Algorithms \& Models of Computation CS/ECE 374, Fall 2017

Context Free Languages and Grammars

Lecture 7
Tuesday, September 19, 2017

- ...

Context Free Languages and Grammars

- Programming Language Specification
- Parsing
- Natural language understanding
- Natural language understanding

What stack got to do with it?

What's a stack but a second hand memory?
(1) DFA/NFA/Regular expressions. \equiv constant memory computation.
(2) NFA + stack \equiv context free grammars (CFG).
(3) Turing machines DFA/NFA + unbounded memory. \equiv a standard computer/program.
\equiv NFA with two stacks.

Programming Languages

Natural Language Processing

Kolam drawing generated by grammar

Models of Growth

- L-systems
- http://www.kevs3d.co.uk/dev/lsystems/

Context Free Grammar (CFG) Definition

Definition

A CFG is a quadruple $G=(V, T, P, S)$

- \boldsymbol{V} is a finite set of non-terminal symbols
- \boldsymbol{T} is a finite set of terminal symbols (alphabet)
- P is a finite set of productions, each of the form $A \rightarrow \alpha$
where $A \in V$ and α is a string in $(V \cup T)^{*}$. Formally, $\boldsymbol{P} \subset \boldsymbol{V} \times(\boldsymbol{V} \cup \boldsymbol{T})^{*}$.
- $S \in V$ is a start symbol
$\boldsymbol{G}=($ Variables, Terminals, Productions, Start var $)$

Example

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)
$S \rightsquigarrow a S a \rightsquigarrow a b S b a \rightsquigarrow a b b S b b a \rightsquigarrow a b b b b a$

What strings can S generate like this?

Palindromes

- Madam in Eden I'm Adam
- Dog doo? Good God!
- Dogma: I am God.
- A man, a plan, a canal, Panama
- Are we not drawn onward, we few, drawn onward to new era?
- Doc, note: I dissent. A fast never prevents a fatness. I diet on cod.
- http://www.palindromelist.net

Example formally...

- $V=\{S\}$
- $T=\{a, b\}$
- $P=\{S \rightarrow \epsilon|a| b|a S a| b S b\}$
(abbrev. for $S \rightarrow \epsilon, S \rightarrow a, S \rightarrow b, S \rightarrow a S a, S \rightarrow b S b$)

$$
G=\left(\begin{array}{cc}
\{S\}, \quad\{a, b\}, \quad\left\{\begin{array}{c}
S \rightarrow \epsilon, \\
S \rightarrow a, \\
S \rightarrow b \\
S \rightarrow a S a \\
S \rightarrow b S b
\end{array}\right\} \quad S
\end{array}\right)
$$

```
Examples
L={0n1n}|n\geq0
S->\epsilon| 0S1
```


Notation and Convention

Let $G=(V, T, P, S)$ then

- a, b, c, d, \ldots, in T (terminals)
- A, B, C, D, \ldots, in V (non-terminals)
- u, v, w, x, y, \ldots in T^{*} for strings of terminals
- $\alpha, \beta, \gamma, \ldots$ in $(V \cup T)^{*}$
- X, Y, X in $V \cup T$

"Derives" relation

Formalism for how strings are derived/generated

Definition

Let $G=(V, T, P, S)$ be a CFG. For strings $\alpha_{1}, \alpha_{2} \in(V \cup T)^{*}$ we say α_{1} derives α_{2} denoted by $\alpha_{1} \rightsquigarrow_{G} \alpha_{2}$ if there exist strings
$\boldsymbol{\beta}, \gamma, \boldsymbol{\delta}$ in $(V \cup T)^{*}$ such that

- $\alpha_{1}=\beta A \delta$
- $\alpha_{2}=\beta \gamma \delta$
- $A \rightarrow \gamma$ is in P.

Examples: $S \rightsquigarrow \epsilon, S \rightsquigarrow 0 S 1,0 S 1 \rightsquigarrow 00 S 11,0 S 1 \rightsquigarrow 01$.

"Derives" relation continued

Definition

For integer $\boldsymbol{k} \geq \mathbf{0}, \boldsymbol{\alpha}_{\mathbf{1}} \rightsquigarrow^{\boldsymbol{k}} \boldsymbol{\alpha}_{\mathbf{2}}$ inductive defined:

- $\alpha_{1} \rightsquigarrow^{0} \alpha_{2}$ if $\alpha_{1}=\alpha_{2}$
- $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow \beta_{1}$ and $\beta_{1} \rightsquigarrow^{k-1} \alpha_{2}$.
- Alternative definition: $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{\boldsymbol{k}-\mathbf{1}} \beta_{1}$ and $\beta_{1} \rightsquigarrow \alpha_{2}$
$\leadsto *$ is the reflexive and transitive closure of \rightsquigarrow.
$\alpha_{1} \rightsquigarrow_{*}^{*} \alpha_{2}$ if $\alpha_{1} \rightsquigarrow^{k} \alpha_{2}$ for some k.
Examples: $S \sim^{*} \epsilon, 0 S 1 \sim^{*} 0000011111$.

Context Free Languages

Definition

The language generated by CFG $G=(V, T, P, S)$ is denoted by $L(G)$ where $L(G)=\left\{w \in T^{*} \mid S w^{*} w\right\}$.

Definition

A language L is context free (CFL) if it is generated by a context free grammar. That is, there is a CFG G such that $L=L(G)$.

Example

$L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$
$S \rightarrow \epsilon \mid 0 S 1$
$L=\left\{0^{n} 1^{m} \mid m>n\right\}$
$L=\left\{w \in\{(,)\}^{*} \mid w\right.$ is properly nested string of parenthesis $\}$

Closure Properties of CFLS
 Union
 $G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$

Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared.

Theorem

CFLS are closed under union. L_{1}, L_{2} CFLS implies $L_{1} \cup L_{2}$ is a CFL.

Closure Properties of CFLS

$G_{1}=\left(V_{1}, T, P_{1}, S_{1}\right)$ and $G_{2}=\left(V_{2}, T, P_{2}, S_{2}\right)$
Assumption: $V_{1} \cap V_{2}=\emptyset$, that is, non-terminals are not shared

Theorem

CFLS are closed under union. L_{1}, L_{2} CFLs implies $L_{1} \cup L_{2}$ is a CFL.

Theorem

CFLs are closed under concatenation. L_{1}, L_{2} CFLs implies $L_{1} \cdot L_{2}$ is a CFL.

Theorem

CFLs are closed under Kleene star.
If L is a CFL $\Longrightarrow L^{*}$ is a CFL.

Closure Properties of CFLs

Concatenation

Theorem

CFLs are closed under concatenation. L_{1}, L_{2} CFLS implies $L_{1} \cdot L_{2}$ is a CFL.

Closure Properties of CFLS

Stardom (i.e, Kleene star)

Theorem

CFLs are closed under Kleene star.
If L is a CFL $\Longrightarrow L^{*}$ is a CFL.

Closure Properties of CFLS continued

Theorem

CFLS are not closed under complement or intersection.
Theorem
If L_{1} is a CFL and L_{2} is regular then $L_{1} \cap L_{2}$ is a CFL.

Parse Trees or Derivation Trees

A tree to represent the derivation $S \sim_{*}^{*} \boldsymbol{w}$.

- Rooted tree with root labeled S
- Non-terminals at each internal node of tree
- Terminals at leaves
- Children of internal node indicate how non-terminal was expanded using a production rule

A picture is worth a thousand words

Ambiguity in CFLs

Definition

A CFG G is ambiguous if there is a string $w \in L(G)$ with two different parse trees. If there is no such string then G is unambiguous.

Example: $S \rightarrow S-S|1| 2 \mid 3$

3-(2-1)

(3-2)-1

Inherently ambiguous languages

Definition

A CFL L is inherently ambiguous if there is no unambiguous CFG G such that $L=L(G)$.

- There exist inherently ambiguous CFLS.

Example: $L=\left\{a^{n} b^{m} c^{k} \mid n=m\right.$ or $\left.m=k\right\}$

- Given a grammar G it is undecidable to check whether $L(G)$ is inherently ambiguous. No algorithm!

Inductive proofs for CFGs

Question: How do we formally prove that a $\operatorname{CFG} L(G)=L$?
Example: $S \rightarrow \epsilon|a| b|a S a| b S b$

Theorem

$L(G)=\{$ palindromes $\}=\left\{w \mid w=w^{R}\right\}$

Two directions:

- $L(G) \subseteq L$, that is, $S w^{*} w$ then $w=w^{R}$
- $L \subseteq L(G)$, that is, $w=w^{R}$ then $S w^{*} w$

$\mathrm{L}(\mathrm{G}) \subseteq \mathrm{L}$

Show that if $S w^{*} w$ then $w=w^{R}$
By induction on length of derivation, meaning
For all $k \geq 1, S \sim^{* *} w$ implies $w=w^{R}$.

- If $S w^{1} w$ then $w=\epsilon$ or $w=a$ or $w=b$. Each case $w=w^{R}$.
- Assume that for all $k<n$, that if $S \rightarrow^{k} w$ then $w=w^{R}$
- Let $S w^{\boldsymbol{n}} \boldsymbol{w}$ (with $\boldsymbol{n}>\mathbf{1}$). Wlog \boldsymbol{w} begin with \boldsymbol{a}.
- Then $S \rightarrow a S a \rightsquigarrow^{k-1}$ aua where $\boldsymbol{w}=\boldsymbol{a u a}$.
- And $\boldsymbol{S} \rightsquigarrow^{\boldsymbol{n}-\boldsymbol{1}} \boldsymbol{u}$ and hence $\mathrm{IH}, \boldsymbol{u}=\boldsymbol{u}^{\boldsymbol{R}}$.
- Therefore $w^{r}=(a u a)^{R}=(u a)^{R} a=a u^{R} a=a u a=w$.

$L \subseteq L(G)$

Show that if $w=w^{R}$ then $S w^{*} w$.
By induction on $|w|$
That is, for all $k \geq 0,|w|=k$ and $w=w^{R}$ implies $S w^{*} w$.
Exercise: Fill in proof.

Mutual Induction

Situation is more complicated with grammars that have multiple non-terminals.

See Section 5.3.2 of the notes for an example proof.

Normal Forms

Chomsky Normal Form:

- Productions are all of the form $\boldsymbol{A} \rightarrow \boldsymbol{B C}$ or $\boldsymbol{A} \rightarrow \boldsymbol{a}$. If $\epsilon \in L$ then $S \rightarrow \epsilon$ is also allowed.
- Every CFG G can be converted into CNF form via an efficient algorithm
- Advantage: parse tree of constant degree.

Greibach Normal Form:

- Only productions of the form $\boldsymbol{A} \rightarrow \boldsymbol{a} \boldsymbol{\beta}$ are allowed.
- All CFLs without $\boldsymbol{\epsilon}$ have a grammar in GNF. Efficient algorithm.
- Advantage: Every derivation adds exactly one terminal.

Normal Forms

Normal forms are a way to restrict form of production rules
Advantage: Simpler/more convenient algorithms and proofs
Two standard normal forms for CFGs

- Chomsky normal form
- Greibach normal form

Things to know: Pushdown Automata

PDA: a NFA coupled with a stack

PDAs and CFGs are equivalent: both generate exactly CFLs. PDA is a machine-centric view of CFLs.

