Algorithms \& Models of Computation CS/ECE 374, Spring 2019

NFAs continued, Closure Properties of Regular Languages

Lecture 5

Tuesday, January 29, 2019

Equivalence of NFAs and DFAs

Theorem

For every NFA N there is a DFA M such that $L(M)=L(N)$.

Formal Tuple Notation for NFA

Definition

A non-deterministic finite automata (NFA) $N=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ is a five tuple where

- \boldsymbol{Q} is a finite set whose elements are called states,
- $\boldsymbol{\Sigma}$ is a finite set called the input alphabet,
- $\delta: Q \times \boldsymbol{\Sigma} \cup\{\epsilon\} \rightarrow \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of $Q)$,
- $s \in Q$ is the start state,
- $\boldsymbol{A} \subseteq \mathbf{Q}$ is the set of accepting/final states.
$\delta(q, a)$ for $a \in \boldsymbol{\Sigma} \cup\{\epsilon\}$ is a subset of Q - a set of states.

Formal definition of language accepted by

Definition

A string w is accepted by NFA N if $\delta_{N}^{*}(s, w) \cap A \neq \emptyset$.

Definition

The language $L(N)$ accepted by a NFA $N=(Q, \Sigma, \delta, s, A)$ is

$$
\left\{w \in \boldsymbol{\Sigma}^{*} \mid \delta^{*}(s, w) \cap A \neq \emptyset\right\} .
$$

Extending the transition function to strings

Definition

For NFA $\boldsymbol{N}=(\boldsymbol{Q}, \boldsymbol{\Sigma}, \delta, s, A)$ and $\boldsymbol{q} \in Q$ the $\boldsymbol{\epsilon r e a c h}(\boldsymbol{q})$ is the set of all states that \boldsymbol{q} can reach using only $\boldsymbol{\epsilon}$-transitions.

Definition

Inductive definition of $\delta^{*}: Q \times \boldsymbol{\Sigma}^{*} \rightarrow \mathcal{P}(Q)$:

- if $w=\epsilon, \delta^{*}(q, w)=\epsilon \operatorname{reach}(q)$
- if $\boldsymbol{w}=\boldsymbol{a}$ where $\boldsymbol{a} \in \boldsymbol{\Sigma}$ $\delta^{*}(q, a)=\cup_{p \in \operatorname{\epsilon reach}(q)}\left(\cup_{r \in \delta(p, a)} \operatorname{\epsilon reach}(r)\right)$
- if $w=x a$,
$\delta^{*}(q, w)=\cup_{p \in \delta^{*}(q, x)}\left(\cup_{r \in \delta(p, a)} \epsilon \operatorname{reach}(r)\right)$

Simulating an NFA by a DFA

- Think of a program with fixed memory that needs to simulate NFA \boldsymbol{N} on input \boldsymbol{w}.
- What does it need to store after seeing a prefix \boldsymbol{x} of \boldsymbol{w} ?
- It needs to know at least $\delta^{*}(s, x)$, the set of states that N could be in after reading x
- Is it sufficient? Yes, if it can compute $\boldsymbol{\delta}^{*}(s, x a)$ after seeing another symbol a in the input.
- When should the program accept a string \boldsymbol{w} ? If $\delta^{*}(s, w) \cap A \neq \emptyset$.
Key Observation: A DFA M that simulates N should keep in its memory/state the set of states of N

Thus the state space of the DFA should be $\mathcal{P}(Q)$.

Simulating NFA

Example the first revisited
Previous lecture.. Ran
$\mathrm{NFA}^{(\mathrm{N} 1)}$

on input ababa.

Subset Construction

NFA $\boldsymbol{N}=(\boldsymbol{Q}, \boldsymbol{\Sigma}, \boldsymbol{s}, \boldsymbol{\delta}, \boldsymbol{A})$. We create a DFA
$M=\left(Q^{\prime}, \boldsymbol{\Sigma}, \delta^{\prime}, s^{\prime}, A^{\prime}\right)$ as follows:

- $Q^{\prime}=\mathcal{P}(Q)$
- $s^{\prime}=\epsilon \operatorname{reach}(s)=\delta^{*}(s, \epsilon)$
- $A^{\prime}=\{X \subseteq Q \mid X \cap A \neq \emptyset\}$
- $\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ for each $X \subseteq Q, a \in \boldsymbol{\Sigma}$.

Example: DFA from NFA

Example

No ϵ-transitions

Example

No ϵ-transitions

Incremental algorithm

- Build M beginning with start state $s^{\prime}==\epsilon \operatorname{reach}(s)$
- For each existing state $\boldsymbol{X} \subseteq \mathbf{Q}$ consider each $\boldsymbol{a} \in \boldsymbol{\Sigma}$ and calculate the state $Y=\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)$ and add a transition.
- If \boldsymbol{Y} is a new state add it to reachable states that need to explored.
To compute $\delta^{*}(\boldsymbol{q}, \boldsymbol{a})$ - set of all states reached from \boldsymbol{q} on string a
- Compute $X=\operatorname{\epsilon reach}(q)$
- Compute $Y=\cup_{p \in X} \delta(p, a)$
- Compute $Z=\operatorname{\epsilon reach}(Y)=\cup_{r \in \boldsymbol{Y}} \operatorname{rreach}(r)$

Incremental construction

Only build states reachable from $s^{\prime}=\epsilon \operatorname{reach}(s)$ the start state of M

$$
\delta^{\prime}(X, a)=\cup_{q \in X} \delta^{*}(q, a)
$$

Proof of Correctness

Theorem

Let $\boldsymbol{N}=(\boldsymbol{Q}, \boldsymbol{\Sigma}, s, \boldsymbol{\delta}, \boldsymbol{A})$ be a NFA and let
$M=\left(Q^{\prime}, \boldsymbol{\Sigma}, \boldsymbol{\delta}^{\prime}, s^{\prime}, A^{\prime}\right)$ be a DFA constructed from \boldsymbol{N} via the subset construction. Then $L(N)=L(M)$.

Stronger claim:

Lemma

For every string $w, \delta_{N}^{*}(s, w)=\delta_{M}^{*}\left(s^{\prime}, w\right)$.
Proof by induction on $|w|$.
Base case: $w=\epsilon$.
$\delta_{N}^{*}(s, \epsilon)=\epsilon$ reach (s).
$\delta_{M}^{*}\left(s^{\prime}, \epsilon\right)=s^{\prime}=\epsilon$ reach (s) by definition of s^{\prime}.

Proof continued

Lemma

For every string $w, \delta_{N}^{*}(s, w)=\delta_{M}^{*}\left(s^{\prime}, w\right)$.
Inductive step: $w=x a \quad$ (Note: suffix definition of strings)
$\delta_{N}^{*}(s, x a)=\cup_{p \in \delta_{N}^{*}(s, x)} \delta_{N}^{*}(p, a)$ by inductive definition of δ_{N}^{*} $\delta_{M}^{*}\left(s^{\prime}, x a\right)=\delta_{M}\left(\delta_{M}^{*}(s, x), a\right)$ by inductive definition of δ_{M}^{*}

By inductive hypothesis: $Y=\delta_{N}^{*}(s, x)=\delta_{M}^{*}(s, x)$
Thus $\delta_{N}^{*}(s, x a)=\cup_{p \in Y} \delta_{N}^{*}(p, a)=\delta_{M}(Y, a)$ by definition of δ_{M}.
Therefore,
$\delta_{N}^{*}(s, x a)=\delta_{M}(Y, a)=\delta_{M}\left(\delta_{M}^{*}(s, x), a\right)=\delta_{M}^{*}\left(s^{\prime}, x a\right)$
which is what we need.

Closure Properties of Regular Languages

Part II

Example: PREFIX

Let L be a language over $\boldsymbol{\Sigma}$.

Definition

$\operatorname{PREFIX}(L)=\left\{w \mid w x \in L, x \in \boldsymbol{\Sigma}^{*}\right\}$

Theorem

If L is regular then $\operatorname{PREFIX}(L)$ is regular.
Let $M=(Q, \boldsymbol{\Sigma}, \delta, s, A)$ be a DFA that recognizes L
$X=\{q \in Q \mid s$ can reach q in $M\}$
$Y=\{\boldsymbol{q} \in Q \mid \boldsymbol{q}$ can reach some state in $A\}$
$Z=X \cap Y$
Create new DFA $M^{\prime}=(Q, \boldsymbol{\Sigma}, \delta, s, Z)$
Claim: $L\left(M^{\prime}\right)=\operatorname{PREFIX}(L)$.

Exercise: SUFFIX

Let \boldsymbol{L} be a language over $\boldsymbol{\Sigma}$.

Definition

$\operatorname{SUFFIX}(L)=\left\{w \mid x w \in L, x \in \Sigma^{*}\right\}$
Prove the following:

Theorem

If L is regular then $\operatorname{PREFIX}(L)$ is regular.

Stage 0: Input

Stage 1: Normalizing

2: Normalizing it.

Stage 2: Remove state A

Stage 4: Removing B

Stage 4: Redrawn without old edges

Stage 5: Redraw

\rightarrow init

$$
a b^{*} a+b
$$

Stage 6: Removing C

Stage 7: Redraw

$$
\rightarrow \text { init } \xrightarrow{\left(a b^{*} a+b\right)(a+b)^{*}} \rightarrow \text { AC }
$$

Stage 8: Extract regular expression
\rightarrow init $\left(a b^{*} a+b\right)(a+b)^{*} \rightarrow$
Thus, this automata is equivalent to the regular expression $\left(a b^{*} a+b\right)(a+b)^{*}$.

