Algorithms & Models of Computation

CS/ECE 374, Fall 2017

Non-deterministic Finite Automata (NFAs)

Lecture 4

Thursday, September 7, 2017

Sariel Har-Peled (UIUC)

CS374

all 2017 1 / 3

Part I

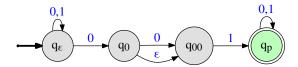
NFA Introduction

Sariel Har-Peled (UIUC)

CS374

F. II

Non-deterministic Finite State Automata (NFAs)



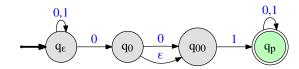
Differences from DFA

- ullet From state q on same letter $a\in oldsymbol{\Sigma}$ multiple possible states
- \bullet No transitions from q on some letters
- ε -transitions!

Questions:

- Is this a "real" machine?
- What does it do?

NFA behavior



Machine on input string w from state q can lead to set of states (could be empty)

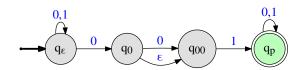
- ullet From $oldsymbol{q}_arepsilon$ on $oldsymbol{1}$
- ullet From $oldsymbol{q}_arepsilon$ on $oldsymbol{0}$
- From q_0 on ε
- ullet From $oldsymbol{q}_arepsilon$ on $oldsymbol{01}$
- From q_{00} on 00

Sariel Har-Peled (IIIIIC) CS374 3 Fall 2017 3

ariel Har-Peled (UIUC)

Fall 2017 4 / 3

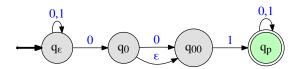
NFA acceptance: informal



Informal definition: An NFA N accepts a string w iff some accepting state is reached by N from the start state on input w.

The language accepted (or recognized) by a NFA N is denote by L(N) and defined as: $L(N) = \{w \mid N \text{ accepts } w\}$.

NFA acceptance: example

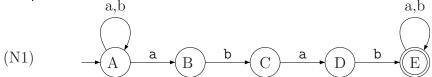


- Is **01** accepted?
- Is **001** accepted?
- Is 100 accepted?
- Are all strings in 1*01 accepted?
- What is the language accepted by **N**?

Comment: Unlike DFAs, it is easier in NFAs to show that a string is accepted than to show that a string is **not** accepted.

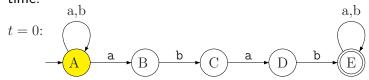
Simulating NFA

Example the first



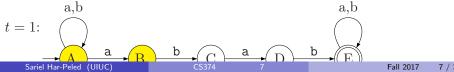
Run it on input ababa.

Idea: Keep track of the states where the NFA might be at any given time.



Remaining input: ababa.

Remaining input: haha



Formal Tuple Notation

Definition

A non-deterministic finite automata (NFA) $N = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \cup \{\varepsilon\} \to \mathcal{P}(Q)$ is the transition function (here $\mathcal{P}(Q)$ is the power set of Q),
- $s \in Q$ is the start state,
- $A \subset Q$ is the set of accepting/final states.

 $\delta(q, a)$ for $a \in \Sigma \cup \{\varepsilon\}$ is a subset of Q — a set of states.

Reminder: Power set

For a set Q its power set is: $\mathcal{P}(Q) = 2^Q = \{X \mid X \subseteq Q\}$ is the set of all subsets of Q.

Example

$$Q = \{1,2,3,4\}$$

$$\mathcal{P}(Q) = \left\{ \begin{array}{c} \{1, 2, 3, 4\}, \\ \{2, 3, 4\}, \{1, 3, 4\}, \{1, 2, 4\}, \{1, 2, 3\}, \\ \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \\ \{1\}, \{2\}, \{3\}, \{4\}, \\ \{\} \end{array} \right.$$

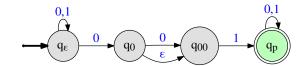
Sariel Har-Peled (UIUC)

CS374

9

all 2017 9 / 3

Example



- $Q = \{q_{\varepsilon}, q_0, q_{00}, q_p\}$
- $\Sigma = \{0, 1\}$
- 6
- $s = q_{\varepsilon}$
- $\bullet \ A = \{q_p\}$

Sariel Har-Peled (UIUC

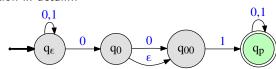
CS374

10

2017 10 / 3

Example

Transition function in detail...



$$egin{aligned} \delta(q_arepsilon,arepsilon) & \delta(q_0,arepsilon) = \{q_0,q_{00}\} \ \delta(q_arepsilon,0) = \{q_arepsilon,q_0\} \ \delta(q_arepsilon,1) = \{q_arepsilon\} \ \delta(q_{00},arepsilon) = \{q_{00}\} \ \delta(q_{00},arepsilon) = \{q_{00}\} \ \delta(q_{00},arepsilon) = \{q_{00}\} \ \delta(q_{00},arepsilon) = \{q_{00}\} \ \delta(q_{00},arepsilon) = \{q_{p}\} \ \delta(q_{00},1) = \{q_{p}\} \ \delta(q_{00},1) = \{q_{p}\} \end{aligned}$$

Extending the transition function to strings

- ② $\delta(q, a)$: set of states that N can go to from q on reading $a \in \Sigma \cup \{\varepsilon\}$.
- **3** Want transition function $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$
- $\delta^*(q, w)$: set of states reachable on input w starting in state q.

Sariel Har-Peled (UIUC)

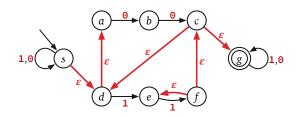
CS374

Fall 2017 1

Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.



Sariel Har-Peled (UIUC)

CS374

13

all 2017 13 / 3

Extending the transition function to strings

Definition

For NFA $N = (Q, \Sigma, \delta, s, A)$ and $q \in Q$ the ϵ -reach(q) is the set of all states that q can reach using only ϵ -transitions.

Definition

Inductive definition of $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$:

- if $w = \varepsilon$, $\delta^*(q, w) = \epsilon \operatorname{reach}(q)$
- if w = a where $a \in \Sigma$ $\delta^*(q, a) = \bigcup_{p \in \epsilon \text{reach}(q)} (\bigcup_{r \in \delta(p, a)} \epsilon \text{reach}(r))$
- if w = ax, $\delta^*(q, w) = \bigcup_{p \in \epsilon \operatorname{reach}(q)} (\bigcup_{r \in \delta(p, a)} \delta^*(r, x))$

Sariel Har-Peled (UIUC

CS374

14

2017 14 / 3

Formal definition of language accepted by N

Definition

A string w is accepted by NFA N if $\delta_N^*(s, w) \cap A \neq \emptyset$.

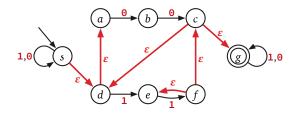
Definition

The language L(N) accepted by a NFA $N = (Q, \Sigma, \delta, s, A)$ is

$$\{w \in \mathbf{\Sigma}^* \mid \delta^*(s, w) \cap A \neq \emptyset\}.$$

Important: Formal definition of the language of NFA above uses δ^* and not δ . As such, one does not need to include ε -transitions closure when specifying δ , since δ^* takes care of that.

Example



What is:

- $\delta^*(s,\epsilon)$
- $\delta^*(s,0)$
- $\delta^*(c,0)$
- $\delta^*(b,00)$

Sariel Har-Peled (UIUC) CS374 15 Fall 2017 15

Sariel Har-Peled (UIUC)

S374

Fall 2017 16

Another definition of computation

Definition

 $q \xrightarrow{w}_{N} p$: State p of NFA N is **reachable** from q on $w \iff$ there exists a sequence of states r_0, r_1, \ldots, r_k and a sequence x_1, x_2, \ldots, x_k where $x_i \in \Sigma \cup \{\varepsilon\}$, for each i, such that:

- $r_0 = q$
- for each i, $r_{i+1} \in \delta(r_i, x_{i+1})$,
- $r_k = p$, and
- $w = x_1 x_2 x_3 \cdots x_k$

Definition

$$\delta^*N(q,w) = \left\{ p \in Q \mid q \xrightarrow{w}_N p \right\}.$$

Sariel Har-Peled (UIUC)

CS374

17

1 2017 17 / 3

Part II

Constructing NFAs

Why non-determinism?

- Non-determinism adds power to the model; richer programming language and hence (much) easier to "design" programs
- Fundamental in **theory** to prove many theorems
- Very important in **practice** directly and indirectly
- Many deep connections to various fields in Computer Science and Mathematics

Many interpretations of non-determinism. Hard to understand at the outset. Get used to it and then you will appreciate it slowly.

Sariel Har-Peled (UIUC

CS374

18

JI 2017 18 / 1

DFAs and NFAs

- Every DFA is a NFA so NFAs are at least as powerful as DFAs.
- NFAs prove ability to "guess and verify" which simplifies design and reduces number of states
- Easy proofs of some closure properties

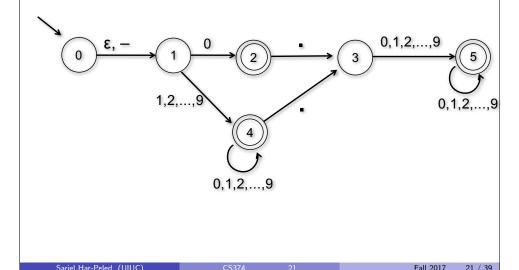
Sariel Har-Peled (UIUC)

CS374

Fall 2017 20

Example

Strings that represent decimal numbers.



Example

 $L_k = \{ \text{bitstrings that have a 1 } k \text{ positions from the end} \}$

Example

- {strings that contain CS374 as a substring}
- {strings that contain CS374 or CS473 as a substring}
- {strings that contain CS374 and CS473 as substrings}

A simple transformation

Theorem

For every NFA N there is another NFA N' such that L(N) = L(N') and such that N' has the following two properties:

- ullet N' has single final state f that has no outgoing transitions
- The start state s of N is different from f

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 / 39

Sariel Har-Peled (UIUC) CS374 24 Fall 2017 24 / 39

Part III

Closure Properties of NFAs

Sariel Har-Peled (UIUC)

5374

25

2017 25 / 39

Closure properties of NFAs

Are the class of languages accepted by NFAs closed under the following operations?

- union
- intersection
- concatenation
- Kleene star
- complement

Sariel Har-Peled (UIUC)

74

26

0017 26 / 30

Closure under union

Theorem

For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cup L(N_2)$.

 N_1

 N_2

Closure under concatenation

Theorem

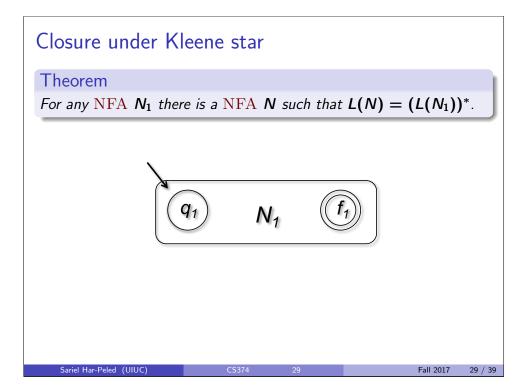
For any two NFAs N_1 and N_2 there is a NFA N such that $L(N) = L(N_1) \cdot L(N_2)$.

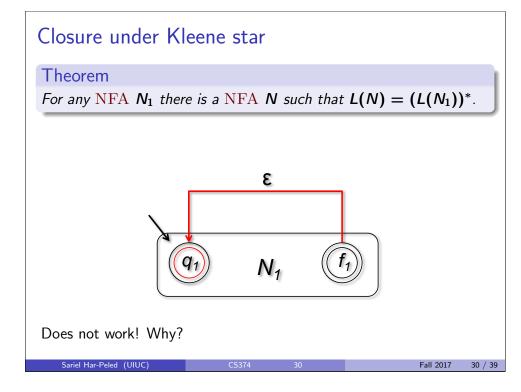
N₁

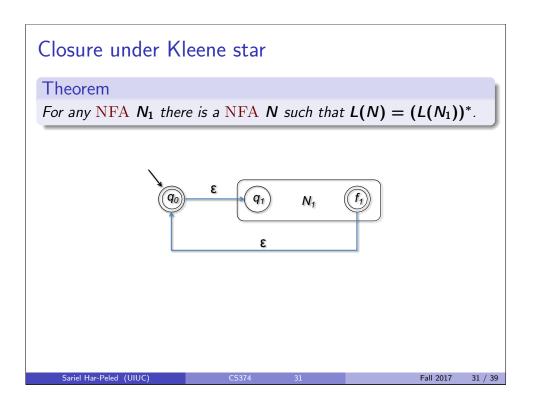
Sariel Har-Peled (IIIIIC)

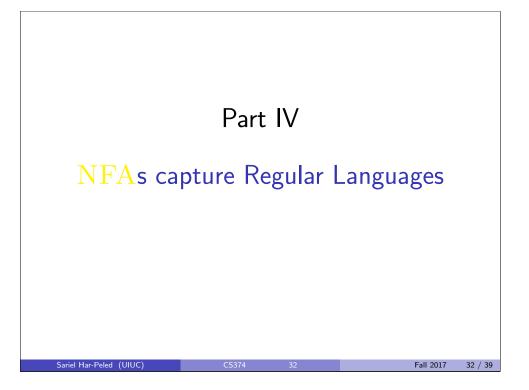
CS374

Fall 2017









Regular Languages Recap

Regular Languages

Ø regular \emptyset denotes \emptyset $\{\epsilon\}$ regular ϵ denotes $\{\epsilon\}$ $\{a\}$ regular for $a \in \Sigma$ a denote $\{a\}$

 $R_1 \cup R_2$ regular if both are $\mathbf{r}_1 + \mathbf{r}_2$ denotes $R_1 \cup R_2$ R_1R_2 regular if both are $\mathbf{r}_1\mathbf{r}_2$ denotes R_1R_2 R^* is regular if R is \mathbf{r}^* denote \mathbf{R}^*

Regular Expressions

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

NFAs and Regular Language

- \bullet For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Base cases: \emptyset , $\{\varepsilon\}$, $\{a\}$ for $a \in \Sigma$.

NFAs and Regular Language

Theorem

For every regular language **L** there is an NFA **N** such that L = L(N).

Proof strategy:

- For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

NFAs and Regular Language

- \bullet For every regular expression r show that there is a NFA N such that L(r) = L(N)
- Induction on length of r

Inductive cases:

- r_1 , r_2 regular expressions and $r = r_1 + r_2$. By induction there are NFAs N_1 , N_2 s.t $L(N_1) = L(r_1)$ and $L(N_2) = L(r_2)$. We have already seen that there is NFA N s.t $L(N) = L(N_1) \cup L(N_2)$, hence L(N) = L(r)
- $r = r_1 \cdot r_2$. Use closure of NFA languages under concatenation
- $r = (r_1)^*$. Use closure of NFA languages under Kleene star

