For each of the following languages over $\Sigma=\{3,7,4\}$, draw an NFA that accepts them. Your NFA should have a small number of states (at most say 14 states). Provide a brief explanation for your solution.
7.A. (20 PTS.) $\Sigma^{*} 3 \Sigma^{*} 7 \Sigma^{*} 4 \Sigma^{*}$
7.B. (20 PTS.) All strings in Σ^{*} that contain the substrings 374 and 473.
7.C. (20 PTs.) All strings in Σ^{*} that do not contain 374 as a substring.
7.D. (20 PTS.) All strings in Σ^{*} that contain the substring 374 and an odd number of 7 s .
7.E. (20 PTs.) All strings in Σ^{*} such that every maximal substring of consecutive 7 s is even in size.

8 (100 PTs.) DFAs to NFAs
Given a DFA $M=(\Sigma, Q, \delta, s, A)$ that accepts L, construct an NFA $N=\left(\Sigma, Q^{\prime}, \delta^{\prime}, s^{\prime}, A^{\prime}\right)$ that accepts the following languages. You can assume $\Sigma=\{0,1\}$ in 8.A. and 8.C.. Provide a brief explanation for your solution.
8.A. (30 PTS.) $\operatorname{DelOnes}(L):=\left\{0^{\#_{0}(w)} \mid w \in L\right\}$; i.e., removes all 1s from the strings of L.
8.B. (30 PTs.) ThereAndBack $(L):=\left\{x y \mid x \in L\right.$ and $\left.y^{R} \in L\right\}$
8.C. (40 PTs.) $X O R(L):=\{z \mid z=\operatorname{XOR}(x, y)$ for some $x \in L, y \in L$, such that $|x|=|y|=|z|\}$, where $\operatorname{XOR}(x, y)$ computes the element-wise XOR of x and y (so for each index $i, z_{i}=$ x_{i} XOR y_{i}).
8.D. (Not for submission) Consider, if you must, the language

$$
\operatorname{Middle}(L):=\{y \in L \mid x y z \in L \text { for some } x, z \text { such that }|x|=|y|=|z|\}
$$

Prove that this language is regular.

9 (100 PTS.) Fooling Sets
Prove that the following languages are not regular by providing a fooling set. You need to provide an infinite set and also prove that it is a valid fooling set for the given language.
9.A. (20 PTS.) $L=\left\{w w^{R} w \mid w \in\{0,1\}^{*}\right\}$.
9.B. (20 PTS.) $L=\left\{0^{i} 10^{j} \mid i\right.$ is divisible by $\left.j\right\}$.
9.C. (20 PTS.) $L=\left\{a^{i} b^{j} \mid i, j \in \mathbb{N}\right.$, and $\left.j=\log _{2} i\right\}$.
9.D. (20 PTS.) $L=\left\{0^{i} 0^{j} \mid i, j \in \mathbb{N}\right.$, and $\left.j=\sqrt{i}\right\}$.
9.E. (20 PTS.) $L=\left\{w c d^{\# a(w)} \mid w \in\{a, b\}^{*}\right\}$.

