CS/ECE 374: Algorithms & Models of Computation, Fall 2018

NP and NP Completeness

Lecture 23 NOV 29, 2018

Part I

[NP](#page-1-0)

Chandra Chekuri (UIUC) [CS/ECE 374](#page-0-0) 2 Fall 2018 2 / 43

P and **NP** and Turing Machines

- \bullet P: set of decision problems that have polynomial time algorithms.
- **2** NP: set of decision problems that have polynomial time non-deterministic algorithms.
	- Many natural problems we would like to solve are in NP .
	- \bullet Every problem in NP has an exponential time algorithm
- \bullet $P \subset NP$
- Some problems in NP are in P (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as asking whether $P = NP$.

Problems with no known polynomial time algorithms

Problems

- **Q** Independent Set
- ² Vertex Cover
- **3 Set Cover**
- **4 SAT**
- ⁵ 3SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($\vert I_x \vert$) such that given a proof one can efficiently check that I_x is indeed a YES instance.

Above problems share the following feature:

Checkability

For any YES instance I_X of X there is a proof/certificate/solution that is of length poly($\vert I_x \vert$) such that given a proof one can efficiently check that I_x is indeed a YES instance.

Examples:

- **3 SAT** formula φ : proof is a satisfying assignment.
- **2** Independent Set in graph G and k : a subset S of vertices.
- ³ Homework

Sudoku

Given $n \times n$ sudoku puzzle, does it have a solution?

Chandra Chekuri (UIUC) [CS/ECE 374](#page-0-0) 6 Fall 2018 6 / 43

Certifiers

Definition

An algorithm $C(\cdot, \cdot)$ is a **certifier** for problem X if the following two conditions hold:

- For every $s \in X$ there is some string t such that $C(s, t) =$ "yes"
- If $s \notin X$, $C(s, t) =$ " no" for every t.

The string t is called a certificate or proof for s .

Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)

A certifier C is an efficient certifier for problem X if there is a polynomial $p(\cdot)$ such that the following conditions hold:

- For every $s \in X$ there is some string t such that $C(s, t) =$ "yes" and $|t| \leq p(|s|)$.
- If $s \notin X$, $C(s, t) =$ " no" for every t.
- \bullet $C(\cdot, \cdot)$ runs in polynomial time.

Example: Independent Set

- **1** Problem: Does $G = (V, E)$ have an independent set of size $> k$?
	- **0** Certificate: Set $S \subset V$.
	- **2** Certifier: Check $|S| > k$ and no pair of vertices in S is connected by an edge.

Example: Vertex Cover

1 Problem: Does G have a vertex cover of size $\leq k$?

- \bullet Certificate: $S \subset V$.
- **2** Certifier: Check $|S| \le k$ and that for every edge at least one endpoint is in S.

Example: **SAT**

1 Problem: Does formula φ have a satisfying truth assignment?

- **O** Certificate: Assignment **a** of $0/1$ values to each variable.
- **2** Certifier: Check each clause under **a** and say "yes" if all clauses are true.

Problem: Composite

Instance: A number s. Question: Is the number s a composite?

1 Problem: **Composite**.

- **0** Certificate: A factor $t \leq s$ such that $t \neq 1$ and $t \neq s$.
- **2** Certifier: Check that *t* divides *s*.

Problem: NFA Universality

Instance: Description of a NFA M. Question: Is $L(M) = \Sigma^*$, that is, does M accept all strings?

1 Problem: NFA Universality.

- **O** Certificate: A DFA M' equivalent to M
- **2** Certifier: Check that $L(M') = \Sigma^*$

Problem: NFA Universality

Instance: Description of a NFA M. Question: Is $L(M) = \Sigma^*$, that is, does M accept all strings?

1 Problem: NFA Universality.

- **O** Certificate: A DFA M' equivalent to M
- **2** Certifier: Check that $L(M') = \Sigma^*$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in NP.

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n **Question:** Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

1 Problem: PCP

- **O** Certificate: A sequence of indices i_1, i_2, \ldots, i_k
- \bullet Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

Problem: PCP

Instance: Two sets of binary strings $\alpha_1, \ldots, \alpha_n$ and β_1, \ldots, β_n **Question:** Are there indices i_1, i_2, \ldots, i_k such that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

1 Problem: PCP

- **O** Certificate: A sequence of indices i_1, i_2, \ldots, i_k
- \bullet Certifier: Check that $\alpha_{i_1}\alpha_{i_2}\ldots\alpha_{i_k}=\beta_{i_1}\beta_{i_2}\ldots\beta_{i_k}$

 $PCP =$ Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

A certifier is an algorithm $C(I, c)$ with two inputs:

- \bigcirc *I*: instance.
- 2 c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about C as an algorithm for the original problem, if:

- **1** Given *I*, the algorithm guesses (non-deterministically, and who knows how) a certificate c .
- **2** The algorithm now verifies the certificate c for the instance I.
- NP can be equivalently described using Turing machines.

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example

SAT formula φ . No easy way to prove that φ is NOT satisfiable!

More on this and co-NP later on.

Proposition

 $P \subset NP$.

Proposition

 $P \subseteq NP$.

For a problem in **P** no need for a certificate!

Proof.

Consider problem $X \in P$ with algorithm A. Need to demonstrate that X has an efficient certifier:

- **1** Certifier C on input s, t, runs $A(s)$ and returns the answer.
- **2** C runs in polynomial time.
- **3** If $s \in X$, then for every t, $C(s, t) =$ "yes".
- \bullet If $s \notin X$, then for every t, $C(s, t) =$ "no".

Definition

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\mathrm{poly}(|s|)}).$

Definition

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input s runs in exponential time, i.e., $O(2^{\mathrm{poly}(|s|)}).$

Example: $O(2^n)$, $O(2^{n \log n})$, $O(2^{n^3})$, ...

NP versus EXP

Proposition

NP ⊆ EXP.

Proof.

Let $X \in \mathbb{NP}$ with certifier C. Need to design an exponential time algorithm for X .

- **1** For every t, with $|t| \leq p(|s|)$ run $C(s, t)$; answer "yes" if any one of these calls returns "yes".
- **2** The above algorithm correctly solves X (exercise).
- \bullet Algorithm runs in $O(q(|s|+|\rho(s)|)2^{p(|s|)})$, where q is the running time of C .

Examples

- **1 SAT**: try all possible truth assignment to variables.
- **2 Independent Set:** try all possible subsets of vertices.
- ³ Vertex Cover: try all possible subsets of vertices.

Is NP efficiently solvable?

We know $P \subseteq NP \subseteq EXP$.

Is NP efficiently solvable?

```
We know P \subseteq NP \subseteq EXP.
```
BIg Question

Is there are problem in NP that does not belong to P? Is $P = NP$?

If $P = NP...$

Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.

If $P = NP \dots$

Or: If pigs could fly then life would be sweet.

4 Many important optimization problems can be solved efficiently. ² The RSA cryptosystem can be broken.

If $P = NP \dots$

Or: If pigs could fly then life would be sweet.

- **4** Many important optimization problems can be solved efficiently.
- **2** The RSA cryptosystem can be broken.
- ³ No security on the web.

If $P = NP...$

Or: If pigs could fly then life would be sweet.

- **1** Many important optimization problems can be solved efficiently.
- **2** The RSA cryptosystem can be broken.
- ³ No security on the web.
- 4 No e-commerce ...

If $P = NP...$

Or: If pigs could fly then life would be sweet.

- **1** Many important optimization problems can be solved efficiently.
- \bullet The RSA cryptosystem can be broken.
- ³ No security on the web.
- ⁴ No e-commerce ...
- ⁵ Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

If $P = NP$ this implies that...

(A) Vertex Cover can be solved in polynomial time. $(B) P = EXP.$ (C) EXP \subset P. (D) All of the above.

P versus NP

Status

Relationship between P and NP remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $P \neq NP$.

Resolving P versus NP is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

Part II

[NP-Completeness](#page-36-0)

"Hardest" Problems

Question

What is the hardest problem in **NP**? How do we define it?

Towards a definition

- **1** Hardest problem must be in NP.
- ² Hardest problem must be at least as "difficult" as every other problem in NP.

NP-Complete Problems

Definition

A problem X is said to be NP-Complete if

- \bullet $X \in \mathsf{NP}$, and
- **2** (Hardness) For any $Y \in NP$, $Y \leq_P X$.

Solving NP-Complete Problems

Proposition

Suppose X is NP-Complete. Then X can be solved in polynomial time if and only if $P = NP$.

Proof.

- \Rightarrow Suppose X can be solved in polynomial time
	- **0** Let $Y \in NP$. We know $Y \leq_{P} X$.
	- We showed that if $Y \leq_P X$ and X can be solved in polynomial time, then Y can be solved in polynomial time.
	- **3** Thus, every problem $Y \in NP$ is such that $Y \in P$; $NP \subset P$.
	- \bullet Since $P \subset NP$, we have $P = NP$.

 \Leftarrow Since **P** = NP, and *X* ∈ NP, we have a polynomial time algorithm for X .

NP-Hard Problems

Definition

A problem X is said to be NP-Hard if

4 (Hardness) For any $Y \in NP$, we have that $Y \leq_{P} X$.

An NP-Hard problem need not be in NP!

Example: Halting problem is NP-Hard (why?) but not NP-Complete.

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- 2 and solving X implies $P = NP$.

 X is unlikely to be efficiently solvable.

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- 2 and solving X implies $P = NP$.
- \boldsymbol{X} is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X .

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- 2 and solving X implies $P = NP$.
- \boldsymbol{X} is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X .

If X is NP-Complete

- **1** Since we believe $P \neq NP$,
- 2 and solving X implies $P = NP$.
- \boldsymbol{X} is unlikely to be efficiently solvable.

At the very least, many smart people before you have failed to find an efficient algorithm for X .

(This is proof by mob opinion — take with a grain of salt.)

NP-Complete Problems

Question

Are there any problems that are NP-Complete?

Answer

Yes! Many, many problems are NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

Need to show

- **4 SAT is in NP.**
- 2 every NP problem X reduces to SAT.

Will see proof in next lecture.

Steve Cook won the Turing award for his theorem.

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

- \bullet Show that X is in NP.
- **2** Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

- \bullet Show that X is in NP.
- 2 Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_{P} X$ implies that every NP problem $Y \leq_{P} X$. Why?

Proving that a problem X is NP-Complete

To prove X is NP-Complete, show

- **1** Show that X is in NP.
- 2 Give a polynomial-time reduction from a known NP-Complete problem such as SAT to X

SAT $\leq_{P} X$ implies that every NP problem $Y \leq_{P} X$. Why? Transitivity of reductions:

 $Y \leq_P SAT$ and $SAT \leq_P X$ and hence $Y \leq_P X$.

3-SAT is NP-Complete

- 3-SAT is in NP
- SAT \leq_P 3-SAT as we saw

NP-Completeness via Reductions

- **3 SAT** is NP-Complete due to Cook-Levin theorem
- **2 SAT** \leq_{P} 3-SAT
- **3-SAT** \leq_{P} Independent Set
- \bullet Independent Set \leq_P Vertex Cover
- **Independent Set** \leq_{ρ} Clique
- **6 3-SAT** \leq_{P} 3-Color
- **0 3-SAT** \leq_{P} Hamiltonian Cycle

NP-Completeness via Reductions

- **9 SAT** is NP-Complete due to Cook-Levin theorem
- 2 SAT \leq_{P} 3-SAT
- **3-SAT** \leq_{P} Independent Set
- \bullet Independent Set \leq_P Vertex Cover
- **5** Independent Set \leq_{ρ} Clique
- **6 3-SAT** \leq_{P} 3-Color
- **0 3-SAT** \leq_{P} Hamiltonian Cycle

Hundreds and thousands of different problems from many areas of science and engineering have been shown to be NP-Complete.

A surprisingly frequent phenomenon!

Part III

Reducing 3-SAT to [Independent](#page-54-0)

Problem: Independent Set

Instance: A graph G, integer k. Question: Is there an independent set in G of size k ?

3SAT ≤_P Independent Set

The reduction $3SAT$ Independent Set

Input: Given a $3CNF$ formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable.

3SAT ≤_P Independent Set

The reduction $3SAT$ Independent Set

Input: Given a $3CNF$ formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

The reduction $3SAT$ Independent Set

Input: Given a $3CNF$ formula φ **Goal:** Construct a graph G_{φ} and number k such that G_{φ} has an independent set of size k if and only if φ is satisfiable. G_{φ} should be constructable in time polynomial in size of φ

Importance of reduction: Although 3SAT is much more expressive, it can be reduced to a seemingly specialized Independent Set problem.

Notice: We handle only $3CNF$ formulas – reduction would not work for other kinds of boolean formulas.

There are two ways to think about 3SAT

There are two ways to think about 3SAT

 \bullet Find a way to assign $0/1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.

There are two ways to think about 3SAT

- \bullet Find a way to assign $0/1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2 Pick a literal from each clause and find a truth assignment to make all of them true

There are two ways to think about 3SAT

- \bullet Find a way to assign $0/1$ (false/true) to the variables such that the formula evaluates to true, that is each clause evaluates to true.
- 2 Pick a literal from each clause and find a truth assignment to make all of them true. You will fail if two of the literals you pick are in conflict, i.e., you pick x_i and $\neg x_i$

We will take the second view of **3SAT** to construct the reduction.

\bullet G_{φ} will have one vertex for each literal in a clause

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

 \bullet $G_{\scriptscriptstyle{\omega}}$ will have one vertex for each literal in a clause ² Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

 \bullet $G_{\scriptscriptstyle{\omega}}$ will have one vertex for each literal in a clause 2 Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

- \bullet G_{φ} will have one vertex for each literal in a clause 2 Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict $x_1 > 0$ $x_2 > 1$

Figure: Graph for $\varphi = (\sqrt{x_1} \vee x_2 \vee x_3) \wedge (x_1 \vee \neg x_2 \vee (x_3) \wedge (\neg x_1 \vee (x_2 \vee x_4))$ Chandra Chekuri (UIUC) [CS/ECE 374](#page-0-0) 41 Fall 2018 41 / 43

- \bullet G_{φ} will have one vertex for each literal in a clause
- 2 Connect the 3 literals in a clause to form a triangle; the independent set will pick at most one vertex from each clause, which will correspond to the literal to be set to true
- Connect 2 vertices if they label complementary literals; this ensures that the literals corresponding to the independent set do not have a conflict
- \bullet Take k to be the number of clauses

Figure: Graph for $\varphi = (\neg x_1 \lor x_2 \lor x_3) \land (x_1 \lor \neg x_2 \lor x_3) \land (\neg x_1 \lor x_2 \lor x_4)$

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

 \Rightarrow Let a be the truth assignment satisfying φ

Correctness

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Rightarrow Let a be the truth assignment satisfying φ
	- \bullet Pick one of the vertices, corresponding to true literals under \bm{a} , from each triangle. This is an independent set of the appropriate size. Why?

Correctness (contd)

Proposition

 φ is satisfiable iff G_{φ} has an independent set of size k (= number of clauses in φ).

Proof.

- \Leftarrow Let S be an independent set of size k
	- **0 S** must contain exactly one vertex from each clause
	- **2** S cannot contain vertices labeled by conflicting literals
	- **3** Thus, it is possible to obtain a truth assignment that makes in the literals in S true; such an assignment satisfies one literal in every clause