
CS/ECE 374 A ] Fall 2019
Y Final Exam Study Questions Z

This is a “core dump” of potential questions for Midterm 1. This should give you a good idea
of the types of questions that we will ask on the exam—in particular, there will be a series of
True/False questions—but the actual exam questions may or may not appear in this handout.
This list intentionally includes a few questions that are too long or difficult for exam conditions;
these are indicated with a ∗star.

Don’t forget to review the study problems for Midterms 1 and 2; the final exam is
cumulative!

Y How to Use These Problems Z

Solving every problem in this handout is not the best way to study for the exam. Memorizing
the solutions to every problem in this handout is the absolute worst way to study for the exam.

What we recommend instead is to work on a sample of the problems. Choose one or
two problems at random from each section and try to solve them from scratch under exam
conditions—by yourself, in a quiet room, with a 30-minute timer, without your notes, without
the internet, and if possible, even without your cheat sheet. If you’re comfortable solving a few
problems in a particular section, you’re probably ready for that type of problem on the exam.
Move on to the next section.

Discussing problems with other people (in your study groups, in the review sessions, in office
hours, or on Piazza) and/or looking up old solutions can be extremely helpful, but only after you
have (1) made a good-faith effort to solve the problem on your own, and (2) you have either a
candidate solution or some idea about where you’re getting stuck.

If you find yourself getting stuck on a particular type of problem, try to figure out why you’re
stuck. Do you understand the problem statement? Are you stuck on choosing the right high-level
approach? Are you stuck on the technical details? Or are you struggling to express your ideas
clearly? (We strongly recommend writing solutions that follow the homework grading rubrics
bullet-by-bullet.)

Similarly, if feedback from other people suggests that your solutions to a particular type of
problem are incorrect or incomplete, try to figure out what you missed. For NP-hardness proofs:
Are you choosing a good problem to reduce from? Are you reducing in the correct direction?
Are you designing your reduction with both good instances and bad instances in mind? You’re
not trying solve the problem, are you? For undecidability proofs: Does the problem have the
right structure to apply Rice’s theorem? If you are arguing by reduction, are you reducing in the
correct direction? You’re not using pronouns, are you?

Remember that your goal is not merely to “understand” the solution to any particular
problem, but to become more comfortable with solving a certain type of problem on your own.
"Understanding" is a trap; aim for mastery. If you can identify specific steps that you find
problematic, read more about those steps, focus your practice on those steps, and try to find helpful
information about those steps to write on your cheat sheet. Then work on the next problem!
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True or False? (All from previous final exams)

For each of the following questions, indicate every correct answer by marking the “Yes” box, and
indicate every incorrect answer by marking the “No” box. Assume P 6= NP. If there is any other
ambiguity or uncertainty about an answer, mark the “No” box. For example:

Yes XNo x + y = 5

Yes XNo 3SAT can be solved in polynomial time.

XYes No Jeff is not the Queen of England.

XYes No If P = NP then Jeff is the Queen of England.

The actual exam will include forty true/false questions. Each correct choice will be worth ½
point, each incorrect choice will be worth −¼ point, and each IDK will be worth +⅛ point.

1. Which of the following are a good English specifications of a recursive function that could
possibly be used to compute the edit distance between two strings A[1 .. n] and B[1 .. n]?

Yes No Edit(i, j) is the answer for i and j.

Yes No Edit(i, j) is the edit distance between A[i] and B[ j].

Yes No Edit[i, j] =







































i if j = 0

j if i = 0

Edit[i − 1, j − 1] if A[i] = B[ j]

max







1+ Edit[i, j − 1]

1+ Edit[i − 1, j]

1+ Edit[i − 1, j − 1]







otherwise

Yes No Edit[1 .. n, 1 .. n] stores the edit distances for all prefixes.

Yes No Edit(i, j) is the edit distance between A[i .. n] and B[ j .. n].

Yes No Edit[i, j] is the value stored at row i and column j of the table.

Yes No
Edit(i, j) is the edit distance between the last i characters of A and the
last j characters of B.

Yes No
Edit(i, j) is the edit distance when i and j are the current characters in A
and B.

Yes No Edit(i, j, k, l) is the edit distance between substrings A[i .. j] and B[k .. l].

Yes No [I don’t need an English description; my pseudocode is clear enough!]
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2. Which of the following statements are true for every language L ⊆ {0,1}∗?

Yes No L is non-empty.

Yes No L is infinite.

Yes No L contains the empty string ε.

Yes No L∗ is infinite.

Yes No L∗ is regular.

Yes No L is accepted by some DFA if and only if L is accepted by some NFA.

Yes No
L is described by some regular expression if and only if L is rejected by
some NFA.

Yes No
L is accepted by some DFA with 42 states if and only if L is accepted by
some NFA with 42 states.

Yes No If L is decidable, then L is infinite.

Yes No If L is not decidable, then L is infinite.

Yes No If L is not regular, then L is undecidable.

Yes No If L has an infinite fooling set, then L is undecidable.

Yes No If L has a finite fooling set, then L is decidable.

Yes No
If L is the union of two regular languages, then its complement L is
regular.

Yes No
If L is the union of two regular languages, then its complement L is
context-free.

Yes No If L is the union of two decidable languages, then L is decidable.

Yes No If L is the union of two undecidable languages, then L is undecidable.

Yes No If L 6∈ P, then L is not regular.

Yes No L is decidable if and only if its complement L is undecidable.

Yes No Both L and its complement L are decidable.
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3. Which of the following statements are true for at least one language L ⊆ {0,1}∗?

Yes No L is non-empty.

Yes No L is infinite.

Yes No L contains the empty string ε.

Yes No L∗ is finite.

Yes No L∗ is not regular.

Yes No L is not regular but L∗ is regular.

Yes No L is finite and L is undecidable.

Yes No L is decidable but L∗ is not decidable.

Yes No L is not decidable but L∗ is decidable.

Yes No L is the union of two decidable languages, but L is not decidable.

Yes No L is the union of two undecidable languages, but L is decidable.

Yes No
L is accepted by an NFA with 374 states, but L is not accepted by a DFA
with 374 states.

Yes No
L is accepted by an DFA with 374 states, but L is not accepted by a NFA
with 374 states.

Yes No L is regular and L 6∈ P.

Yes No There is a Turing machine that accepts L.

Yes No
There is an algorithm to decide whether an arbitrary given Turing
machine accepts L.

4. Which of the following languages over the alphabet {0,1} are regular?

Yes No {0m1n | m≥ 0 and n≥ 0}

Yes No All strings with the same number of 0s and 1s

Yes No Binary representations of all positive integers divisible by 17

Yes No Binary representations of all prime numbers less than 10100

Yes No
�

ww
�

� w is a palindrome
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4. (continued) Which of the following languages over the alphabet {0,1} are regular?

Yes No
�

wxw
�

� w is a palindrome and x ∈ {0,1}∗
	

Yes No
�

〈M〉
�

� M accepts a regular language
	

Yes No
�

〈M〉
�

� M accepts a finite number of non-palindromes
	

5. Which of the following languages/decision problems are decidable?

Yes No ∅

Yes No
�

0n12n0n12n
�

� n≥ 0
	

Yes No
�

ww
�

� w is a palindrome
	

Yes No
�

〈M〉
�

� M accepts 〈M〉 • 〈M〉
	

Yes No
�

〈M〉
�

� M accepts a finite number of non-palindromes
	

Yes No
�

〈M〉 • w
�

� M accepts ww
	

Yes No
�

〈M〉 • w
�

� M accepts ww after at most |w|2 transitions
	

Yes No Given an NFA N , is the language L(N) infinite?

Yes No
Given a context-free grammar G and a string w, is w in the language
L(G)?

Yes No CircuitSat

Yes No Given an undirected graph G, does G contain a Hamiltonian cycle?

Yes No
Given two Turing machines M and M ′, is there a string w that is accepted
by both M and M ′?
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6. Which of the following languages can be proved undecidable using Rice’s Theorem?

Yes No ∅

Yes No
�

0n12n0n12n
�

� n≥ 0
	

Yes No
�

ww
�

� w is a palindrome
	

Yes No
�

〈M〉
�

� M accepts an infinite number of strings
	

Yes No
�

〈M〉
�

� M accepts a finite number of strings
	

Yes No
�

〈M〉
�

� M accepts either 〈M〉 or 〈M〉R
	

Yes No
�

〈M〉
�

� M accepts both 〈M〉 and 〈M〉R
	

Yes No
�

〈M〉
�

� M does not accept exactly 374 palindromes
	

Yes No
�

〈M〉
�

� M accepts some string w after at most |w|2 transitions
	

Yes No
�

〈M〉#w
�

� M rejects w after at most |w|2 transitions
	

Yes No
Given two Turing machines M and M ′, is there a string w that is accepted
by both M and M ′?

7. Recall the halting language Halt= {〈M〉 • w | M halts on input w}. Which of the following
statements about its complement Halt= Σ∗ \Halt are true?

Yes No Halt is empty.

Yes No Halt is regular.

Yes No Halt is infinite.

Yes No Halt is decidable.

Yes No Halt is acceptable but not decidable.

Yes No Halt is not acceptable.
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8. Suppose some language A∈ {0,1}∗ reduces to another language B ∈ {0,1}∗. Which of the
following statements must be true?

Yes No
A Turing machine that recognizes A can be used to construct a Turing
machine that recognizes B.

Yes No A is decidable.

Yes No If B is decidable then A is decidable.

Yes No If A is decidable then B is decidable.

Yes No If B is NP-hard then A is NP-hard.

Yes No If A has no polynomial-time algorithm then neither does B.

9. Suppose there is a polynomial-time reduction from problem A to problem B. Which of the
following statements must be true?

Yes No Problem B is NP-hard.

Yes No
A polynomial-time algorithm for B can be used to solve A in polynomial
time.

Yes No If B has no polynomial-time algorithm then neither does A.

Yes No If A is NP-hard and B has a polynomial-time algorithm then P= NP.

Yes No If B is NP-hard then A is NP-hard.

Yes No If B is undecidable then A is undecidable.
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10. Consider the following pair of languages:

• HamPath :=
�

G
�

� G is an undirected graph with a Hamiltonian path
	

• Connected :=
�

G
�

� G is a connected undirected graph
	

(For concreteness, assume that in both of these languages, graphs are represented by their
adjacency matrices.) Which of the following must be true, assuming P6=NP?

Yes No Connected ∈ NP

Yes No HamPath ∈ NP

Yes No HamPath is decidable.

Yes No There is no polynomial-time reduction from HamPath to Connected.

Yes No There is no polynomial-time reduction from Connected to HamPath.

11. Consider the following pair of languages:

• DirHamPath :=
�

G
�

� G is a directed graph with a Hamiltonian path
	

• Acyclic :=
�

G
�

� G is a directed acyclic graph
	

(For concreteness, assume that in both of these languages, graphs are represented by their
adjacency matrices.) Which of the following must be true, assuming P6=NP?

Yes No Acyclic ∈ NP

Yes No Acyclic∩DirHamPath ∈ P

Yes No DirHamPath is decidable.

Yes No There is a polynomial-time reduction from DirHamPath to Acyclic.

Yes No There is a polynomial-time reduction from Acyclic to DirHamPath.
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12. Suppose we want to prove that the following language is undecidable.

AlwaysHalts :=
�

〈M〉
�

� M halts on every input string
	

Rocket J. Squirrel suggests a reduction from the standard halting language

Halt :=
�

(〈M〉, w)
�

� M halts on inputs w
	

.

Specifically, given a Turing machine DecideAlwaysHalts that decides AlwaysHalts, Rocky
claims that the following Turing machine DecideHalt decides Halt.

DecideHalt(〈M〉, w):
Encode the following Turing machine M ′:

Bullwinkle(x):
if M accepts w

reject
if M rejects w

accept

return DecideAlwaysHalts(〈Bullwinkle〉)

Which of the following statements is true for all inputs 〈M〉#w?

Yes No If M accepts w, then M ′ halts on every input string.

Yes No If M rejects w, then M ′ halts on every input string.

Yes No If M diverges on w, then M ′ halts on every input string.

Yes No If M accepts w, then DecideAlwaysHalts accepts 〈Bullwinkle〉.

Yes No If M rejects w, then DecideHalt rejects (〈M〉, w).

Yes No If M diverges on w, thenDecideAlwaysHalts diverges on 〈Bullwinkle〉.

Yes No DecideHalt decides Halt. (That is, Rocky’s reduction is correct.)
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13. Suppose we want to prove that the following language is undecidable.

Muggle :=
�

〈M〉
�

� M accepts SCIENCE but rejects MAGIC
	

Professor Potter, your instructor in Defense Against Models of Computation and Other Dark
Arts, suggests a reduction from the standard halting language

Halt :=
�

(〈M〉, w)
�

� M halts on inputs w
	

.

Specifically, suppose there is a Turing machine DetectoMuggletum that decides Muggle.
Professor Potter claims that the following algorithm decides Halt.

DecideHalt(〈M〉, w):
Encode the following Turing machine:

RubberDuck(x):
run M on input w
if x = MAGIC

return False
else

return True

return DetectoMuggletum(〈RubberDuck〉)

Which of the following statements is true for all inputs 〈M〉#w?

Yes No If M accepts w, then RubberDuck accepts SCIENCE.

Yes No If M accepts w, then RubberDuck accepts CHOCOLATE.

Yes No If M rejects w, then RubberDuck rejects MAGIC.

Yes No If M rejects w, then RubberDuck halts on every input string.

Yes No If M diverges on w, then RubberDuck rejects every input string.

Yes No If M accepts w, then DetectoMuggletum accepts 〈RubberDuck〉.

Yes No If M rejects w, then DecideHalt rejects (〈M〉, w).

Yes No If M diverges on w, then DecideHalt rejects (〈M〉, w).

Yes No
DecideHalt decides the language Halt. (That is, Professor Potter’s
reduction is actually correct.)

Yes No DecideHalt actually runs (or simulates) RubberDuck.

Yes No Muggle is decidable.
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NP-hardness

1. A boolean formula is in disjunctive normal form (or DNF) if it consists of a disjunction (Or) or
several terms, each of which is the conjunction (And) of one or more literals. For example,
the formula

(x ∧ y ∧ z)∨ (y ∧ z)∨ (x ∧ y ∧ z)

is in disjunctive normal form. DNF-Sat asks, given a boolean formula in disjunctive normal
form, whether that formula is satisfiable.

(a) Describe a polynomial-time algorithm to solve DNF-Sat.

(b) What is the error in the following argument that P=NP?
Suppose we are given a boolean formula in conjunctive normal formwith at most three
literals per clause, and we want to know if it is satisfiable. We can use the distributive law
to construct an equivalent formula in disjunctive normal form. For example,

(x ∨ y ∨ z)∧ (x ∨ y) ⇐⇒ (x ∧ y)∨ (y ∧ x)∨ (z ∧ x)∨ (z ∧ y)

Nowwe can use the algorithm from part (a) to determine, in polynomial time, whether the
resulting DNF formula is satisfiable. We have just solved 3Sat in polynomial time. Since
3Sat is NP-hard, wemust conclude that P=NP!

2. A relaxed 3-coloring of a graph G assigns each vertex of G one of three colors (for example,
red, green, and blue), such that at most one edge in G has both endpoints the same color.

(a) Give an example of a graph that has a relaxed 3-coloring, but does not have a proper
3-coloring (where every edge has endpoints of different colors).

(b) Prove that it is NP-hard to determine whether a given graph has a relaxed 3-coloring.

3. An ultra-Hamiltonian cycle in G is a closed walk C that visits every vertex of G exactly once,
except for at most one vertex that C visits more than once.

(a) Give an example of a graph that contains a ultra-Hamiltonian cycle, but does not contain
a Hamiltonian cycle (which visits every vertex exactly once).

(b) Prove that it is NP-hard to determine whether a given graph contains a ultra-Hamiltonian
cycle.

4. An infra-Hamiltonian cycle in G is a closed walk C that visits every vertex of G exactly once,
except for at most one vertex that C does not visit at all.

(a) Give an example of a graph that contains a infra-Hamiltonian cycle, but does not contain
a Hamiltonian cycle (which visits every vertex exactly once).

(b) Prove that it is NP-hard to determine whether a given graph contains a infra-Hamiltonian
cycle.

5. A quasi-satisfying assignment for a 3CNF boolean formula Φ is an assignment of truth
values to the variables such that at most one clause in Φ does not contain a true literal. Prove
that it is NP-hard to determine whether a given 3CNF boolean formula has a quasi-satisfying
assignment.
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6. A subset S of vertices in an undirected graph G is half-independent if each vertex in S
is adjacent to at most one other vertex in S. Prove that finding the size of the largest
half-independent set of vertices in a given undirected graph is NP-hard.

7. A subset S of vertices in an undirected graph G is sort-of-independent if if each vertex in S
is adjacent to at most 374 other vertices in S. Prove that finding the size of the largest
sort-of-independent set of vertices in a given undirected graph is NP-hard.

8. A subset S of vertices in an undirected graph G is almost independent if at most 374 edges
in G have both endpoints in S. Prove that finding the size of the largest almost-independent
set of vertices in a given undirected graph is NP-hard.

9. Let G be an undirected graph with weighted edges. A heavy Hamiltonian cycle is a cycle C
that passes through each vertex of G exactly once, such that the total weight of the edges
in C is more than half of the total weight of all edges in G. Prove that deciding whether a
graph has a heavy Hamiltonian cycle is NP-hard.

4

8

2

7

5

3

1

12
8

6

5

9

5

A heavy Hamiltonian cycle. The cycle has total weight 34; the graph has total weight 67.

10. (a) A tonian path in a graph G is a path that goes through at least half of the vertices of G.
Show that determining whether a graph has a tonian path is NP-hard.

(b) A tonian cycle in a graph G is a cycle that goes through at least half of the vertices
of G. Show that determining whether a graph has a tonian cycle is NP-hard. [Hint: Use
part (a). Or not.]

11. Prove that the following variants of SAT is NP-hard. [Hint: Describe reductions from 3SAT.]

(a) Given a boolean formula Φ in conjunctive normal form, where each variable appears in
at most three clauses, determine whether F has a satisfying assignment. [Hint: First
consider the variant where each variable appears in at most five clauses.]

(b) Given a boolean formula Φ in conjunctive normal form and given one satisfying assignment
for Φ, determine whether Φ has at least one other satisfying assignment.

12. Jerry Springer and Maury Povich have decided not to compete with each other over scheduling
guests during the next talk-show season. There is only one set of Weird People who either
host would consider having on their show. The hosts want to divide the Weird People into
two (disjoint) groups: those to appear on Jerry’s show, and those to appear on Maury’s show.
(Neither wants to “recycle” a guest that appeared on the other’s show.)
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Both Jerry and Maury have preferences about which Weird People they are particularly
interested in. For example, Jerry wants to be sure to get at least one person who fits the
category “had extra-terrestrial affair”. Thus, on his list of preferences, he writes “w1 or w3 or
w45”, since weird people numbered 1, 3, and 45 are the only ones who fit that description.
Jerry has other preferences as well, so he lists those also. Similarly, Maury might like to
guarantee that his show includes at least one guest who confesses to “really enjoying Rice’s
theorem”. Each potential guest may fall into any number of different categories, such as the
person who enjoys Rice’s theorem more than the extra-terrestrial affair they had.

Jerry and Maury each prepare a list reflecting all of their preferences. Each list contains a
collection of statements of the form “(wi or w j or wk)”. Your task is to prove that it is NP-hard
to find an assignment of weird guests to the two shows that satisfies all of Jerry’s preferences
and all of Maury’s preferences.

(a) The problem NoMixedClauses3Sat is the special case of 3Sat where the input formula
cannot contain a clause with both a negated variable and a non-negated variable. Prove
that NoMixedClauses3Sat is NP-hard. [Hint: Reduce from the standard 3Sat problem.]

(b) Describe a polynomial-time reduction from NoMixedClauses3Sat to 3Sat.

13. The president of Sham-Poobanana University is planning a Mardi Gras party for the university
staff. His staff has a hierarchical structure; that is, the supervisor relation forms a directed,
acyclic graph, with the president as the only source, and there is an edge from person i to
person j in the graph if and only if person i is an immediate supervisor of person j. (Many
people on the staff have multiple positions, and thus have several immediate supervisors.) In
order to make the party fun for all guests, the president wants to ensure that if a person i
attends, then none of i’s immediate supervisors can attend.

By mining each staff member’s email and social media accounts, Sham-Poobanana
University Human Resources has determined a “party-hound” rating for each staff member,
which is a non-negative real number reflecting how likely it is that the person will leave the
party wearing a monkey suit and a lampshade.

Show that it is NP-hard to determine a guest-list thatmaximizes the sum of the party-hound
ratings of all invited guests, subject to the supervisor constraint.

[Hint: This problem can be solved in polynomial time when the input graph is a tree!]

14. Prove that the following problem (which we callMatch) is NP-hard. The input is a finite set S
of strings, all of the same length n, over the alphabet {0,1,2}. The problem is to determine
whether there is a string w ∈ {0,1}n such that for every string s ∈ S, the strings s and w have
the same symbol in at least one position.

For example, given the set S = {01220, 21110, 21120, 00211, 11101}, the correct output
is True, because the string w = 01001 matches the first three strings of S in the second
position, and matches the last two strings of S in the last position. On the other hand, given
the set S = {00, 11, 01, 10}, the correct output is False.

[Hint: Describe a reduction from SAT (or 3SAT)]

15. To celebrate the end of the semester, Professor Jarling want to treat himself to an ice-cream
cone, at the Polynomial House of Flavors. For a fixed price, he can build a cone with as many
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scoops as he’d like. Because he has good balance (and because we want this problem to work
out), assume that he can balance any number of scoops on top of the cone without it tipping
over. He plans to eat the ice cream one scoop at a time, from top to bottom, and doesn’t want
more than one scoop of any flavor.

However, he realizes that eating a scoop of bubblegum ice cream immediately after the
scoop of potatoes-and-gravy ice cream would be unpalatable; these two flavors clearly should
not be placed next to each other in the stack. He has other similar constraints; certain pairs
of flavors cannot be adjacent in the stack.

He’d like to get as much ice cream as he can for the one fee by building the tallest cone
possible that meets his flavor-incompatibility constraints. Prove that this problem is NP-hard.

16. Prove that the following problems are NP-hard.

(a) Given an undirected graph G, does G contain a simple path that visits all but 17 vertices?

(b) Given an undirected graph G, does G have a spanning tree in which every node has
degree at most 23?

(c) Given an undirected graph G, does G have a spanning tree with at most 42 leaves?

17. Prove that the following problems are NP-hard.

(a) Given an undirected graph G, is it possible to color the vertices of G with three different
colors, so that at most 31337 edges have both endpoints the same color?

(b) Given an undirected graph G, is it possible to color the vertices of G with three different
colors, so that each vertex has at most 8675309 neighbors with the same color?

18. At the end of every semester, Jeff needs to solve the following ExamDesign problem. He
has a list of problems, and he knows for each problem which students will really enjoy that
problem. He needs to choose a subset of problems for the exam such that for each student
in the class, the exam includes at least one question that student will really enjoy. On the
other hand, he does not want to spend the entire summer grading an exam with dozens
of questions, so the exam must also contain as few questions as possible. Prove that the
ExamDesign problem is NP-hard.

19. Which of the following results would resolve the P vs. NP question? Justify each answer with
a short sentence or two.

(a) The construction of a polynomial time algorithm for some problem in NP.

(b) A polynomial-time reduction from 3Sat to the language {0n1n | n≥ 0}.

(c) A polynomial-time reduction from {0n1n | n≥ 0} to 3Sat.

(d) A polynomial-time reduction from 3Color to MinVertexCover.

(e) The construction of a nondeterministic Turing machine that cannot be simulated by any
deterministic Turing machine with the same running time.
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Some useful NP-hard problems. You arewelcome to use any of these in your ownNP-hardness proofs,
except of course for the specific problem you are trying to prove NP-hard.

CircuitSat: Given a boolean circuit, are there any input values that make the circuit output True?

3Sat: Given a boolean formula in conjunctive normal form, with exactly three distinct literals per clause,
does the formula have a satisfying assignment?

MaxIndependentSet: Given an undirected graph G, what is the size of the largest subset of vertices
in G that have no edges among them?

MaxClique: Given an undirected graph G, what is the size of the largest complete subgraph of G?

MinVertexCover: Given an undirected graph G, what is the size of the smallest subset of vertices
that touch every edge in G?

MinSetCover: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subcollection whose union is S?

MinHittingSet: Given a collection of subsets S1, S2, . . . , Sm of a set S, what is the size of the smallest
subset of S that intersects every subset Si?

3Color: Given an undirected graph G, can its vertices be colored with three colors, so that every edge
touches vertices with two di�erent colors?

HamiltonianPath: Given graph G (either directed or undirected), is there a path in G that visits every
vertex exactly once?

HamiltonianCycle: Given a graph G (either directed or undirected), is there a cycle in G that visits
every vertex exactly once?

TravelingSalesman: Given a graph G (either directed or undirected) with weighted edges, what is
the minimum total weight of any Hamiltonian path/cycle in G?

LongestPath: Given a graph G (either directed or undirected, possibly with weighted edges), what is
the length of the longest simple path in G?

SteinerTree: Given an undirected graph G with some of the vertices marked, what is the minimum
number of edges in a subtree of G that contains every marked vertex?

SubsetSum: Given a set X of positive integers and an integer k, does X have a subset whose elements
sum to k?

Partition: Given a set X of positive integers, can X be partitioned into two subsets with the same
sum?

3Partition: Given a set X of 3n positive integers, can X be partitioned into n three-element subsets,
all with the same sum?

IntegerLinearProgramming: GivenamatrixA∈ Zn×d and twovectors b ∈ Zn and c ∈ Zd , compute
max{c · x | Ax ≤ b, x ≥ 0, x ∈ Zd}.

FeasibleILP: Given a matrix A ∈ Zn×d and a vector b ∈ Zn, determine whether the set of feasible
integer pointsmax{x ∈ Zd | Ax ≤ b, x ≥ 0} is empty.

Draughts: Given an n× n international draughts configuration, what is the largest number of pieces
that can (and therefore must) be captured in a single move?

SuperMarioBrothers: Given an n× n Super Mario Brothers level, can Mario reach the castle?

SteamedHams: Aurora borealis? At this time of year, at this time of day, in this part of the country,
localized entirely within your kitchen? May I see it?
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Turing Machines and Undecidability

The only undecidability questions on this semester’s final exam will be True/False, but the
following problems might still be useful as practice.

For each of the following languages, either sketch an algorithm to decide that language or
prove that the language is undecidable, using a diagonalization argument, a reduction argument,
Rice’s theorem, closure properties, or some combination of the above. Recall that wR denotes the
reversal of string w.

1. ∅

2.
�

0n1n2n
�

� n≥ 0
	

3.
�

A∈ {0,1}n×n
�

� n≥ 0 and A is the adjacency matrix of a dag with n vertices
	

4.
�

A∈ {0,1}n×n
�

� n≥ 0 and A is the adjacency matrix of a 3-colorable graph with n vertices
	

5.
�

〈M〉
�

� M accepts 〈M〉R
	

6.
�

〈M〉
�

� M accepts 〈M〉R
	

∩
�

〈M〉
�

� M rejects 〈M〉R
	

7.
�

〈M〉#w
�

� M accepts wwR
	

8.
�

〈M〉
�

� M accepts RICESTHEOREM
	

9.
�

〈M〉
�

� M rejects RICESTHEOREM
	

10.
�

〈M〉
�

� M accepts at least one palindrome
	

11. Σ∗ \
�

〈M〉
�

� M accepts at least one palindrome
	

12.
�

〈M〉
�

� M rejects at least one palindrome
	

13.
�

〈M〉
�

� M accepts exactly one string of length `, for each integer `≥ 0
	

14. {〈M〉 | Accept(M) has an infinite fooling set}

15.
�

〈M〉#〈M ′〉
�

� Accept(M)∩Accept(M ′) 6=∅
	

16.
�

〈M〉#〈M ′〉
�

� Accept(M)⊕Reject(M ′) 6=∅
	

— Here ⊕ means exclusive-or.
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Some useful undecidable problems. You are welcome to use any of these in your own undecidability
proofs, except of course for the specific problem you are trying to prove undecidable.

SelfReject :=
�

〈M〉
�

� M rejects 〈M〉
	

SelfAccept :=
�

〈M〉
�

� M accepts 〈M〉
	

SelfHalt :=
�

〈M〉
�

� M halts on 〈M〉
	

SelfDiverge :=
�

〈M〉
�

� M does not halt on 〈M〉
	

Reject :=
�

〈M〉#w
�

� M rejects w
	

Accept :=
�

〈M〉#w
�

� M accepts w
	

Halt :=
�

〈M〉#w
�

� M halts on w
	

Diverge :=
�

〈M〉#w
�

� M does not halt on w
	

NeverReject :=
�

〈M〉
�

� Reject(M) =∅
	

NeverAccept :=
�

〈M〉
�

� Accept(M) =∅
	

NeverHalt :=
�

〈M〉
�

� Halt(M) =∅
	

NeverDiverge :=
�

〈M〉
�

� Diverge(M) =∅
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