Algorithms \& Models of Computation

CS/ECE 374, Fall 2017

Backtracking and Memoization

Lecture 12
Tuesday, October 10, 2017

Recursion in Algorithm Design

(1) Tail Recursion: problem reduced to a single recursive call after some work. Easy to convert algorithm into iterative or greedy algorithms. Examples: Interval scheduling, MST algorithms, etc.
(2) Divide and Conquer: Problem reduced to multiple independent sub-problems that are solved separately. Conquer step puts together solution for bigger problem.
Examples: Closest pair, deterministic median selection, quick sort.
(3) Backtracking: Refinement of brute force search. Build solution incrementally by invoking recursion to try all possibilities for the decision in each step.
(1) Dynamic Programming: problem reduced to multiple (typically) dependent or overlapping sub-problems. Use memoization to avoid recomputation of common solutions leading to iterative bottom-up algorithm.

Maximum Independent Set in a Graph

Definition

Given undirected graph $G=(\boldsymbol{V}, E)$ a subset of nodes $S \subseteq V$ is an independent set (also called a stable set) if for there are no edges between nodes in S. That is, if $u, v \in S$ then $(u, v) \notin E$.

Some independent sets in graph above: $\{D\},\{A, C\},\{B, E, F\}$

Maximum Weight Independent Set Problem

Input Graph $G=(\boldsymbol{V}, E)$, weights $\boldsymbol{w}(\boldsymbol{v}) \geq \mathbf{0}$ for $\boldsymbol{v} \in \boldsymbol{V}$ Goal Find maximum weight independent set in G

Maximum Independent Set Problem

Input Graph $G=(V, E)$
Goal Find maximum sized independent set in G

Maximum Weight Independent Set Problem

(1) No one knows an efficient (polynomial time) algorithm for this problem
(2) Problem is NP-Complete and it is believed that there is no polynomial time algorithm

Brute-force algorithm:

Try all subsets of vertices.

Brute-force enumeration

Algorithm to find the size of the maximum weight independent set.

$$
\begin{aligned}
& \text { MaxIndSet }(G=(V, E)): \\
& \quad \max =\mathbf{0} \\
& \quad \text { for each subset } S \subseteq \boldsymbol{V} \text { do } \\
& \quad \text { check if } S \text { is an independent set } \\
& \quad \text { if } S \text { is an independent set and } \boldsymbol{w}(\boldsymbol{S})>\boldsymbol{\operatorname { m a x }} \text { then } \\
& \quad \max =\boldsymbol{w}(\boldsymbol{S}) \\
& \text { Output } \boldsymbol{\operatorname { m a x }}
\end{aligned}
$$

Running time: suppose \boldsymbol{G} has \boldsymbol{n} vertices and \boldsymbol{m} edges
(1) 2^{n} subsets of V
(2) checking each subset S takes $O(m)$ time
(3) total time is $O\left(m 2^{n}\right)$

A Recursive Algorithm

```
RecursiveMIS(G):
    if G}\mathrm{ is empty then Output 0
    a=RecursiveMIS(G-v
    b}=\boldsymbol{w}(\mp@subsup{v}{1}{})+RecursiveMIS(G-\mp@subsup{v}{1}{}-N(\mp@subsup{v}{n}{})
    Output max(a,b)
```


A Recursive Algorithm

Let $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$.
For a vertex \boldsymbol{u} let $N(\boldsymbol{u})$ be its neighbors.

Observation

$\boldsymbol{v}_{\mathbf{1}}$: vertex in the graph.
One of the following two cases is true
Case $1 \boldsymbol{v}_{\mathbf{1}}$ is in some maximum independent set.
Case $2 \boldsymbol{v}_{\mathbf{1}}$ is in no maximum independent set.
We can try both cases to "reduce" the size of the problem
$G_{1}=G-v_{1}$ obtained by removing v_{1} and incident edges from G $G_{2}=G-v_{1}-N\left(v_{1}\right)$ obtained by removing $N\left(v_{1}\right) \cup v_{1}$ from G

$$
\operatorname{MIS}(G)=\max \left\{\operatorname{MIS}\left(G_{1}\right), \operatorname{MIS}\left(G_{2}\right)+w\left(v_{1}\right)\right\}
$$

Example

Recursive Algorithms

.for Maximum Independent Set
Running time:

$$
T(n)=T(n-1)+T\left(n-1-\operatorname{deg}\left(v_{1}\right)\right)+O\left(1+\operatorname{deg}\left(v_{1}\right)\right)
$$

where $\operatorname{deg}\left(v_{1}\right)$ is the degree of $v_{1} . T(0)=T(1)=1$ is base case.
Worst case is when $\operatorname{deg}\left(v_{1}\right)=\mathbf{0}$ when the recurrence becomes

$$
T(n)=2 T(n-1)+O(1)
$$

Solution to this is $T(n)=O\left(2^{n}\right)$.

Sequences

Definition

Sequence: an ordered list $a_{1}, a_{2}, \ldots, a_{n}$. Length of a sequence is number of elements in the list.

Definition

$a_{i_{1}}, \ldots, a_{i_{k}}$ is a subsequence of a_{1}, \ldots, a_{n} if
$1 \leq i_{1}<i_{2}<\ldots<i_{k} \leq n$.

Definition

A sequence is increasing if $a_{1}<a_{2}<\ldots<a_{n}$. It is
non-decreasing if $a_{1} \leq a_{2} \leq \ldots \leq a_{n}$. Similarly decreasing and non-increasing.

Sequences

Example...

Example

(1) Sequence: 6, 3, 5, 2, 7, 8, 1, 9
(2) Subsequence of above sequence: $5,2,1$
(3) Increasing sequence: $\mathbf{3 , 5 , 9 , 1 7 , 5 4}$
(1) Decreasing sequence: $34,21,7,5,1$

Backtrack Search via Recursion

(1) Recursive algorithm generates a tree of computation where each node is a smaller problem (subproblem)
(2) Simple recursive algorithm computes/explores the whole tree blindly in some order.

- Backtrack search is a way to explore the tree intelligently to prune the search space
(1) Some subproblems may be so simple that we can stop the recursive algorithm and solve it directly by some other method
(2) Memoization to avoid recomputing same problem
(3) Stop the recursion at a subproblem if it is clear that there is no need to explore further.
(1) Leads to a number of heuristics that are widely used in practice although the worst case running time may still be exponential.
(3) Increasing subsequence of the first sequence: 2,7,9.

Longest Increasing Subsequence Problem

Input A sequence of numbers $a_{1}, a_{2}, \ldots, a_{n}$
Goal Find an increasing subsequence $a_{i_{1}}, a_{i_{2}}, \ldots, a_{i_{k}}$ of maximum length

Example

(1) Sequence: $6,3,5,2,7,8,1$
(2) Increasing subsequences: 6, 7, 8 and $3,5,7,8$ and 2,7 etc
(3) Longest increasing subsequence: $3,5,7,8$

Recursive Approach: Take 1

Longest increasing subsequence
Can we find a recursive algorithm for LIS?

$\operatorname{LIS}(\boldsymbol{A}[1 . . \boldsymbol{n}]):$

(1) Case 1: Does not contain $A[n]$ in which case
$\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . n])=\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . .(\boldsymbol{n}-\mathbf{1})])$
(3) Case 2: contains $\boldsymbol{A}[\boldsymbol{n}]$ in which case $\operatorname{LIS}(\boldsymbol{A}[\mathbf{1} . . n])$ is not so clear.

Observation

Recursive Approach

LIS_smaller($A[1 . . n], x)$: length of longest increasing subsequence in $A[\mathbf{1 . . n}]$ with all numbers in subsequence less than x

```
LIS_smaller(A[1..n],x):
    if ( }n=0)\mathrm{ then return 0
    m= LIS_smaller(A[1..(n-1)],x)
    if (A[n]<x) then
        m=max(m,1 + LIS_smaller(A[1..(n-1)],A[n]))
    Output m
```

```
LIS(A[1..n])
    return LIS_smaller(A[1..n], \infty)
```

For second case we want to find a subsequence in $A[1 . .(n-1)]$ that is restricted to numbers less than $\mathbf{A}[\mathrm{n}]$. This suggests that a more general problem is LIS_smaller $(A[1 . . n], x)$ which gives the longest increasing subsequence in \boldsymbol{A} where each number in the sequence is less than \boldsymbol{x}.

Example

Sequence: $A[\mathbf{1 . . 7}]=\mathbf{6 , 3 , 5 , 2 , 7 , 8 , 1}$

