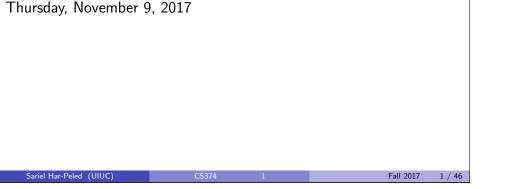
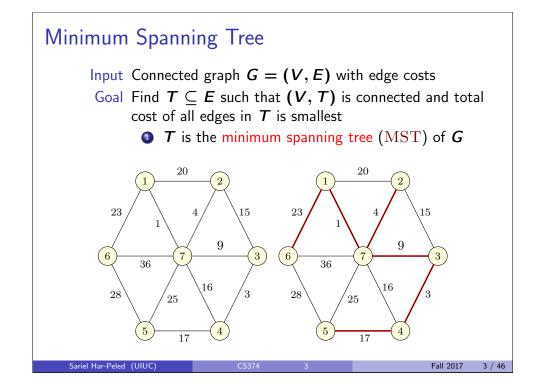
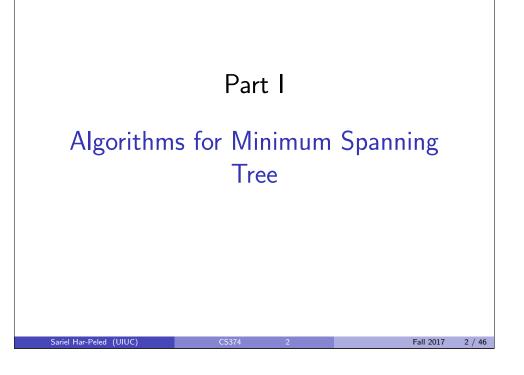
Algorithms & Models of Computation CS/ECE 374, Fall 2017

Algorithms for Minimum Spanning Trees

Lecture 20 Thursday, November 9, 2017







Applications

- Network Design
 - Designing networks with minimum cost but maximum connectivity
- Opproximation algorithms
 - Can be used to bound the optimality of algorithms to approximate Traveling Salesman Problem, Steiner Trees, etc.
- Oluster Analysis

CS374____

Some basic properties of Spanning Trees

- A graph G is connected iff it has a spanning tree
- Every spanning tree of a graph on n nodes has n-1 edges
- Let T = (V, E_T) be a spanning tree of G = (V, E). For every non-tree edge e ∈ E \ E_T there is a unique cycle C in T + e. For every edge f ∈ C {e}, T f + e is another spanning tree of G.

Sariel Har-Peled (UIUC)	CS374	5	Fall 2017	5 / 46
				,

Assumption

And for now \ldots

Assumption

Edge costs are distinct, that is no two edge costs are equal.



S

Cuts

Definition

Given a graph G = (V, E), a **cut** is a partition of the vertices of the graph into two sets $(S, V \setminus S)$.

Edges having an endpoint on both sides are the **edges of the cut**.

A cut edge is **crossing** the cut.

7

Fall 2017 7 / 46

 $V \setminus S$

Safe and Unsafe Edges

Definition

An edge e = (u, v) is a safe edge if there is some partition of V into S and $V \setminus S$ and e is the unique minimum cost edge crossing S (one end in S and the other in $V \setminus S$).

Definition

An edge e = (u, v) is an unsafe edge if there is some cycle C such that e is the unique maximum cost edge in C.

Proposition

Sariel Har-Peled (UIUC)

If edge costs are distinct then every edge is either safe or unsafe.

Fall 2017

9 / 46

11 / 46

Proof.

Exercise.

Safe edge Example... Every cut identifies one safe edge... SS $\setminus S$ S 13 13 11 11 Safe edge in the cut $(S, V \setminus S)$...the cheapest edge in the cut. Note: An edge *e* may be a safe edge for *many* cuts! Sariel Har-Peled (UIUC) Fall 2017

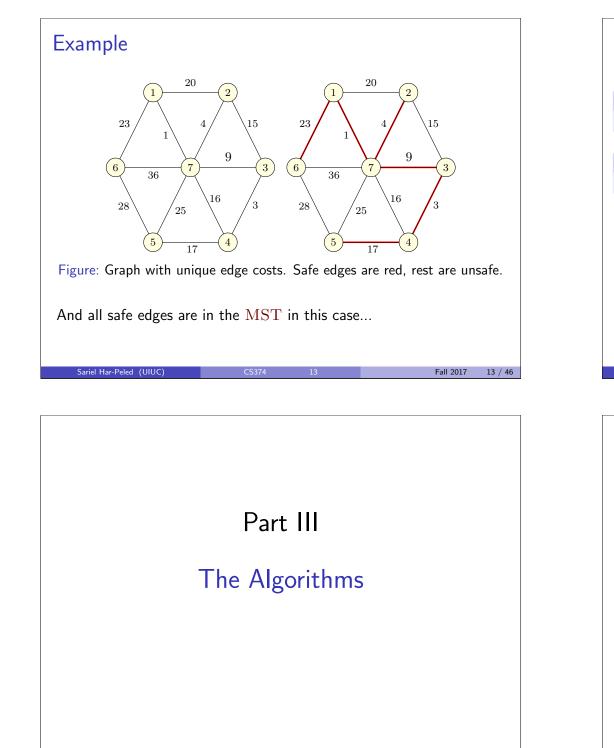
Every edge is either safe or unsafe

Proposition

If edge costs are distinct then every edge is either safe or unsafe.

		0		
	CS374	10	Fall 2017	10 / 46
Sariel Har-Peled (UIUC)	CS374	10	Fall 2017	10 / 46





Some key observations

Proofs later

Lemma

If e is a safe edge then every minimum spanning tree contains e.

Lemma

Sariel Har-Peled

If e is an unsafe edge then no MST of G contains e.

Greedy TemplateInitially E is the set of all edges in GT is empty (* T will store edges of a MST *)while E is not empty dochoose $e \in E$ if (e satisfies condition)add e to Treturn the set T

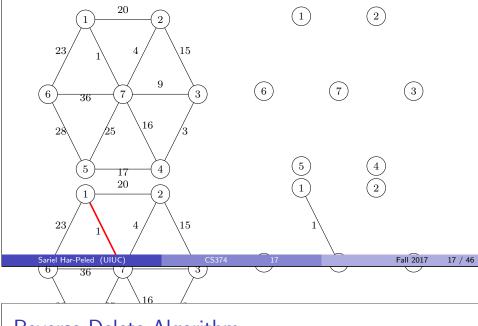
Main Task: In what order should edges be processed? When should we add edge to spanning tree?

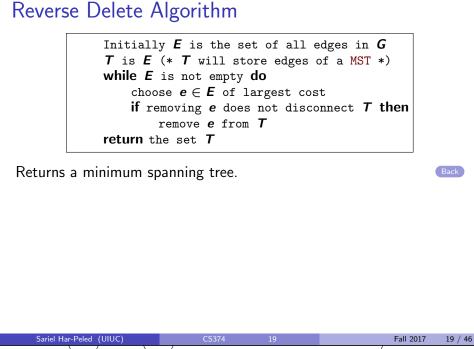
KA PA RD

Fall 2017

Kruskal's Algorithm

Process edges in the order of their costs (starting from the least) and add edges to T as long as they don't form a cycle.



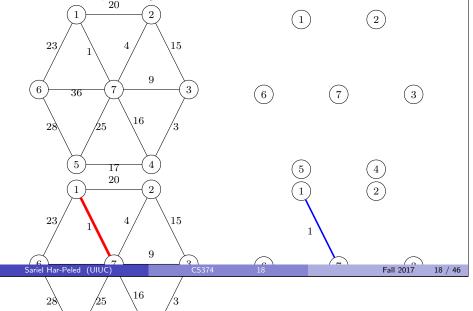


(F)

(1

Prim's Algorithm

T maintained by algorithm will be a tree. Start with a node in T. In each iteration, pick edge with least attachment cost to T.



Borůvka's Algorithm

Sariel Har-Peled (UIUC)

 $\overbrace{5}{}$

4

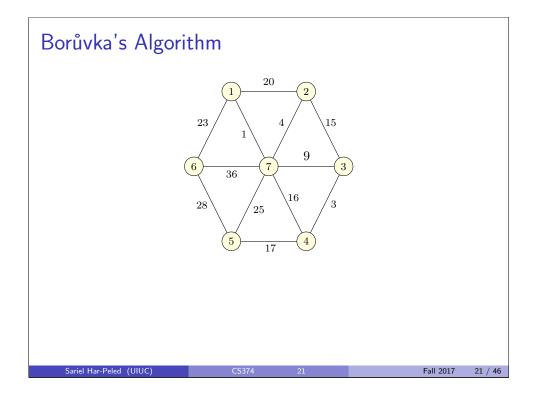
Simplest to implement. See notes. Assume G is a connected graph.

 $\begin{array}{l} \textbf{T} \text{ is } \emptyset \ (* \ \textbf{T} \text{ will store edges of a MST }*) \\ \textbf{while } \textbf{T} \text{ is not spanning } \textbf{do} \\ \textbf{X} \leftarrow \emptyset \\ \text{ for each connected component } \textbf{S} \text{ of } \textbf{T} \textbf{ do} \\ \text{ add to } \textbf{X} \text{ the cheapest edge between } \textbf{S} \text{ and } \textbf{V} \setminus \textbf{S} \\ \text{ Add edges in } \textbf{X} \text{ to } \textbf{T} \\ \textbf{return the set } \textbf{T} \end{array}$

Fall 2017

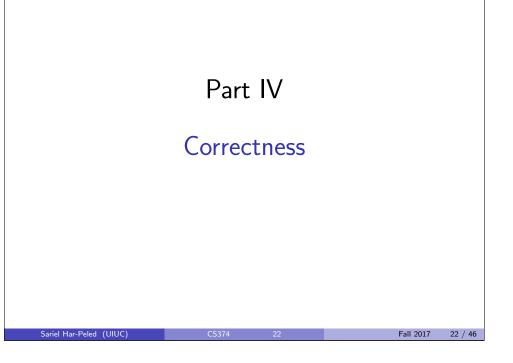
(4)

(5)



Correctness of MST Algorithms

- Many different MST algorithms
- All of them rely on some basic properties of MSTs, in particular the Cut Property to be seen shortly.



Key Observation: Cut Property

Lemma

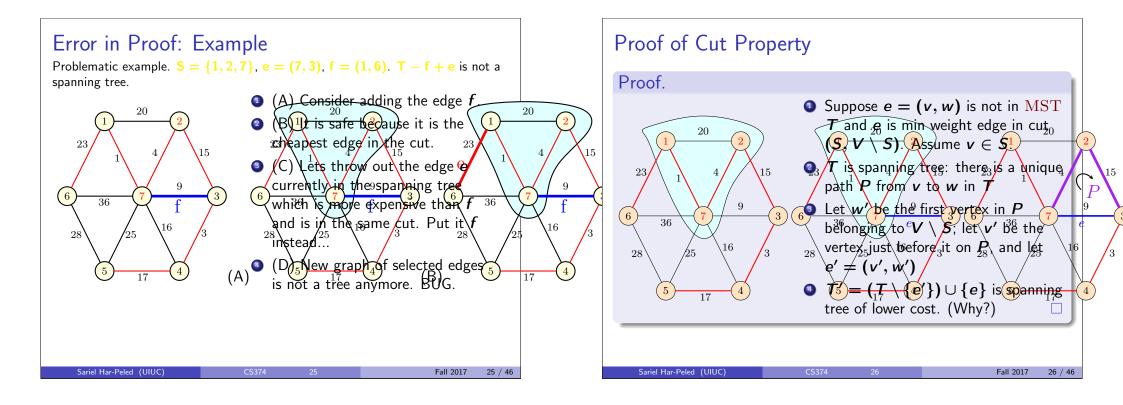
If e is a safe edge then every minimum spanning tree contains e.

Proof.

- Suppose (for contradiction) e is not in MST T.
- Since e is safe there is an S ⊂ V such that e is the unique min cost edge crossing S.
- Since T is connected, there must be some edge f with one end in S and the other in $V \setminus S$
- Since c_f > c_e, T' = (T \ {f}) ∪ {e} is a spanning tree of lower cost! Error: T' may not be a spanning tree!!

23

74



Proof of Cut Property (contd)

Observation

 $T' = (T \setminus \{e'\}) \cup \{e\}$ is a spanning tree.

Proof.

T' is connected.

Removed e' = (v', w') from T but v' and w' are connected by the path P - f + e in T'. Hence T' is connected if T is.

T' is a tree

T' is connected and has n-1 edges (since T had n-1 edges) and hence T' is a tree

Safe Edges form a Tree

Lemma

Let G be a connected graph with distinct edge costs, then the set of safe edges form a connected graph.

Proof.

- Suppose not. Let S be a connected component in the graph induced by the safe edges.
- Consider the edges crossing S, there must be a safe edge among them since edge costs are distinct and so we must have picked it.

27

Safe Edges form an MST

Corollary

Let **G** be a connected graph with distinct edge costs, then set of safe edges form the unique MST of **G**.

Consequence: Every correct MST algorithm when G has unique edge costs includes exactly the safe edges.

Correctness of Prim's Algorithm

Prim's Algorithm

Pick edge with minimum attachment cost to current tree, and add to current tree.

Proof of correctness.

- If e is added to tree, then e is safe and belongs to every MST.
 - Let S be the vertices connected by edges in T when e is added.
 - **e** is edge of lowest cost with one end in **S** and the other in $V \setminus S$ and hence **e** is safe.
- Set of edges output is a spanning tree
 - Set of edges output forms a connected graph: by induction, S is connected in each iteration and eventually S = V.
 - Only safe edges added and they do not have a cycle

Cycle Property

Lemma

If e is an unsafe edge then no MST of G contains e.

Proof.

Exercise.

Note: Cut and Cycle properties hold even when edge costs are not distinct. Safe and unsafe definitions do not rely on distinct cost assumption.

Correctness of Kruskal's Algorithm

Kruskal's Algorithm

Pick edge of lowest cost and add if it does not form a cycle with existing edges.

Proof of correctness.

Sariel Har-Peled (UIUC

- If e = (u, v) is added to tree, then e is safe
 - When algorithm adds *e* let *S* and *S*' be the connected components containing *u* and *v* respectively
 - **2** e is the lowest cost edge crossing **S** (and also **S**').
 - If there is an edge e' crossing S and has lower cost than e, then e' would come before e in the sorted order and would be added by the algorithm to T
- Set of edges output is a spanning tree : exercise

31 / 46

Fall 2017

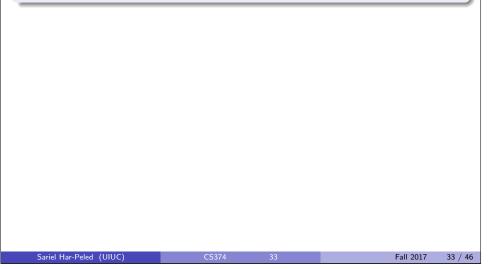
Eall 2017

Eall 2017

Correctness of Borůvka's Algorithm

Proof of correctness.

Argue that only safe edges are added.



When edge costs are not distinct

Heuristic argument: Make edge costs distinct by adding a small tiny and different cost to each edge

Formal argument: Order edges lexicographically to break ties

- $e_i \prec e_j$ if either $c(e_i) < c(e_j)$ or $(c(e_i) = c(e_j)$ and i < j
- Lexicographic ordering extends to sets of edges. If A, B ⊆ E,
 A ≠ B then A ≺ B if either c(A) < c(B) or (c(A) = c(B))
 and A \ B has a lower indexed edge than B \ A)
- Or an order all spanning trees according to lexicographic order of their edge sets. Hence there is a unique MST.

Prim's, Kruskal, and Reverse Delete Algorithms are optimal with respect to lexicographic ordering.

Correctness of Reverse Delete Algorithm

Reverse Delete Algorithm

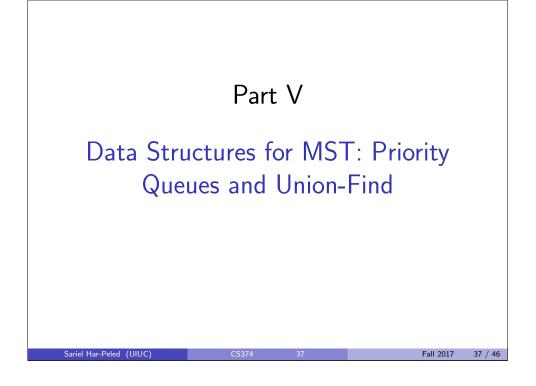
Consider edges in decreasing cost and remove an edge if it does not disconnect the graph

Proof of correctness. Argue that only unsafe edges are removed.

Edge Costs: Positive and Negative

- Algorithms and proofs don't assume that edge costs are non-negative! MST algorithms work for arbitrary edge costs.
- Another way to see this: make edge costs non-negative by adding to each edge a large enough positive number. Why does this work for MSTs but not for shortest paths?
- Can compute *maximum* weight spanning tree by negating edge costs and then computing an MST.

Question: Why does this not work for shortest paths?



Implementing Prim's Algorithm Implementing Prim's Algorithm Prim_ComputeMST **E** is the set of all edges in **G** $S = \{1\}$ T is empty (* T will store edges of a MST *) while $S \neq V$ do pick $e = (v, w) \in E$ such that $v \in S$ and $w \in V - S$ e has minimum cost $T = T \cup e$ $S = S \cup w$ return the set T Analysis **1** Number of iterations = O(n), where *n* is number of vertices 2 Picking e is O(m) where m is the number of edges • Total time *O(nm)* Sariel Har-Peled (UIUC) Fall 2017 39 / 46

Implementing Borůvka's Algorithm

No complex data structure needed.

```
 \begin{array}{l} \textbf{T} \text{ is } \emptyset \ (* \ \textbf{T} \text{ will store edges of a MST }*) \\ \textbf{while } \textbf{T} \text{ is not spanning } \textbf{do} \\ \textbf{X} \leftarrow \emptyset \\ \text{ for each connected component } \textbf{S} \text{ of } \textbf{T} \textbf{ do} \\ \text{ add to } \textbf{X} \text{ the cheapest edge between } \textbf{S} \text{ and } \textbf{V} \setminus \textbf{S} \\ \text{ Add edges in } \textbf{X} \text{ to } \textbf{T} \\ \textbf{return the set } \textbf{T} \end{array}
```

- O(log n) iterations of while loop. Why? Number of connected components shrink by at least half since each component merges with one or more other components.
- Each iteration can be implemented in O(m) time.

Running time: $O(m \log n)$ time.

Sariel Har-Peled

Maintain vertices in $V \setminus S$ in a priority queue with key a(v).

Fall 2017

Priority Queues

Sariel Har-Peled (UIUC

Data structure to store a set S of n elements where each element $v \in S$ has an associated real/integer key k(v) such that the following operations

- **•** makeQ: create an empty queue
- **2** findMin: find the minimum key in S
- **§** extractMin: Remove $v \in S$ with smallest key and return it
- **3** add(v, k(v)): Add new element v with key k(v) to S
- **O Delete**(v): Remove element v from S
- decreaseKey (v, k'(v)): decrease key of v from k(v) (current key) to k'(v) (new key). Assumption: $k'(v) \leq k(v)$
- **o meld**: merge two separate priority queues into one

Running time of Prim's Algorithm

O(n) extractMin operations and O(m) decreaseKey operations

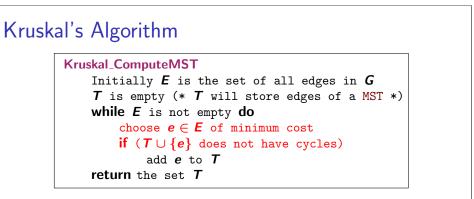
- Using standard Heaps, extractMin and decreaseKey take O(log n) time. Total: O((m + n) log n)
- Using Fibonacci Heaps, $O(\log n)$ for extractMin and O(1) (amortized) for decreaseKey. Total: $O(n \log n + m)$.
- Prim's algorithm and Dijkstra's algorithms are similar. Where is the difference?
- Prim's algorithm = Dijkstra where length of a path π is the weight of the heaviest edge in π . (Bottleneck shortest path.)

Prim's using priority queues

```
 \begin{array}{l} E \text{ is the set of all edges in } G \\ S = \{1\} \\ T \text{ is empty } (* T \text{ will store edges of a MST }*) \\ \text{for } v \not\in S, \ a(v) = \min_{w \in S} c(w, v) \\ \text{for } v \not\in S, \ e(v) = w \text{ such that } w \in S \text{ and } c(w, v) \text{ is minimum} \\ \text{while } S \neq V \text{ do} \\ & \text{pick } v \text{ with minimum } a(v) \\ T = T \cup \{(e(v), v)\} \\ S = S \cup \{v\} \\ & \text{update arrays } a \text{ and } e \\ \text{return the set } T \end{array}
```

Maintain vertices in $V \setminus S$ in a priority queue with key a(v)

- Requires O(n) extractMin operations
- Requires O(m) decreaseKey operations



- Presort edges based on cost. Choosing minimum can be done in O(1) time
- **2** Do **BFS/DFS** on $T \cup \{e\}$. Takes O(n) time
- Total time $O(m \log m) + O(mn) = O(mn)$

Fall 2017

41 / 4

4 44

Fall 2017

Implementing Kruskal's Algorithm Efficiently

```
Kruskal_ComputeMST

Sort edges in E based on cost

T is empty (* T will store edges of a MST *)

each vertex u is placed in a set by itself

while E is not empty do

pick e = (u, v) \in E of minimum cost

if u and v belong to different sets

add e to T

merge the sets containing u and v

return the set T
```

Need a data structure to check if two elements belong to same set and to merge two sets.

Using Union-Find data structure can implement Kruskal's algorithm in $O((m + n) \log m)$ time.

Sariel Har-Peled (UIUC)

45

Fall 2017 45 / 46

Best Known Asymptotic Running Times for MST

Prim's algorithm using Fibonacci heaps: $O(n \log n + m)$. If *m* is O(n) then running time is $\Omega(n \log n)$.

Question

Sariel Har-Peled (UIUC)

Is there a linear time (O(m + n) time) algorithm for MST?

- $O(m \log^* m)$ time [Fredman, Tarjan 1987]
- O(m + n) time using bit operations in RAM model [Fredman, Willard 1994]
- O(m + n) expected time (randomized algorithm) [Karger, Klein, Tarjan 1995]
- $O((n + m)\alpha(m, n))$ time Chazelle 2000]
- Still open: Is there an O(n + m) time deterministic algorithm in the comparison model?

Fall 2017

