if you need to prove that a specific language is regular [or not], please do so):

Claim: Consider two languages L and L^{\prime}. If L and L^{\prime} are not regular, and $L \cup L^{\prime}$ is regular, then $L \cap L^{\prime}$ is regular.
10.C. (40 PTS.) Suppose you are given three languages L_{1}, L_{2}, L_{3}, such that:

- $L_{1} \cup L_{2} \cup L_{3}$ is not regular.
- For all $i \neq j: L_{i} \backslash L_{j}$ is regular.

Prove that $L_{1} \cap L_{2} \cap L_{3}$ is not regular. (Hint: Use closure properties of regular languages.)
(Not for submission: Can you come up with an example of such languages?)
11 (100 PTS.) Grammarticus.
For (A) and (C) below, describe a context free grammar for the following languages. Clearly explain how they work and the role of each non-terminal. Unclear grammars will receive little to no credit.
11.A. (40 PTs.) $L=\left\{a^{i} b^{j} c^{k} d^{\ell} \mid i, j, k, \ell \geq 0\right.$ and $\left.j+\ell=i+k\right\}$.

Hint for this question would be posted on piazza question thread.
11.B. (30 PTs.) Let $\Sigma=\{a, b\}$. Consider the language

$$
L_{B}=\left\{z \in \Sigma^{*} \mid \text { for any prefix } y \text { of } z \text { we have } \#_{a}(y) \geq \#_{b}(y)\right\}
$$

Prove that any $w \in L_{B}$, can be written as $w=w_{1} \cdots w_{m}$, such that $w_{i}=a$ or w_{i} is a balanced string, for all i. A string $s \in\{a . b\}^{*}$ is balanced if $\#_{a}(s)=\#_{b}(s)$.
(One can also prove a stronger version, where in addition each w_{i} is strongly balanced [i.e., $\left.\left.w_{i} \in L_{B}\right].\right)$
11.C. (30 PTS.) Describe a grammar for the language L_{B} defined above, using the property you proved in (11.B.) (you can use the stronger version without proving it). Prove the correctness of your grammar.

12 (100 PTs.) The pain never ends.
12.A. (50 PTs.) Let $\Sigma=\{a, b\}$. A string $s \in \Sigma^{*}$ is a palindrome if $s=s^{R}$. For a prespecified integer $k \geq 0$, a string $s \in \Sigma^{*}$ is k-close to being a palindrome, if there is a string $w \in \Sigma^{*}$ that is a palindrome, and one recover w from s by a sequence of (at most) k operations. Each such operation is either inserting one character or deleting a character. Thus ababaaab is 2-close to a palindrome since

$$
a b a b a a a b \rightarrow b a b a a a b \rightarrow b a a a a b .
$$

Similarly, the string $a b^{2} a^{2} b^{5} a^{5} b^{4} a^{3} b^{2} a$ is 2-close to being a palindrome since

$$
a b^{2} a^{2} b^{5} a^{5} b^{4} a^{3} b^{2} a \rightarrow a b^{2} \underline{a^{3}} b^{5} a^{5} b^{4} a^{3} b^{2} a \rightarrow a b^{2} a^{3} \underline{b^{4}} a^{5} b^{4} a^{3} b^{2} a
$$

Let L_{k} be the language of all strings that are k-close to being a palindrome. Give a CFG for L_{3}. Argue why your solution is correct.
12.B. (50 PTS.) Let $\Sigma=\{a, b\}$. Prove that if $L \subseteq \Sigma^{*}$ is context-free language then

$$
\text { subsequence }(L)=\left\{x \in \Sigma^{*} \mid \exists y \in L, x \text { is a subsequence of } y\right\}
$$

is a context-free language.

