Algorithms \& Models of Computation CS/ECE 374, Fall 2017

Kartsuba's Algorithm and Linear Time Selection

Lecture 11
Thursday, October 5, 2017

Multiplying Numbers
Problem Given two \boldsymbol{n}-digit numbers \boldsymbol{x} and \boldsymbol{y}, compute their product.

Grade School Multiplication

Compute "partial product" by multiplying each digit of \boldsymbol{y} with \boldsymbol{x} and adding the partial products.

3141
$\times 2718$
25128
3141
21987
6282
8537238

Part I

Fast Multiplication

Time Analysis of Grade School Multiplication
(1) Each partial product: $\boldsymbol{\Theta}(\boldsymbol{n})$
(2) Number of partial products: $\boldsymbol{\Theta}(\boldsymbol{n})$
(3) Addition of partial products: $\boldsymbol{\Theta}\left(\boldsymbol{n}^{2}\right)$

- Total time: $\boldsymbol{\Theta}\left(\boldsymbol{n}^{2}\right)$

A Trick of Gauss

Carl Friedrich Gauss: 1777-1855 "Prince of Mathematicians"

Observation: Multiply two complex numbers: $\mathbf{(a + b i})$ and $(\boldsymbol{c}+\boldsymbol{d i})$

$$
(a+b i)(c+d i)=a c-b d+(a d+b c) i
$$

How many multiplications do we need?
Only 3 ! If we do extra additions and subtractions.
Compute $\boldsymbol{a c}, \boldsymbol{b d},(\boldsymbol{a}+\boldsymbol{b})(\boldsymbol{c}+\boldsymbol{d})$. Then
$(a d+b c)=(a+b)(c+d)-a c-b d$

Divide and Conquer

Assume \boldsymbol{n} is a power of $\mathbf{2}$ for simplicity and numbers are in decimal.
Split each number into two numbers with equal number of digits
(1) $x=x_{n-1} x_{n-2} \ldots x_{0}$ and $y=y_{n-1} y_{n-2} \ldots y_{0}$
(2) $x=x_{n-1} \ldots x_{n / 2} 0 \ldots 0+x_{n / 2-1} \ldots x_{0}$
(3) $x=10^{n / 2} x_{L}+x_{R}$ where $x_{L}=x_{n-1} \ldots x_{n / 2}$ and
$x_{R}=x_{n / 2-1} \ldots x_{0}$
(4) Similarly $\boldsymbol{y}=10^{n / 2} y_{L}+y_{R}$ where $y_{L}=y_{n-1} \ldots y_{n / 2}$ and $y_{R}=y_{n / 2-1} \cdots y_{0}$

Example

$$
\begin{aligned}
1234 \times 5678= & (100 \times 12+34) \times(100 \times 56+78) \\
= & 10000 \times 12 \times 56 \\
& +100 \times(12 \times 78+34 \times 56) \\
& +34 \times 78
\end{aligned}
$$

Divide and Conquer

Assume \boldsymbol{n} is a power of $\mathbf{2}$ for simplicity and numbers are in decimal.
(1) $x=x_{n-1} x_{n-2} \ldots x_{0}$ and $y=y_{n-1} y_{n-2} \ldots y_{0}$
(2) $x=10^{n / 2} x_{L}+x_{R}$ where $x_{L}=x_{n-1} \ldots x_{n / 2}$ and $x_{R}=x_{n / 2-1} \ldots x_{0}$
(3) $y=10^{n / 2} y_{L}+y_{R}$ where $y_{L}=y_{n-1} \ldots y_{n / 2}$ and $y_{R}=y_{n / 2-1} \cdots y_{0}$
Therefore

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Time Analysis

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

4 recursive multiplications of number of size $\boldsymbol{n} / \mathbf{2}$ each plus 4 additions and left shifts (adding enough 0's to the right)

$$
T(n)=4 T(n / 2)+O(n) \quad T(1)=O(1)
$$

$\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{\Theta}\left(\boldsymbol{n}^{2}\right)$. No better than grade school multiplication!
Can we invoke Gauss's trick here?

State of the Art

Schönhage-Strassen 1971: $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n} \log \log \boldsymbol{n})$ time using Fast-Fourier-Transform (FFT)

Martin Fürer 2007: $\boldsymbol{O}\left(\boldsymbol{n} \log \boldsymbol{n} \mathbf{2}^{O\left(\log ^{*} n\right)}\right)$ time

Conjecture

There is an $\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$ time algorithm.

Improving the Running Time

$$
\begin{aligned}
x y & =\left(10^{n / 2} x_{L}+x_{R}\right)\left(10^{n / 2} y_{L}+y_{R}\right) \\
& =10^{n} x_{L} y_{L}+10^{n / 2}\left(x_{L} y_{R}+x_{R} y_{L}\right)+x_{R} y_{R}
\end{aligned}
$$

Gauss trick: $x_{L} y_{R}+x_{R} y_{L}=\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)-x_{L} y_{L}-x_{R} y_{R}$
Recursively compute only $x_{L} y_{L}, x_{R} y_{R},\left(x_{L}+x_{R}\right)\left(y_{L}+y_{R}\right)$.

Time Analysis

Running time is given by

$$
T(n)=3 T(n / 2)+O(n) \quad T(1)=O(1)
$$

which means $\boldsymbol{T}(\boldsymbol{n})=O\left(\boldsymbol{n}^{\log _{2} 3}\right)=\boldsymbol{O}\left(\boldsymbol{n}^{1.585}\right)$

Analyzing the Recurrences

(1) Basic divide and conquer: $T(n)=4 T(n / 2)+O(n)$, $T(1)=1$. Claim: $T(n)=\Theta\left(n^{2}\right)$.
(2) Saving a multiplication: $T(n)=3 T(n / 2)+O(n)$, $T(1)=1$. Claim: $\boldsymbol{T}(n)=\Theta\left(n^{1+\log 1.5}\right)$

Use recursion tree method:
(1) In both cases, depth of recursion $L=\log \boldsymbol{n}$.
(2) Work at depth is $\mathbf{4}^{\boldsymbol{i}} \boldsymbol{n} / \mathbf{2}^{\boldsymbol{i}}$ and $\mathbf{3}^{\boldsymbol{i}} \boldsymbol{n} / \mathbf{2}^{\boldsymbol{i}}$ respectively: number of children at depth \boldsymbol{i} times the work at each child
(3) Total work is therefore $n \sum_{i=0}^{L} 2^{i}$ and $n \sum_{i=0}^{L}(3 / 2)^{i}$ respectively.

Recursion tree analysis

Rank of element in an array

A: an unsorted array of \boldsymbol{n} integers

Definition

For $\mathbf{1} \leq \boldsymbol{j} \leq \boldsymbol{n}$, element of rank \boldsymbol{j} is the \boldsymbol{j} 'th smallest element in \boldsymbol{A}.

Unsorted array \square
Ranks

Sort of array

Algorithm I

(3) Sort the elements in \boldsymbol{A}
(2) Pick jth element in sorted order

Time taken $=\boldsymbol{O}(\boldsymbol{n} \log \boldsymbol{n})$
Do we need to sort? Is there an $\boldsymbol{O}(\boldsymbol{n})$ time algorithm?

Divide and Conquer Approach
(1) Pick a pivot element \boldsymbol{a} from \boldsymbol{A}

Algorithm II

If \boldsymbol{j} is small or $\boldsymbol{n}-\boldsymbol{j}$ is small then
(1) Find \boldsymbol{j} smallest/largest elements in \boldsymbol{A} in $\boldsymbol{O}(\boldsymbol{j} \boldsymbol{n})$ time. (How?)
(2) Time to find median is $\boldsymbol{O}\left(\boldsymbol{n}^{2}\right)$

Example

16	14	34	20	12	5	3	19	11

(2) Partition \boldsymbol{A} based on \boldsymbol{a}.
$\boldsymbol{A}_{\text {less }}=\{x \in \boldsymbol{A} \mid x \leq a\}$ and $\boldsymbol{A}_{\text {greater }}=\{x \in \boldsymbol{A} \mid x>a\}$
(3) $\left|\boldsymbol{A}_{\text {less }}\right|=\boldsymbol{j}$: return \boldsymbol{a}
(1) $\left|\boldsymbol{A}_{\text {less }}\right|>\boldsymbol{j}$: recursively find \boldsymbol{j} th smallest element in $\boldsymbol{A}_{\text {less }}$
(0) $\left|\boldsymbol{A}_{\text {less }}\right|<\boldsymbol{j}$: recursively find \boldsymbol{k} th smallest element in $\boldsymbol{A}_{\text {greater }}$ where $\boldsymbol{k}=\boldsymbol{j}-\left|\boldsymbol{A}_{\text {less }}\right|$.

Time Analysis

(1) Partitioning step: $\boldsymbol{O}(\boldsymbol{n})$ time to scan \boldsymbol{A}
(2) How do we choose pivot? Recursive running time?

Suppose we always choose pivot to be $\boldsymbol{A}[1]$
Say \boldsymbol{A} is sorted in increasing order and $\boldsymbol{j}=\boldsymbol{n}$.
Exercise: show that algorithm takes $\boldsymbol{\Omega}\left(\boldsymbol{n}^{2}\right)$ time

Divide and Conquer Approach

A game of medians

Idea

(1) Break input \boldsymbol{A} into many subarrays: $\boldsymbol{L}_{1}, \ldots \boldsymbol{L}_{\boldsymbol{k}}$.
(2) Find median $\boldsymbol{m}_{\boldsymbol{i}}$ in each subarray $\boldsymbol{L}_{\boldsymbol{i}}$.
(3) Find the median \boldsymbol{x} of the medians $\boldsymbol{m}_{1}, \ldots, \boldsymbol{m}_{k}$.
(-) Intuition: The median \boldsymbol{x} should be close to being a good median of all the numbers in \boldsymbol{A}.
(Use \boldsymbol{x} as pivot in previous algorithm.

A Better Pivot

Suppose pivot is the $\boldsymbol{\ell}$ th smallest element where $\boldsymbol{n} / \mathbf{4} \leq \ell \leq \mathbf{3 n} / \mathbf{4}$.
That is pivot is approximately in the middle of \boldsymbol{A}
Then $\boldsymbol{n} / \mathbf{4} \leq\left|\boldsymbol{A}_{\text {less }}\right| \leq \mathbf{3 n} / \mathbf{4}$ and $\boldsymbol{n} / \mathbf{4} \leq\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{3 n} / \mathbf{4}$. If we apply recursion,

$$
T(n) \leq T(3 n / 4)+O(n)
$$

Implies $\boldsymbol{T}(\boldsymbol{n})=\boldsymbol{O}(\boldsymbol{n})$!
How do we find such a pivot? Randomly? In fact works! Analysis a little bit later.

Can we choose pivot deterministically?

New example

The input:

75	31	13	26	83	110	60	120	63	30	3	41	44	107	30	23	91	17	6	110																					
68	24	4	26	58	57	61	20	52	45	13	79	26	91	55		13	10	6			68	24	41	26	58	57	61	20	52	45	13	79	86	91	55	66	13	103	36	60
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:																
19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9		19	40	45	111	56	74	17	95	96	77	29	65	36	96	93	119	9	61	3	9
:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:	:---:																
100	3	88	47	115	107	79	39	109	20	59	25	92	81	36	10	30	113	73	116																					

| 100 | 3 | 88 | 47 | 115 | 107 | 79 | 39 | 109 | 20 | 59 | 25 | 92 | 81 | 36 | 10 | 30 | 113 | 73 | 116 |
| :---: |
| 72 | 58 | 24 | 16 | 12 | 69 | 40 | 24 | 19 | 92 | 7 | 65 | 75 | 41 | 43 | 117 | 103 | 38 | 8 | 20 |

Compute median of the medians (recursive call):

72	74	13	66
31	60	65	30

31	60	65	30
41	30	75	61

41	39	75	61
26	63	91	8

26	63	91	8
58	45	43	60

After partition (pivot 60):

19	3	13	16	12	57	17	20	19	20	3	25	92	109	96	79	110	69	83	75
41	24	24	26	56	17	40	24	52	30	7	60	77	81	63	61	107	115	111	72

| 41 | 24 | 24 | 26 | 56 | 17 | 40 | 24 | 52 | 30 | 7 | 60 | 77 | 81 | 63 | 61 | 107 | 115 | 111 | 72 |
| :--- |
| 20 | 31 | 41 | 26 | 58 | 30 | 60 | 39 | 36 | 45 | 13 | 65 | 75 | 91 | 120 | 66 | 74 | 61 | 88 | 68 |
| 9 | 40 | 45 | 47 | 3 | 13 | 23 | 55 | 3 | 44 | 29 | 85 | 86 | 96 | 95 | 117 | 91 | 10 | 10 | 110 |

| 20 | 31 | 41 | 26 | 58 | 30 | 60 | 39 | 36 | 45 | 13 | 65 | 75 | 91 | 120 | 66 | 74 | 61 | 88 | 68 |
| :---: |
| 9 | 40 | 45 | 47 | 3 | 13 | 23 | 55 | 30 | 44 | 29 | 65 | 86 | 96 | 95 | 117 | 91 | 103 | 100 | 10 |
| 36 | 58 | 8 | 6 | 38 | 9 | 10 | 43 | 41 | 36 | 59 | 79 | 92 | 107 | 93 | 119 | 103 | 113 | 73 | 116 |

Tail recursive call: Select element of rank $\mathbf{5 0}$ out of $\mathbf{5 6}$ elements.

19	3	13	16	12	57	17	20	19	20	3	25
41	24	24	26	56	17	40	24	52	30	7	

41	24	24	26	56	17	40	24	52	30	7
2	4		2		30					

9	40	45	47	3	13	23	55	30	44	29	
36	58	8	6	38	9	10	43	41	36	59	

Example

11	7	3	42	174	310	1	92	87	12	19	15

Algorithm for Selection

A storm of medians
select $(\boldsymbol{A}, \boldsymbol{j})$:
Form lists $\boldsymbol{L}_{1}, \boldsymbol{L}_{2}, \ldots, \boldsymbol{L}_{\lceil n / 5]}$ where $\boldsymbol{L}_{\boldsymbol{i}}=\{\boldsymbol{A}[5 \boldsymbol{i}-4], \ldots, \boldsymbol{A}[5 i]\}$
Find median $\boldsymbol{b}_{\boldsymbol{i}}$ of each $\boldsymbol{L}_{\boldsymbol{i}}$ using brute-force
Find median \boldsymbol{b} of $\boldsymbol{B}=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{\lceil n / 5\rceil}\right\}$
Partition \boldsymbol{A} into $\boldsymbol{A}_{\text {less }}$ and $\boldsymbol{A}_{\text {greater }}$ using \boldsymbol{b} as pivot
if $\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)=\boldsymbol{j}$ return \boldsymbol{b}
else if $\left.\left(\left|A_{\text {less }}\right|\right)>\boldsymbol{j}\right)$
return $\operatorname{select}\left(\boldsymbol{A}_{\text {less }}, \boldsymbol{j}\right)$
else
return select ($\left.\boldsymbol{A}_{\text {greater }}, \boldsymbol{j}-\left|\boldsymbol{A}_{\text {less }}\right|\right)$

How do we find median of \boldsymbol{B} ? Recursively!

Choosing the pivot

A clash of medians
(1) Partition array \boldsymbol{A} into $\lceil\mathbf{n} / \mathbf{5}\rceil$ lists of $\mathbf{5}$ items each.
$L_{1}=\{A[1], A[2], \ldots, A[5]\}, L_{2}=\{A[6], \ldots, A[10]\}, \ldots$,
$L_{i}=\{A[5 i+1], \ldots, A[5 i-4]\}, \ldots$,
$L_{\lceil n / 5\rceil}=\{A[5\lceil n / 5\rceil-4, \ldots, A[n]\}$.
(2) For each \boldsymbol{i} find median $\boldsymbol{b}_{\boldsymbol{i}}$ of $\boldsymbol{L}_{\boldsymbol{i}}$ using brute-force in $\boldsymbol{O}(\mathbf{1})$ time. Total $\boldsymbol{O}(\boldsymbol{n})$ time
(3) Let $B=\left\{\boldsymbol{b}_{1}, \boldsymbol{b}_{2}, \ldots, \boldsymbol{b}_{\lceil n / 5\rceil}\right\}$
(-) Find median \boldsymbol{b} of \boldsymbol{B}

Lemma

Median of \boldsymbol{B} is an approximate median of \boldsymbol{A}. That is, if \boldsymbol{b} is used a pivot to partition A, then $\left|\boldsymbol{A}_{\text {less }}\right| \leq \mathbf{7 n} / \mathbf{1 0}+\mathbf{6}$ and
$\left|\boldsymbol{A}_{\text {greater }}\right| \leq \mathbf{7 n} / \mathbf{1 0}+\mathbf{6}$.

Algorithm for Selection

A storm of medians
select $(\boldsymbol{A}, \boldsymbol{j})$:
Form lists $\boldsymbol{L}_{1}, \boldsymbol{L}_{2}, \ldots, \boldsymbol{L}_{\lceil n / 5\rceil}$ where $\boldsymbol{L}_{\boldsymbol{i}}=\{\boldsymbol{A}[5 \boldsymbol{i}-4], \ldots, \boldsymbol{A}[5 i]\}$
Find median $\boldsymbol{b}_{\boldsymbol{i}}$ of each $\boldsymbol{L}_{\boldsymbol{i}}$ using brute-force
$B=\left[b_{1}, b_{2}, \ldots, b_{[n / 5\rceil}\right]$
$b=\operatorname{select}(B,\lceil\boldsymbol{n} / \mathbf{1 0 \rceil})$
Partition \boldsymbol{A} into $\boldsymbol{A}_{\text {less }}$ and $\boldsymbol{A}_{\text {greater }}$ using \boldsymbol{b} as pivot
if $\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)=\boldsymbol{j}$ return \boldsymbol{b}
else if $\left.\left(\left|\boldsymbol{A}_{\text {less }}\right|\right)>\boldsymbol{j}\right)$
return $\operatorname{select}\left(\boldsymbol{A}_{\text {less }}, \boldsymbol{j}\right)$
else
return select ($\left.\boldsymbol{A}_{\text {greater }}, \boldsymbol{j}-\left|\boldsymbol{A}_{\text {less }}\right|\right)$

Running time of deterministic median selection

A dance with recurrences

$$
T(n) \leq T(\lceil n / 5\rceil)+\max \left\{T\left(\left|A_{\text {less }}\right|\right), T\left(\mid A_{\text {greater }}\right) \mid\right\}+O(n)
$$

From Lemma,

$$
T(n) \leq T(\lceil n / 5\rceil)+T(\lfloor 7 n / 10+6\rfloor)+O(n)
$$

and

$$
T(n)=O(1) \quad n<10
$$

Exercise: show that $\boldsymbol{T}(\boldsymbol{n})=\mathbf{O}(\boldsymbol{n})$

Median of Medians: Proof of Lemma

Proposition

There are at least 3n/10-6 elements smaller than the median of medians \boldsymbol{b}.

Recursion tree fill in

$(1 / 5) n,(7 / 10) n$
$(1 / 25) n,(7 / 50) n,(7 / 50) n,(49 / 100) n$
(1/125)n, (7/250)n, (7/250)n, (49/500)n, (7/250)n,
$(49 / 500) n,(49 / 500) n,(343 / 1000) n$

Median of Medians: Proof of Lemma

Proposition

There are at least $\mathbf{3 n} / \mathbf{1 0} \mathbf{- 6}$ elements smaller than the median of medians \boldsymbol{b}.

Proof.

At least half of the $\lfloor\boldsymbol{n} / \mathbf{5}\rfloor$ groups have at least 3 elements smaller than \boldsymbol{b}, except for the group containing \boldsymbol{b} which has 2 elements smaller than \boldsymbol{b}. Hence number of elements smaller than \boldsymbol{b} is:

$$
3\left\lfloor\frac{\lfloor n / 5\rfloor+1}{2}\right\rfloor-1 \geq 3 n / 10-6
$$

Median of Medians: Proof of Lemma

Proposition

There are at least $\mathbf{3 n} / \mathbf{1 0} \mathbf{- 6}$ elements smaller than the median of medians \boldsymbol{b}.

Corollary

$\left|A_{\text {greater }}\right| \leq \mathbf{7 n} / \mathbf{1 0}+\mathbf{6}$.
Via symmetric argument,

Corollary

$\left|A_{\text {less }}\right| \leq 7 n / 10+6$.

Questions to ponder

(1) Why did we choose lists of size 5 ? Will lists of size 3 work?
(2) Write a recurrence to analyze the algorithm's running time if we choose a list of size \boldsymbol{k}.

Summary: Selection in linear time

Theorem

The algorithm select $(\mathbf{A}[\mathbf{1} \ldots \boldsymbol{n}], \boldsymbol{k})$ computes in $\mathbf{O}(\boldsymbol{n})$ deterministic time the \boldsymbol{k} th smallest element in \boldsymbol{A}

On the other hand, we have:

Lemma

The algorithm QuickSelect $(\mathbf{A}[\mathbf{1} \ldots \boldsymbol{n}], \boldsymbol{k})$ computes the \boldsymbol{k} th smallest element in \boldsymbol{A}. The running time of QuickSelect is $\boldsymbol{\Theta}\left(\boldsymbol{n}^{2}\right)$ in the worst case.

Median of Medians Algorithm

Due to:
M. Blum, R. Floyd, D. Knuth, V. Pratt, R. Rivest, and R. Tarjan.
"Time bounds for selection".
Journal of Computer System Sciences (JCSS), 1973.

How many Turing Award winners in the author list? All except Vaughn Pratt!

Takeaway Points

(1) Recursion tree method and guess and verify are the most reliable methods to analyze recursions in algorithms.
(2) Recursive algorithms naturally lead to recurrences.

- Some times one can look for certain type of recursive algorithms (reverse engineering) by understanding recurrences and their behavior.

