Algorithms \& Models of Computation

 CS/ECE 374, Fall 2017
Proving Non-regularity

Lecture 6

Thursday, September 14, 2017

How to prove non-regularity?

Claim: Language L is not regular.
Idea: Show \# states in any DFA M for language L has infinite number of states.

Lemma

Consider three strings $x, y, w \in \mathbf{\Sigma}^{*}$.
$M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$: DFA for language $L \subseteq \boldsymbol{\Sigma}^{*}$.
If $\delta^{*}(s, x w) \in A$ and $\delta^{*}(s, y w) \notin A$ then $\overline{\delta^{*}}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Assume for the sake of contradiction that $\delta^{*}(s, x)=\delta^{*}(s, y)$.
$\Longrightarrow A \ni \delta^{*}(s, x w)=\delta^{*}\left(\delta^{*}(s, x), w\right)=\delta^{*}\left(\delta^{*}(s, y), w\right)$ $=\delta^{*}(s, y w) \notin A$
$\Longrightarrow A \ni \delta^{*}(s, x w) \notin A$. Impossible!

Regular Languages, DFAs, NFAs

Theorem

Languages accepted by DFAs, NFAs, and regular expressions are the same.

Question: Is every language a regular language? No.

- Each DFA M can be represented as a string over a finite alphabet $\boldsymbol{\Sigma}$ by appropriate encoding
- Hence number of regular languages is countably infinite
- Number of languages is uncountably infinite
- Hence there must be a non-regular language!

Proof by figures

A Simple and Canonical Non-regular Language

$L=\left\{0^{k} 1^{k} \mid i \geq 0\right\}=\{\epsilon, 01,0011,000111, \cdots$,

Theorem

L is not regular.
Question: Proof?
Intuition: Any program to recognize L seems to require counting number of zeros in input which cannot be done with fixed memory.

How do we formalize intuition and come up with a formal proof?

Generalizing the argument

Definition

For a language L over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}, \boldsymbol{x}$ and \boldsymbol{y} are distinguishable with respect to \boldsymbol{L} if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $\boldsymbol{x w}, \boldsymbol{y w}$ is in \boldsymbol{L}.
x, y are indistinguishable with respect to L if there is no such w.
Example: If $\boldsymbol{i} \neq \boldsymbol{j}, \mathbf{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ are distinguishable with respect to $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$

Example: $\mathbf{0 0 0}$ and $\mathbf{0 0 0 0}$ are indistinguishable with respect to the language $L=\{w \mid w$ has 00 as a substring $\}$

Proof by Contradiction

- Suppose L is regular. Then there is a DFA M such that $L(M)=L$.
- Let $M=(Q,\{0, \mathbf{1}\}, \delta, s, A)$ where $|Q|=n$.

Consider strings $\epsilon, \mathbf{0}, \mathbf{0 0}, \mathbf{0 0 0}, \cdots, \mathbf{0}^{\boldsymbol{n}}$ total of $\boldsymbol{n}+\mathbf{1}$ strings.
What states does M reach on the above strings? Let $\boldsymbol{q}_{\boldsymbol{i}}=\delta^{*}\left(s, 0^{\boldsymbol{i}}\right)$.
By pigeon hole principle $\boldsymbol{q}_{\boldsymbol{i}}=\boldsymbol{q}_{\boldsymbol{j}}$ for some $\mathbf{0} \leq \boldsymbol{i}<\boldsymbol{j} \leq \boldsymbol{n}$.
That is, M is in the same state after reading $\mathbf{0}^{\boldsymbol{i}}$ and $\boldsymbol{0}^{\boldsymbol{j}}$ where $\boldsymbol{i} \neq \boldsymbol{j}$.

This contradicts the fact that M accepts L. Thus, there is no DFA for L.

Wee Lemma

Lemma

Suppose $L=L(M)$ for some DFA $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ and suppose x, y are distinguishable with respect to L. Then $\delta^{*}(s, x) \neq \delta^{*}(s, y)$.

Proof.

Since x, y are distinguishable let w be the distinguishing suffix. If $\delta^{*}(s, x)=\delta^{*}(s, y)$ then M will either accept both the strings $x w, y w$, or reject both. But exactly one of them is in L, a contradiction.

Fooling Sets

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ a set of strings \boldsymbol{F} (could be infinite) is a fooling set or distinguishing set for \boldsymbol{L} if every two distinct strings $x, y \in F$ are distinguishable.
Example: $\boldsymbol{F}=\left\{\mathbf{0}^{\boldsymbol{i}} \mid \boldsymbol{i} \geq \mathbf{0}\right\}$ is a fooling set for the language $L=\left\{0^{k} 1^{k} \mid k \geq 0\right\}$.

Theorem

Suppose \boldsymbol{F} is a fooling set for \mathbf{L}. If \boldsymbol{F} is finite then there is no DFA M that accepts L with less than $|\boldsymbol{F}|$ states.

Infinite Fooling Sets

Theorem

Suppose \boldsymbol{F} is a fooling set for \mathbf{L}. If \boldsymbol{F} is finite then there is no DFA M that accepts L with less than $|F|$ states.

Corollary

If \boldsymbol{L} has an infinite fooling set \boldsymbol{F} then \mathbf{L} is not regular.

Proof.

Suppose for contradiction that $L=L(M)$ for some DFA M with n states.
Any subset F^{\prime} of F is a fooling set. (Why?) Pick $F^{\prime} \subseteq F$ arbitrarily such that $\left|\boldsymbol{F}^{\prime}\right|>\boldsymbol{n}$. By preceding theorem, we obtain a contradiction.

Proof of Theorem

Theorem

Suppose \boldsymbol{F} is a fooling set for \mathbf{L}. If \boldsymbol{F} is finite then there is no DFA M that accepts L with less than $|F|$ states.

Proof.

Suppose there is a DFA $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ that accepts L. Let $|Q|=n$.
If $n<|F|$ then by pigeon hole principle there are two strings $x, y \in F, x \neq y$ such that $\delta^{*}(s, x)=\delta^{*}(s, y)$ but x, y are distinguishable.
Implies that there is w such that exactly one of $x w, y w$ is in L. However, M's behavior on $x w$ and $y w$ is exactly the same and hence M will accept both $x w, y w$ or reject both. A contradiction.

Examples

- $\left\{0^{k} 1^{k} \mid k \geq 0\right\}$
- \{bitstrings with equal number of 0 s and 1 s$\}$
- $\left\{0^{k} 1^{\ell} \mid k \neq \ell\right\}$
- $\left\{0^{k^{2}} \mid k \geq 0\right\}$

Exponential gap between NFA and DFA size

$L_{k}=\left\{w \in\{0,1\}^{*} \mid w\right.$ has a $\mathbf{1} k$ positions from the end $\}$
Recall that L_{k} is accepted by a NFA N with $k+\mathbf{1}$ states.

Theorem

Every DFA that accepts $\boldsymbol{L}_{\boldsymbol{k}}$ has at least $\mathbf{2}^{\boldsymbol{k}}$ states.

Claim

$F=\left\{w \in\{0,1\}^{*}:|w|=k\right\}$ is a fooling set of size $\mathbf{2}^{k}$ for L_{k}.
Why?

- Suppose $a_{1} a_{2} \ldots a_{k}$ and $b_{1} b_{2} \ldots b_{k}$ are two distinct bitstrings of length k
- Let \boldsymbol{i} be first index where $\boldsymbol{a}_{\boldsymbol{i}} \neq \boldsymbol{b}_{\boldsymbol{i}}$
- $y=0^{k-i-1}$ is a distinguishing suffix for the two strings

Part I

Non-regularity via closure properties

How do pick a fooling set

How do we pick a fooling set F ?

- If x, y are in F and $x \neq y$ they should be distinguishable! Of course.
- All strings in F except maybe one should be prefixes of strings in the language L.
For example if $L=\left\{0^{k} \mathbf{1}^{k} \mid k \geq \mathbf{0}\right\}$ do not pick $\mathbf{1}$ and $\mathbf{1 0}$ (say). Why?

Non-regularity via closure properties

$L=\{$ bitstrings with equal number of $0 s$ and 1 s$\}$

$$
L^{\prime}=\left\{0^{k} 1^{k} \mid k \geq 0\right\}
$$

Suppose we have already shown that L^{\prime} is non-regular. Can we show that L is non-regular without using the fooling set argument from scratch?
$L^{\prime}=L \cap L\left(0^{*} \mathbf{1}^{*}\right)$
Claim: The above and the fact that L^{\prime} is non-regular implies L is non-regular. Why?

Suppose L is regular. Then since $L\left(\mathbf{0}^{*} \mathbf{1}^{*}\right)$ is regular, and regular languages are closed under intersection, L^{\prime} also would be regular. But we know L^{\prime} is not regular, a contradiction.

Non-regularity via closure properties

General recipe:

Indistinguishability

Recall:

Definition

For a language \boldsymbol{L} over $\boldsymbol{\Sigma}$ and two strings $\boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{\Sigma}^{*}$ we say that \boldsymbol{x} and y are distinguishable with respect to L if there is a string $\boldsymbol{w} \in \boldsymbol{\Sigma}^{*}$ such that exactly one of $\boldsymbol{x w}, y w$ is in $\boldsymbol{L} . x, y$ are indistinguishable with respect to L if there is no such w.

Given language L over $\boldsymbol{\Sigma}$ define a relation $\equiv_{\boldsymbol{L}}$ over strings in $\boldsymbol{\Sigma}^{*}$ as follows: $\boldsymbol{x} \equiv_{L} y$ iff x and y are indistinguishable with respect to L.

Claim

\equiv_{L} is an equivalence relation over $\boldsymbol{\Sigma}^{*}$.
Therefore, $\equiv_{\llcorner }$partitions $\boldsymbol{\Sigma}^{*}$ into a collection of equivalence classes X_{1}, X_{2}, \ldots,

Claim

\equiv_{L} is an equivalence relation over $\boldsymbol{\Sigma}^{*}$.
Therefore, $\equiv_{\llcorner }$partitions $\boldsymbol{\Sigma}^{*}$ into a collection of equivalence classes.

Claim

Let $\boldsymbol{x}, \boldsymbol{y}$ be two distinct strings. If $\boldsymbol{x}, \boldsymbol{y}$ belong to the same equivalence class of \equiv_{L} then x, y are indistinguishable. Otherwise they are distinguishable.

Corollary

If $\equiv_{\boldsymbol{L}}$ is finite with \boldsymbol{n} equivalence classes then there is a fooling set \boldsymbol{F} of size \boldsymbol{n} for \boldsymbol{L}. If $\equiv_{\boldsymbol{L}}$ is infinite then there is an infinite fooling set for L.

Myhill-Nerode Theorem

Theorem (Myhill-Nerode)

L is regular $\Longleftrightarrow \equiv_{L}$ has a finite number of equivalence classes. If \equiv_{L} is finite with n equivalence classes then there is a DFA M accepting L with exactly n states and this is the minimum possible.

Corollary

A language L is non-regular if and only if there is an infinite fooling set \boldsymbol{F} for \boldsymbol{L}.

Algorithmic implication: For every DFA M one can find in polynomial time a DFA M^{\prime} such that $L(M)=L\left(M^{\prime}\right)$ and M^{\prime} has the fewest possible states among all such DFAs.
\square

