Algorithms \& Models of Computation CS/ECE 374, Fall 2017

Dynamic Programming

Lecture 13
Thursday, October 12, 2017

Dynamic Programming

Dynamic Programming is smart recursion plus memoization
Question: Suppose we have a recursive program $f \circ \boldsymbol{O}(x)$ that takes an input \boldsymbol{x}.

- On input of size \boldsymbol{n} the number of distinct sub-problems that foo (x) generates is at most $A(n)$
- foo(x) spends at most $B(n)$ time not counting the time for its recursive calls.
Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed problems takes $O(1)$ time.
Question: What is an upper bound on the running time of memoized version of $f \circ o(x)$ if $|x|=n$? $O(A(n) B(n))$.

Problem

Input A string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ and access to a language $\boldsymbol{L} \subseteq \boldsymbol{\Sigma}^{*}$ via function $\operatorname{lsStr} \operatorname{lnL}($ string $x)$ that decides whether x is in L
Goal Decide if $w \in L^{*}$ using IsStrlnL(string \boldsymbol{x}) as a black box sub-routine

Example

Suppose L is English and we have a procedure to check whether a string/word is in the English dictionary.

- Is the string "isthisanenglishsentence" in English*?
- Is "stampstamp" in English*?
- Is "zibzzzad" in English*?

Recursive Solution

When is $w \in L^{*}$?
a $\boldsymbol{w} \in \boldsymbol{L}^{*}$ if $\boldsymbol{w} \in \boldsymbol{L}$ or if $\boldsymbol{w}=\boldsymbol{u} \boldsymbol{v}$ where $\boldsymbol{u} \in L$ and $\boldsymbol{v} \in \boldsymbol{L}^{*}$, $|u| \geq 1$

Assume w is stored in array $A[1 . . n]$

```
IsStringinLstar(A[1..n]):
    If (n=0) Output YES
    If (IsStrInL(A[1..n]))
        Output YES
    Else
        For (i=1 to n-1) do
            If (IsStrInL(A[1..i]) and IsStrInLstar(A[i+1..n])
                Output YES
    Output NO
```


Example

Consider string samiam

Recursive Solution

Assume \boldsymbol{w} is stored in array $\boldsymbol{A}[\mathbf{1 . . n]}$

```
IsStringinLstar(A[1..n]):
    If (n=0) Output YES
    If (IsStrInL(A[1..n]))
        Output YES
    Else
        For (i=1 to n-1) do
            If (IsStrInL(A[1..i]) and IsStrInLstar(A[i+1..n]))
                Output YES
```

 Output NO
 Question: How many distinct sub-problems does IsStrInLstar(A[1..n]) generate? $O(n)$

Naming subproblems and recursive equation

After seeing that number of subproblems is $O(n)$ we name them to help us understand the structure better.
$\operatorname{ISL}(i)$: a boolean which is $\mathbf{1}$ if $\mathbf{A}[i . . n]$ is in $L^{*}, \mathbf{0}$ otherwise
Base case: $\operatorname{ISL}(n+1)=1$ interpreting $A[n+1 . . n]$ as ϵ Recursive relation:

- $\operatorname{ISL}(i)=1$ if
$\exists i<j \leq n+1$ s.t ISL(j) and IsStrInL($A[i . .(j-1])$
- ISL(i) $=0$ otherwise

Output: ISL(1)

Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often convert the recursive algorithm into an iterative algorithm via explicit memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

- First, allocate a data structure (usually an array or a multi-dimensional array that can hold values for each of the subproblems)
- Figure out a way to order the computation of the sub-problems starting from the base case.
Caveat: Dynamic programming is not about filling tables. It is about finding a smart recursion. First, find the correct recursion.

Iterative Algorithm

Example

Consider string samiam

- Running time: $O\left(n^{2}\right)$ (assuming call to IsStrInL is $O(1)$ time)
- Space: $O(n)$

```
IsStringinLstar-Iterative \((\boldsymbol{A}[1 . . n])\) :
```

IsStringinLstar-Iterative $(\boldsymbol{A}[1 . . n])$:
boolean ISL[1.. $(n+1)]$
boolean ISL[1.. $(n+1)]$
$\operatorname{ISL}[n+1]=$ TRUE
$\operatorname{ISL}[n+1]=$ TRUE
for ($\boldsymbol{i}=\boldsymbol{n}$ down to $\mathbf{1}$)
for ($\boldsymbol{i}=\boldsymbol{n}$ down to $\mathbf{1}$)
$I S L[i]=$ FALSE
$I S L[i]=$ FALSE
for $(j=i+1$ to $n+1)$
for $(j=i+1$ to $n+1)$
If (ISL[j] and IsStrInL(A[i..j-1]))
If (ISL[j] and IsStrInL(A[i..j-1]))
$\mathrm{SL}[i]=$ TRUE
$\mathrm{SL}[i]=$ TRUE
Break
Break
If (ISL[1] = 1) Output YES
If (ISL[1] = 1) Output YES
Else Output NO
Else Output NO
ISL[n+1] TRUE
ISL[n+1] TRUE
CLI

```
                CLI
```


Part II
 Longest Increasing Subsequence

Sequences

Definition

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{n}$. Length of a sequence is number of elements in the list.

Definition

$a_{i_{1}}, \ldots, a_{i_{k}}$ is a subsequence of a_{1}, \ldots, a_{n} if $1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.

Definition

A sequence is increasing if $a_{1}<a_{2}<\ldots<a_{n}$. It is non-decreasing if $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$. Similarly decreasing and non-increasing.

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: 6, 7, 8 and $3,5,7,8$ and 2,7 etc
(Longest increasing subsequence: $3,5,7,8$

Sequences

Example.

Example

(1) Sequence: $6,3,5,2,7,8,1,9$
(2) Subsequence of above sequence: $5,2,1$
(3) Increasing sequence: $\mathbf{3 , 5 , 9 , 1 7 , 5 4}$
(1) Decreasing sequence: $34,21,7,5,1$

- Increasing subsequence of the first sequence: $2,7,9$.

Recursive Approach: Take 1

: Longest increasing subsequence
Can we find a recursive algorithm for LIS?

$\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . n]):$

(1) Case 1: Does not contain $A[n]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . n])=\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . .(\boldsymbol{n}-\mathbf{1})])$
(2) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . \boldsymbol{n}])$ is not so clear.

Observation

For second case we want to find a subsequence in $\mathbf{A}[\mathbf{1 . .}(\boldsymbol{n}-\mathbf{1})]$ that is restricted to numbers less than $\boldsymbol{A}[n]$. This suggests that a more general problem is LIS_smaller $(A[1 . . n], x)$ which gives the longest increasing subsequence in \boldsymbol{A} where each number in the sequence is less than \boldsymbol{x}.

Recursive Approach

$\operatorname{LIS}(A[\mathbf{1} . . n])$: the length of longest increasing subsequence in \boldsymbol{A}
LIS_smaller($\boldsymbol{A}[\mathbf{1 . . n]}, x)$: length of longest increasing subsequence in $A[1 . . n]$ with all numbers in subsequence less than x

```
LIS_smaller(A[1..n],x):
    if (n=0) then return 0
    m= LIS_smaller(A[1..(n-1)],x)
    if (A[n]<x) then
        m=max(m,1 + LIS_smaller(A[1..(n-1)],A[n]))
    Output m
```

```
LIS (A[1..n]):
    return LIS_smaller (A[1..n], \infty)
```


Recursive Approach

```
LIS_smaller(A[1..n],x):
    if ( }n=0\mathrm{ ) then return 0
    m= LIS_smaller(A[1..(n-1)],x)
    if (A[n]<x) then
        m=max(m,1+ LIS_smaller(A[1..(n-1)],A[n]))
    Output m
```

```
LIS(A[1..n]):
    return LIS_smaller(A[1..n], \infty)
```

- How many distinct sub-problems will LIS_smaller(A[1..n], ∞) generate? $O\left(n^{2}\right)$
- What is the running time if we memoize recursion? $O\left(n^{2}\right)$ since each call takes $O(1)$ time to assemble the answers from to recursive calls and no other computation.
- How much space for memoization? $O\left(n^{2}\right)$

Example

Sequence: $A[1 . .7]=6,3,5,2,7,8,1$

Naming subproblems and recursive equation

After seeing that number of subproblems is $O\left(n^{2}\right)$ we name them to help us understand the structure better. For notational ease we add ∞ at end of array (in position $\boldsymbol{n}+\mathbf{1}$)

LIS $(\boldsymbol{i}, \boldsymbol{j})$: length of longest increasing sequence in $\boldsymbol{A}[\mathbf{1} . . \boldsymbol{i}]$ among numbers less than $A[j]$ (defined only for $\boldsymbol{i}<\boldsymbol{j}$)

Base case: $\operatorname{LIS}(\mathbf{0}, \boldsymbol{j})=\mathbf{0}$ for $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}+\mathbf{1}$

Recursive relation:

- $\operatorname{LIS}(i, j)=\operatorname{LIS}(i-\mathbf{1}, j)$ if $A[i]>A[j]$
- LIS $(i, j)=\max \{\operatorname{LIS}(i-\mathbf{1}, j), 1+\operatorname{LIS}(i-1, i)\}$ if $A[i] \leq A[j]$
Output: $\operatorname{LIS}(n, n+1)$

Iterative algorithm

```
LIS-Iterative \((A[1 . . n])\) :
    \(A[n+1]=\infty\)
    int LIS[0..n, 1..n + 1]
    for ( \(j=1\) to \(n+1\) ) do
        \(\operatorname{LIS}[0, j]=0\)
    for ( \(\boldsymbol{i}=\mathbf{1}\) to \(\boldsymbol{n}\) ) do
        for ( \(\boldsymbol{j}=\boldsymbol{i}+1\) to \(n\) )
            If \((A[i]>A[j]) \quad \operatorname{LIS}[i, j]=\operatorname{LIS}[i-1, j]\)
            Else \(\operatorname{LIS}[i, j]=\max \{\operatorname{LIS}[i-1, j], 1+\operatorname{LIS}[i-1, i]\}\)
    Return \(\operatorname{LIS}[\boldsymbol{n}, \boldsymbol{n}+1]\)
```

Running time: $O\left(n^{2}\right)$
Space: $O\left(n^{2}\right)$

How to order bottom up computation?

Sequence: $A[1 . .7]=6,3,5,2,7,8,1$

Dynamic Programming

(1) Find a "smart" recursion for the problem in which the number of distinct subproblems is small; polynomial in the original problem size.
(2) Estimate the number of subproblems, the time to evaluate each subproblem and the space needed to store the value. This gives an upper bound on the total running time if we use automatic memoization.
(3) Eliminate recursion and find an iterative algorithm to compute the problems bottom up by storing the intermediate values in an appropriate data structure; need to find the right way or order the subproblem evaluation. This leads to an explicit algorithm.
(0) Optimize the resulting algorithm further

