
Algorithms & Models of Computation
CS/ECE 374, Fall 2017

Reductions, Recursion and
Divide and Conquer
Lecture 10
Tuesday, October 3, 2017

Sariel Har-Peled (UIUC) CS374 1 Fall 2017 1 / 60

Part I

Brief Intro to Algorithm Design and
Analysis

Sariel Har-Peled (UIUC) CS374 2 Fall 2017 2 / 60

Algorithms and Computing
1 Algorithm solves a specific problem.
2 Steps/instructions of an algorithm are simple/primitive and can

be executed mechanically.
3 Algorithm has a finite description; same description for all

instances of the problem
4 Algorithm implicitly may have state/memory

A computer is a device that
1 implements the primitive instructions
2 allows for an automated implementation of the entire algorithm

by keeping track of state

Sariel Har-Peled (UIUC) CS374 3 Fall 2017 3 / 60

Models of Computation vs Computers
1 Model of Computation: an idealized mathematical construct

that describes the primitive instructions and other details
2 Computer: an actual physical device that implements a very

specific model of computation
In this course: design algorithms in a high-level model of
computation.

Question: What model of computation will we use to design
algorithms?

The standard programming model that you are used to in
programming languages such as Java/C++. We have already seen
the Turing Machine model.

Sariel Har-Peled (UIUC) CS374 4 Fall 2017 4 / 60

Unit-Cost RAM Model
Informal description:

1 Basic data type is an integer number
2 Numbers in input fit in a word
3 Arithmetic/comparison operations on words take constant time
4 Arrays allow random access (constant time to access A[i])
5 Pointer based data structures via storing addresses in a word

Sariel Har-Peled (UIUC) CS374 5 Fall 2017 5 / 60

Example
Sorting: input is an array of n numbers

1 input size is n (ignore the bits in each number),
2 comparing two numbers takes O(1) time,
3 random access to array elements,
4 addition of indices takes constant time,
5 basic arithmetic operations take constant time,
6 reading/writing one word from/to memory takes constant time.

We will usually not allow (or be careful about allowing):
1 bitwise operations (and, or, xor, shift, etc).
2 floor function.
3 limit word size (usually assume unbounded word size).

Sariel Har-Peled (UIUC) CS374 6 Fall 2017 6 / 60

Caveats of RAM Model
Unit-Cost RAM model is applicable in wide variety of settings in
practice. However it is not a proper model in several important
situations so one has to be careful.

1 For some problems such as basic arithmetic computation,
unit-cost model makes no sense. Examples: multiplication of
two n-digit numbers, primality etc.

2 Input data is very large and does not satisfy the assumptions
that individual numbers fit into a word or that total memory is
bounded by 2k where k is word length.

3 Assumptions valid only for certain type of algorithms that do
not create large numbers from initial data. For example,
exponentiation creates very big numbers from initial numbers.

Sariel Har-Peled (UIUC) CS374 7 Fall 2017 7 / 60

Models used in class
In this course when we design algorithms:

1 Assume unit-cost RAM by default.
2 We will explicitly point out where unit-cost RAM is not

applicable for the problem at hand.
3 Turing Machines (or some high-level version of it) will be the

non-cheating model that we will fall back upon when tricky
issues come up.

Sariel Har-Peled (UIUC) CS374 8 Fall 2017 8 / 60

What is an algorithmic problem?
Simplest and robust definition: An algorithmic problem is simply
to compute a function f : Σ∗ → Σ∗ over strings of a finite alphabet.

Algorithm A solves f if for all input strings w , A outputs f (w).

Typically we are interested in functions f : D → R where D ⊆ Σ∗

is the domain of f and where R ⊆ Σ∗ is the range of f .

We say that w ∈ D is an instance of the problem. Implicit
assumption is that the algorithm, given an arbitrary string w , can tell
whether w ∈ D or not. Parsing problem! The size of the input w
is simply the length |w|.

The domain D depends on what representation is used. Can be
lead to formally different algorithmic problems.

Sariel Har-Peled (UIUC) CS374 9 Fall 2017 9 / 60

Types of Problems
We will broadly see three types of problems.

1 Decision Problem: Is the input a YES or NO input?
Example: Given graph G, nodes s, t, is there a path from s to t
in G?
Example: Given a CFG grammar G and string w , is w ∈ L(G)?

2 Search Problem: Find a solution if input is a YES input.
Example: Given graph G, nodes s, t, find an s-t path.

3 Optimization Problem: Find a best solution among all solutions
for the input.
Example: Given graph G, nodes s, t, find a shortest s-t path.

Sariel Har-Peled (UIUC) CS374 10 Fall 2017 10 / 60

Analysis of Algorithms
Given a problem P and an algorithm A for P we want to know:

Does A correctly solve problem P?
What is the asymptotic worst-case running time of A?
What is the asymptotic worst-case space used by A.

Asymptotic running-time analysis: A runs in O(f (n)) time if:

“for all n and for all inputs I of size n, A on input I terminates after
O(f (n)) primitive steps.”

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 11 / 60

Algorithmic Techniques
Reduction to known problem/algorithm
Recursion, divide-and-conquer, dynamic programming
Graph algorithms to use as basic reductions
Greedy

Some advanced techniques not covered in this class:
Combinatorial optimization
Linear and Convex Programming, more generally continuous
optimization method
Advanced data structure
Randomization
Many specialized areas

Sariel Har-Peled (UIUC) CS374 12 Fall 2017 12 / 60

Part II

What is a good algorithm?

Sariel Har-Peled (UIUC) CS374 13 Fall 2017 13 / 60

What is a good algorithm?
Running time...

Sariel Har-Peled (UIUC) CS374 14 Fall 2017 14 / 60

What is a good algorithm?
Running time...

Input size n2 ops n3 ops n4 ops n! ops
5 0 secs 0 secs 0 secs 0 secs

20 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 3 · 109 years

100 0 secs 0 secs 0 secs never
8000 0 secs 0 secs 1 secs never

16000 0 secs 0 secs 26 secs never
32000 0 secs 0 secs 6 mins never
64000 0 secs 0 secs 111 mins never

200,000 0 secs 3 secs 7 days never
2,000,000 0 secs 53 mins 202.943 years never

108 4 secs 12.6839 years 109 years never
109 6 mins 12683.9 years 1013 years never

Sariel Har-Peled (UIUC) CS374 15 Fall 2017 15 / 60

Part III

Reductions and Recursion

Sariel Har-Peled (UIUC) CS374 16 Fall 2017 16 / 60

Reduction
Reducing problem A to problem B:

1 Algorithm for A uses algorithm for B as a black box

Q: How do you hunt a blue elephant?
A: With a blue elephant gun.

Q: How do you hunt a red elephant?
A: Hold his trunk shut until he turns blue, and then shoot him with
the blue elephant gun.

Q: How do you shoot a white elephant?
A: Embarrass it till it becomes red. Now use your algorithm for
hunting red elephants.

Sariel Har-Peled (UIUC) CS374 17 Fall 2017 17 / 60

UNIQUENESS: Distinct Elements Problem
Problem Given an array A of n integers, are there any duplicates

in A?

Naive algorithm:
DistinctElements(A[1..n])

for i = 1 to n − 1 do
for j = i + 1 to n do

if (A[i] = A[j])
return YES

return NO

Running time: O(n2)

Sariel Har-Peled (UIUC) CS374 18 Fall 2017 18 / 60

Reduction to Sorting
DistinctElements(A[1..n])

Sort A
for i = 1 to n − 1 do

if (A[i] = A[i + 1]) then
return YES

return NO

Running time: O(n) plus time to sort an array of n numbers

Important point: algorithm uses sorting as a black box

Advantage of naive algorithm: works for objects that cannot be
“sorted”. Can also consider hashing but outside scope of current
course.

Sariel Har-Peled (UIUC) CS374 19 Fall 2017 19 / 60

Two sides of Reductions
Suppose problem A reduces to problem B

1 Positive direction: Algorithm for B implies an algorithm for A
2 Negative direction: Suppose there is no “efficient” algorithm for

A then it implies no efficient algorithm for B (technical
condition for reduction time necessary for this)

Example: Distinct Elements reduces to Sorting in O(n) time
1 An O(n log n) time algorithm for Sorting implies an

O(n log n) time algorithm for Distinct Elements problem.
2 If there is no o(n log n) time algorithm for Distinct Elements

problem then there is no o(n log n) time algorithm for Sorting.

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20 / 60

Maximum Independent Set in a Graph
Definition
Given undirected graph G = (V ,E) a subset of nodes S ⊆ V is an
independent set (also called a stable set) if for there are no edges
between nodes in S. That is, if u, v ∈ S then (u, v) 6∈ E .

A

B

C

DE

F

Some independent sets in graph above:

Sariel Har-Peled (UIUC) CS374 21 Fall 2017 21 / 60

Maximum Independent Set Problem
Input Graph G = (V ,E)

Goal Find maximum sized independent set in G

A

B

C

DE

F

Sariel Har-Peled (UIUC) CS374 22 Fall 2017 22 / 60

Maximum Weight Independent Set Problem
Input Graph G = (V ,E), weights w(v) ≥ 0 for v ∈ V
Goal Find maximum weight independent set in G

A

B

C

DE

F

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 / 60

Weighted Interval Scheduling
Input A set of jobs with start times, finish times and weights

(or profits).
Goal Schedule jobs so that total weight of jobs is maximized.

1 Two jobs with overlapping intervals cannot both be
scheduled!

2 1 2 3
1 4 10

10 1 1

2 1 2 3
1 4 10

10 1 1

Sariel Har-Peled (UIUC) CS374 24 Fall 2017 24 / 60

Reduction from Interval Scheduling to MIS
Question: Can you reduce Weighted Interval Scheduling to Max
Weight Independent Set Problem?

Sariel Har-Peled (UIUC) CS374 25 Fall 2017 25 / 60

Weighted Circular Arc Scheduling
Input A set of arcs on a circle, each arc has a weight (or

profit).
Goal Find a maximum weight subset of arcs that do not

overlap.

Sariel Har-Peled (UIUC) CS374 26 Fall 2017 26 / 60

Reductions
Question: Can you reduce Weighted Interval Scheduling to
Weighted Circular Arc Scheduling?

Question: Can you reduce Weighted Circular Arc Scheduling to
Weighted Interval Scheduling? Yes!

MaxWeightIndependentArcs(arcs C)
cur-max = 0
for each arc C ∈ C do

Remove C and all arcs overlapping with C
wC = wt of opt. solution in resulting Interval problem
wC = wC + wt(C)
cur-max = max{cur-max,wC}

end for
return cur-max

n calls to the sub-routine for interval scheduling

Sariel Har-Peled (UIUC) CS374 27 Fall 2017 27 / 60

Illustration

C

Sariel Har-Peled (UIUC) CS374 28 Fall 2017 28 / 60

Recursion
Reduction: reduce one problem to another

Recursion: a special case of reduction
1 reduce problem to a smaller instance of itself
2 self-reduction

1 Problem instance of size n is reduced to one or more instances
of size n − 1 or less.

2 For termination, problem instances of small size are solved by
some other method as base cases

Sariel Har-Peled (UIUC) CS374 29 Fall 2017 29 / 60

Recursion
1 Recursion is a very powerful and fundamental technique
2 Basis for several other methods

1 Divide and conquer
2 Dynamic programming
3 Enumeration and branch and bound etc
4 Some classes of greedy algorithms

3 Makes proof of correctness easy (via induction)
4 Recurrences arise in analysis

Sariel Har-Peled (UIUC) CS374 30 Fall 2017 30 / 60

Tower of Hanoi

Algorithms Lecture 1: Recursion

subproblems. Eventually, the recursive reductions must stop with an elementary base case that
is solved by some other method; otherwise, the algorithm will never terminate. This finiteness
condition is usually easy to satisfy, but we should always be wary of ‘obvious’ recursive algorithms
that actually recurse forever.

1.1 Tower of Hanoi

The Tower of Hanoi puzzle was first published by the French mathematician François Éduoard Ana-
tole Lucas in 1883, under the pseudonym ‘N. Claus (de Siam)’ (an anagram of ‘Lucas d’Amiens’).
The following year, the French scientist Henri de Parville described the puzzle with the following
remarkable story:3

In the great temple at Benares beneath the dome which marks the centre of the world, rests a
brass plate in which are fixed three diamond needles, each a cubit high and as thick as the body
of a bee. On one of these needles, at the creation, God placed sixty-four discs of pure gold, the
largest disc resting on the brass plate, and the others getting smaller and smaller up to the top
one. This is the Tower of Bramah. Day and night unceasingly the priests transfer the discs from
one diamond needle to another according to the fixed and immutable laws of Bramah, which
require that the priest on duty must not move more than one disc at a time and that he must
place this disc on a needle so that there is no smaller disc below it. When the sixty-four discs
shall have been thus transferred from the needle on which at the creation God placed them to
one of the other needles, tower, temple, and Brahmins alike will crumble into dust, and with a
thunderclap the world will vanish.

Of course, being good computer scientists, we read this story and immediately substitute n for the
hardwired constant sixty-four.4 How can we move a tower of n disks from one needle to another,
using a third needles as an occasional placeholder, never placing any disk on top of a smaller disk?

The Tower of Hanoi puzzle

The trick to solving this puzzle is to think recursively. Instead of trying to solve the entire puzzle
all at once, let’s concentrate on moving just the largest disk. We can’t move it at the beginning,
because all the other disks are covering it; we have to move those n − 1 disks to the third needle
before we can move the nth disk. And then after we move the nth disk, we have to move those
n− 1 disks back on top of it. So now all we have to figure out is how to. . .

3This English translation is from W. W. Rouse Ball and H. S. M. Coxeter’s book Mathematical Recreations and Essays.
4Recognizing that the underlying mathematical abstraction would be unchanged, we may also freely use ‘cookies’ and

‘dowels’ instead of ‘discs’ and ‘needles’. Ha ha. . . underlying!

2

Move stack of n disks from peg 0 to peg 2, one disk at a time.
Rule: cannot put a larger disk on a smaller disk.
Question: what is a strategy and how many moves does it take?

Sariel Har-Peled (UIUC) CS374 31 Fall 2017 31 / 60

Tower of Hanoi via Recursion
Algorithms Lecture 1: Recursion

STOP!! That’s it! We’re done! We’ve successfully reduced the n-disk Tower of Hanoi problem to
two instances of the (n − 1)-disk Tower of Hanoi problem, which we can gleefully hand off to the
Recursion Fairy (or, to carry the original story further, to the junior monks at the temple).

recursion

recursion

The Tower of Hanoi algorithm; ignore everything but the bottom disk

Our algorithm does make one subtle but important assumption: there is a largest disk. In other
words, our recursive algorithm works for any n ≥ 1, but it breaks down when n = 0. We must
handle that base case directly. Fortunately, the monks at Benares, being good Buddhists, are quite
adept at moving zero disks from one needle to another.

The base case for the Tower of Hanoi algorithm; there is no bottom disk

While it’s tempting to think about how all those smaller disks get moved—in other words,
what happens when the recursion is unfolded—it’s not necessary. In fact, for more complicated
problems, opening up the recursion is a distraction. Our only task is to reduce the problem to one
or more simpler instances, or to solve the problem directly if such a reduction is impossible. Our
algorithm is trivially correct when n = 0. For any n ≥ 1, the Recursion Fairy correctly moves (or
more formally, the inductive hypothesis implies that our algorithm correctly moves) the top n − 1
disks, so our algorithm is clearly correct.

Here’s the recursive Hanoi algorithm in more typical pseudocode.

HANOI(n, src, dst, tmp):
if n > 0

HANOI(n, src, tmp, dst)
move disk n from src to dst
HANOI(n, tmp, dst, src)

Let T (n) denote the number of moves required to transfer n disks—the running time of our
algorithm. Our vacuous base case implies that T (0) = 0, and the more general recursive algorithm
implies that T (n) = 2T (n − 1) + 1 for any n ≥ 1. The annihilator method lets us quickly derive a
closed form solution T (n) = 2n − 1 . In particular, moving a tower of 64 disks requires 264 − 1 =
18,446,744,073,709,551,615 individual moves. Thus, even at the impressive rate of one move per
second, the monks at Benares will be at work for approximately 585 billion years before, with a
thunderclap, the world will vanish.

The Hanoi algorithm has two very simple non-recursive formulations, for those of us who do
not have an army of assistants to take care of smaller piles. Let’s label the needles 0, 1, and 2,

3

Sariel Har-Peled (UIUC) CS374 32 Fall 2017 32 / 60

Recursive Algorithm
Hanoi(n, src, dest, tmp):

if (n > 0) then
Hanoi(n − 1, src, tmp, dest)
Move disk n from src to dest
Hanoi(n − 1, tmp, dest, src)

T(n): time to move n disks via recursive strategy

T(n) = 2T(n − 1) + 1 n > 1 and T(1) = 1

Sariel Har-Peled (UIUC) CS374 33 Fall 2017 33 / 60

Analysis

T(n) = 2T(n − 1) + 1
= 22T(n − 2) + 2 + 1
= . . .

= 2iT(n − i) + 2i−1 + 2i−2 + . . . + 1
= . . .

= 2n−1T(1) + 2n−2 + . . . + 1
= 2n−1 + 2n−2 + . . . + 1
= (2n − 1)/(2 − 1) = 2n − 1

Sariel Har-Peled (UIUC) CS374 34 Fall 2017 34 / 60

Part IV

Divide and Conquer

Sariel Har-Peled (UIUC) CS374 35 Fall 2017 35 / 60

Divide and Conquer Paradigm
Divide and Conquer is a common and useful type of recursion

Approach
1 Break problem instance into smaller instances - divide step
2 Recursively solve problem on smaller instances
3 Combine solutions to smaller instances to obtain a solution to

the original instance - conquer step

Question: Why is this not plain recursion?
1 In divide and conquer, each smaller instance is typically at least

a constant factor smaller than the original instance which leads
to efficient running times.

2 There are many examples of this particular type of recursion
that it deserves its own treatment.

Sariel Har-Peled (UIUC) CS374 36 Fall 2017 36 / 60

Sorting
Input Given an array of n elements
Goal Rearrange them in ascending order

Sariel Har-Peled (UIUC) CS374 37 Fall 2017 37 / 60

Merge Sort [von Neumann]
MergeSort

1 Input: Array A[1 . . . n]

A L G O R I T H M S

2 Divide into subarrays A[1 . . .m] and A[m + 1 . . . n], where
m = bn/2c

A L G O R I T H M S

3 Recursively MergeSort A[1 . . .m] and A[m + 1 . . . n]

A G L O R H I M S T

4 Merge the sorted arrays

A G H I L M O R S T
Sariel Har-Peled (UIUC) CS374 38 Fall 2017 38 / 60

Merging Sorted Arrays
1 Use a new array C to store the merged array
2 Scan A and B from left-to-right, storing elements in C in order

A G L O R H I M S T
A G H I L M O R S T

3 Merge two arrays using only constantly more extra space
(in-place merge sort): doable but complicated and typically
impractical.

Sariel Har-Peled (UIUC) CS374 39 Fall 2017 39 / 60

Formal Code
Algorithms Lecture �: Recursion [Fa’��]

M����S���(A[1 .. n]):
if n> 1

m bn/2c
M����S���(A[1 .. m])
M����S���(A[m+ 1 .. n])
M����(A[1 .. n], m)

M����(A[1 .. n], m):
i 1; j m+ 1

for k 1 to n
if j > n

B[k] A[i]; i i + 1

else if i > m
B[k] A[j]; j j + 1

else if A[i]< A[j]
B[k] A[i]; i i + 1

else
B[k] A[j]; j j + 1

for k 1 to n
A[k] B[k]

To prove that this algorithm is correct, we apply our old friend induction twice, first to the
M���� subroutine then to the top-level M�������� algorithm.

• We prove M���� is correct by induction on n� k + 1, which is the total size of the two
sorted subarrays A[i .. m] and A[j .. n] that remain to be merged into B[k .. n] when the kth
iteration of the main loop begins. There are five cases to consider. Yes, five.

– If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely
nothing. (This is the base case of the inductive proof.)

– If i m and j > n, the subarray A[j .. n] is empty. Because both subarrays are sorted,
the smallest element in the union of the two subarrays is A[i]. So the assignment
B[k] A[i] is correct. The inductive hypothesis implies that the remaining subarrays
A[i + 1 .. m] and A[j .. n] are correctly merged into B[k+ 1 .. n].

– Similarly, if i > m and j n, the assignment B[k] A[j] is correct, and The
Recursion Fairy correctly merges—sorry, I mean the inductive hypothesis implies
that the M���� algorithm correctly merges—the remaining subarrays A[i .. m] and
A[j + 1 .. n] into B[k+ 1 .. n].

– If i m and j n and A[i]< A[j], then the smallest remaining element is A[i]. So
B[k] is assigned correctly, and the Recursion Fairy correctly merges the rest of the
subarrays.

– Finally, if i m and j n and A[i] � A[j], then the smallest remaining element is
A[j]. So B[k] is assigned correctly, and the Recursion Fairy correctly does the rest.

• Now we prove M����S��� correct by induction; there are two cases to consider. Yes, two.

– If n 1, the algorithm correctly does nothing.

– Otherwise, the Recursion Fairy correctly sorts—sorry, I mean the induction hypothesis
implies that our algorithm correctly sorts—the two smaller subarrays A[1 .. m] and
A[m+1 .. n], after which they are correctly M����d into a single sorted array (by the
previous argument).

What’s the running time? Because the M����S��� algorithm is recursive, its running
time will be expressed by a recurrence. M���� clearly takes linear time, because it’s a simple
for-loop with constant work per iteration. We immediately obtain the following recurrence for
M����S���:

T (n) = T
�
dn/2e
�
+ T
�
bn/2c
�
+O(n).

�

Sariel Har-Peled (UIUC) CS374 40 Fall 2017 40 / 60

Proving Correctness
Obvious way to prove correctness of recursive algorithm: induction!

Easy to show by induction on n that MergeSort is correct if you
assume Merge is correct.
How do we prove that Merge is correct? Also by induction!
One way is to rewrite Merge into a recursive version.
For algorithms with loops one comes up with a natural loop
invariant that captures all the essential properties and then we
prove the loop invariant by induction on the index of the loop.

At the start of iteration k the following hold:
B[1..k] contains the smallest k elements of A correctly sorted.
B[1..k] contains the elements of A[1..(i − 1)] and
A[(m + 1)..(j − 1)].
No element of A is modified.

Sariel Har-Peled (UIUC) CS374 41 Fall 2017 41 / 60

Running Time
T(n): time for merge sort to sort an n element array

T(n) = T(bn/2c) + T(dn/2e) + cn

What do we want as a solution to the recurrence?

Almost always only an asymptotically tight bound. That is we want
to know f (n) such that T(n) = Θ(f (n)).

1 T(n) = O(f (n)) - upper bound
2 T(n) = Ω(f (n)) - lower bound

Sariel Har-Peled (UIUC) CS374 42 Fall 2017 42 / 60

Solving Recurrences: Some Techniques
1 Know some basic math: geometric series, logarithms,

exponentials, elementary calculus
2 Expand the recurrence and spot a pattern and use simple math
3 Recursion tree method — imagine the computation as a tree
4 Guess and verify — useful for proving upper and lower bounds

even if not tight bounds
Albert Einstein: “Everything should be made as simple as possible,
but not simpler.”

Know where to be loose in analysis and where to be tight. Comes
with practice, practice, practice!

Review notes on recurrence solving.

Sariel Har-Peled (UIUC) CS374 43 Fall 2017 43 / 60

Recursion Trees
MergeSort: n is a power of 2

1 Unroll the recurrence. T(n) = 2T(n/2) + cn

n

n/2 n/2

n/4 n/4 n/4 n/4

2 Identify a pattern. At the ith level total work is cn.
3 Sum over all levels. The number of levels is log n. So total is

cn log n = O(n log n).
Sariel Har-Peled (UIUC) CS374 44 Fall 2017 44 / 60

Recursion Trees
An illustrated example...

n

n/2 n/2

n/4 n/4 n/4 n/4

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

n cn

n/2
cn
2

n/2

n/4
cn
4 n/4 n/4 n/4

cn
4

cn
4

cn
4

cn
2

Work in each node

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n

= cn

= cn

= cn

= cn
...

cn

cn
2

cn
4

cn
4

cn
4

cn
4

cn
2+

+ + +
...

log n

= cn

= cn

= cn

= cn
...

+

+

= cn log n = O(n log n)

Sariel Har-Peled (UIUC) CS374 45 Fall 2017 45 / 60

Merge Sort Variant
Question: Merge Sort splits into 2 (roughly) equal sized arrays. Can
we do better by splitting into more than 2 arrays? Say k arrays of
size n/k each?

Sariel Har-Peled (UIUC) CS374 46 Fall 2017 46 / 60

Quick Sort
Quick Sort [Hoare]

1 Pick a pivot element from array
2 Split array into 3 subarrays: those smaller than pivot, those

larger than pivot, and the pivot itself. Linear scan of array does
it. Time is O(n)

3 Recursively sort the subarrays, and concatenate them.

Sariel Har-Peled (UIUC) CS374 47 Fall 2017 47 / 60

Quick Sort: Example
1 array: 16, 12, 14, 20, 5, 3, 18, 19, 1
2 pivot: 16

Sariel Har-Peled (UIUC) CS374 48 Fall 2017 48 / 60

Time Analysis
1 Let k be the rank of the chosen pivot. Then,

T(n) = T(k − 1) + T(n − k) + O(n)
2 If k = dn/2e then T(n) =

T(dn/2e − 1) + T(bn/2c) + O(n) ≤ 2T(n/2) + O(n).
Then, T(n) = O(n log n).

1 Theoretically, median can be found in linear time.
3 Typically, pivot is the first or last element of array. Then,

T(n) = max
1≤k≤n

(T(k − 1) + T(n − k) + O(n))

In the worst case T(n) = T(n − 1) + O(n), which means
T(n) = O(n2). Happens if array is already sorted and pivot is
always first element.

Sariel Har-Peled (UIUC) CS374 49 Fall 2017 49 / 60

Part V

Binary Search

Sariel Har-Peled (UIUC) CS374 50 Fall 2017 50 / 60

Binary Search in Sorted Arrays
Input Sorted array A of n numbers and number x
Goal Is x in A?

BinarySearch(A[a..b], x):
if (b − a < 0) return NO
mid = A[b(a + b)/2c]
if (x = mid) return YES
if (x < mid)

return BinarySearch(A[a..b(a + b)/2c − 1], x)
else

return BinarySearch(A[b(a + b)/2c + 1..b],x)

Analysis: T(n) = T(bn/2c) + O(1). T(n) = O(log n).
Observation: After k steps, size of array left is n/2k

Sariel Har-Peled (UIUC) CS374 51 Fall 2017 51 / 60

Another common use of binary search
1 Optimization version: find solution of best (say minimum) value
2 Decision version: is there a solution of value at most a given

value v?
Reduce optimization to decision (may be easier to think about):

1 Given instance I compute upper bound U(I) on best value
2 Compute lower bound L(I) on best value
3 Do binary search on interval [L(I),U(I)] using decision version

as black box
4 O(log(U(I) − L(I))) calls to decision version if U(I), L(I) are

integers

Sariel Har-Peled (UIUC) CS374 52 Fall 2017 52 / 60

Example
1 Problem: shortest paths in a graph.
2 Decision version: given G with non-negative integer edge

lengths, nodes s, t and bound B, is there an s-t path in G of
length at most B?

3 Optimization version: find the length of a shortest path between
s and t in G.

Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?

Sariel Har-Peled (UIUC) CS374 53 Fall 2017 53 / 60

Example continued
Question: given a black box algorithm for the decision version, can
we obtain an algorithm for the optimization version?

1 Let U be maximum edge length in G.
2 Minimum edge length is L.
3 s-t shortest path length is at most (n − 1)U and at least L.
4 Apply binary search on the interval [L, (n − 1)U] via the

algorithm for the decision problem.
5 O(log((n − 1)U − L)) calls to the decision problem algorithm

sufficient. Polynomial in input size.

Sariel Har-Peled (UIUC) CS374 54 Fall 2017 54 / 60

Part VI

Solving Recurrences

Sariel Har-Peled (UIUC) CS374 55 Fall 2017 55 / 60

Solving Recurrences
Two general methods:

1 Recursion tree method: need to do sums
1 elementary methods, geometric series
2 integration

2 Guess and Verify
1 guessing involves intuition, experience and trial & error
2 verification is via induction

Sariel Har-Peled (UIUC) CS374 56 Fall 2017 56 / 60

Recurrence: Example I
1 Consider T(n) = 2T(n/2) + n/ log n for n > 2, T(2) = 1.
2 Construct recursion tree, and observe pattern. ith level has 2i

nodes, and problem size at each node is n/2i and hence work at
each node is n

2i / log n
2i .

3 Summing over all levels

T(n) =
log n−1∑

i=0

2i
[

(n/2i)

log(n/2i)

]

=

log n−1∑
i=0

n
log n − i

= n
log n∑
j=1

1
j
= nHlog n = Θ(n log log n)

Sariel Har-Peled (UIUC) CS374 57 Fall 2017 57 / 60

Recurrence: Example II
1 Consider T(n) = T(

√
n) + 1 for n > 2, T(2) = 1.

2 What is the depth of recursion?
√

n,
√√

n,
√√√

n, . . . ,O(1).
3 Number of levels: n2−L

= 2 means L = log log n.
4 Number of children at each level is 1, work at each node is 1
5 Thus, T(n) =

∑L
i=0 1 = Θ(L) = Θ(log log n).

Sariel Har-Peled (UIUC) CS374 58 Fall 2017 58 / 60

Recurrence: Example III
1 Consider T(n) =

√
nT(

√
n) + n for n > 2, T(2) = 1.

2 Using recursion trees: number of levels L = log log n
3 Work at each level? Root is n, next level is

√
n ×

√
n = n.

Can check that each level is n.
4 Thus, T(n) = Θ(n log log n)

Sariel Har-Peled (UIUC) CS374 59 Fall 2017 59 / 60

Recurrence: Example IV
1 Consider T(n) = T(n/4) + T(3n/4) + n for n > 4.

T(n) = 1 for 1 ≤ n ≤ 4.
2 Using recursion tree, we observe the tree has leaves at different

levels (a lop-sided tree).
3 Total work in any level is at most n. Total work in any level

without leaves is exactly n.
4 Highest leaf is at level log4 n and lowest leaf is at level log4/3 n
5 Thus, n log4 n ≤ T(n) ≤ n log4/3 n, which means

T(n) = Θ(n log n)

Sariel Har-Peled (UIUC) CS374 60 Fall 2017 60 / 60

	Brief Intro to Algorithm Design and Analysis
	What is a good algorithm?
	Reductions and Recursion
	Recursion

	Divide and Conquer
	Merge Sort
	Merge Sort
	Analysis
	Solving Recurrences

	Quick Sort

	Binary Search
	Solving Recurrences

