Algorithms & Models of Computation

CS/ECE 374, Fall 2017

Deterministic Finite Automata (DFAs)

Lecture 3

Tuesday, September 5, 2017

A simple program

Program to check if a given input string w has odd length

int n=0While input is not finished read next character c $n \leftarrow n + 1$ endWhile If (n is odd) output YES Else output NO

bit x = 0While input is not finished read next character c $x \leftarrow \text{flip}(x)$ endWhile If (x = 1) output YES Else output NO

Part I

DFA Introduction

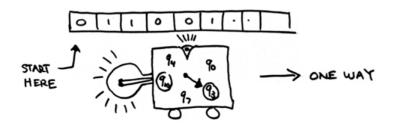
DFAs also called Finite State Machines (FSMs)

- The "simplest" model for computers?
- State machines that are common in practice.
 - Vending machines
 - Elevators
 - Digital watches
 - ► Simple network protocols
- Programs with fixed memory

Fall 2017

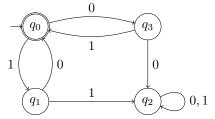
Fall 2017

Another view



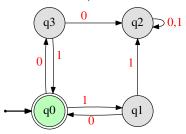
- Machine has input written on a read-only tape
- Start in specified start state
- Start at left, scan symbol, change state and move right
- Circled states are accepting
- Machine accepts input string if it is in an accepting state after scanning the last symbol.

Graphical Representation



- Where does **001** lead? **10010**?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.

Graphical Representation/State Machine



- Directed graph with nodes representing states and edge/arcs representing transitions labeled by symbols in Σ
- For each state (vertex) q and symbol $a \in \Sigma$ there is exactly one outgoing edge labeled by a
- Initial/start state has a pointer (or labeled as s, q_0 or "start")
- Some states with double circles labeled as accepting/final states

Graphical Representation

Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.

Definition

The language accepted (or recognized) by a DFA M is denote by L(M) and defined as: $L(M) = \{w \mid M \text{ accepts } w\}$.

Warning

"M accepts language L" does not mean simply that that M accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in $\Sigma^* \setminus L$.

M "recognizes" **L** is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

Sariel Har-Peled (UIUC)

CS374

9

all 2017 9 / 3

Formal Tuple Notation

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subset Q$ is the set of accepting/final states.

Common alternate notation: q_0 for start state, F for final states.

Sariel Har-Peled (UIUC)

CS374

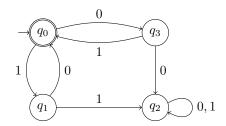
10

II 2017 10 /

DFA Notation

$$M = \left(\begin{array}{c} \overbrace{Q} \\ \end{array}, \underbrace{\Sigma}_{\text{alphabet}}, \begin{array}{c} \overbrace{\delta} \\ \end{array}, \underbrace{S}_{\text{start state}}, \begin{array}{c} \overbrace{A} \\ \end{array} \right)$$

Example



- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- 6
- $s = q_0$
- $A = \{q_0\}$

Sariel Har-Peled (UIUC) CS374 11 Fall 2017 11 /

Sariel Har-Peled (UIUC)

CS374

Fall 2017 1

Extending the transition function to strings

Given DFA $M = (Q, \Sigma, \delta, s, A)$, $\delta(q, a)$ is the state that M goes to from q on reading letter a

Useful to have notation to specify the unique state that \boldsymbol{M} will reach from \boldsymbol{q} on reading $\boldsymbol{string}\ \boldsymbol{w}$

Transition function $\delta^*: Q \times \Sigma^* \to Q$ defined inductively as follows:

- $\delta^*(q, w) = q$ if $w = \epsilon$
- $\delta^*(q, w) = \delta^*(\delta(q, a), x)$ if w = ax.

Sariel Har-Peled (UIUC

CS374

13

1 2017 13 / 3

Formal definition of language accepted by M

Definition

The language L(M) accepted by a DFA $M=(Q,\Sigma,\delta,s,A)$ is $\{w\in \Sigma^*\mid \delta^*(s,w)\in A\}.$

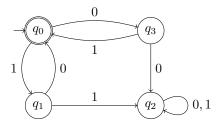
Sariel Har-Peled (UIUC)

CS374

14

II 2017 14 /

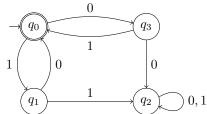
Example



What is:

- $\delta^*(q_1, \epsilon)$
- $\delta^*(q_0, 1011)$
- $\delta^*(q_1, 010)$
- $\delta^*(q_4, 10)$

Example continued



- What is L(M) if start state is changed to q_1 ?
- What is L(M) if final/accept states are set to $\{q_2, q_3\}$ instead of $\{q_0\}$?

Sariel Har-Peled (LIIIIC) CS374 15 Fall 2017 15

Sariel Har-Peled (IIIIIC)

CS374

Fall 2017

Advantages of formal specification

- Necessary for proofs
- Necessary to specify abstractly for class of languages

Exercise: Prove by induction that for any two strings u, v, any state q, $\delta^*(q, uv) = \delta^*(\delta^*(q, u), v)$.

Sariel Har-Peled (UIUC)

CS374

17

I 2017 17 / 36

Part II

Constructing DFAs

Sariel Har-Peled (UIUC)

CS374

10

1 2 0 1 7 1 8 / 3

DFAs: State = Memory

How do we design a DFA M for a given language L? That is L(M) = L.

- DFA is a like a program that has fixed amount of memory independent of input size.
- The memory of a DFA is encoded in its states
- The state/memory must capture enough information from the input seen so far that it is sufficient for the suffix that is yet to be seen (note that DFA cannot go back)

DFA Construction: Example

Assume $\Sigma = \{0,1\}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0,1\}^* \mid |w| \text{ is divisible by } 5\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ ends with 01}\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains } 001 \text{ or } 010 \text{ as substring}\}$
- $L = \{ w \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$

Har-Peled (IIIIIC) CS374 20

Fall 2017 20 / 36

DFA Construction: Example

 $L = \{ Binary numbers congruent to 0 \mod 5 \}$ Example: $1101011 = 107 = 2 \mod 5$, $1010 = 10 = 0 \mod 5$ **Key observation:**

 $w0 \mod 5 = a$ implies

 $w0 \mod 5 = 2a \mod 5$ and $w1 \mod 5 = (2a+1) \mod 5$

Part IV

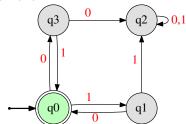
Complement

Part III

Product Construction and Closure **Properties**

Complement

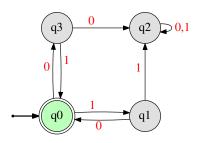
Question: If M is a DFA, is there a DFA M' such that $L(M') = \Sigma^* \setminus L(M)$? That is, are languages recognized by DFAs closed under complement?

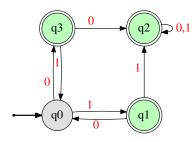


Complement

Example...

Just flip the state of the states!





Sariel Har-Peled (UIUC)

S374

25

7 25 / 3

Part V

Product Construction

Complement

Theorem

Languages accepted by DFAs are closed under complement.

Proof.

Let $M = (Q, \Sigma, \delta, s, A)$ such that L = L(M). Let $M' = (Q, \Sigma, \delta, s, Q \setminus A)$. Claim: $L(M') = \overline{L}$. Why? $\delta_M^* = \delta_{M'}^*$. Thus, for every string w, $\delta_M^*(s, w) = \delta_{M'}^*(s, w)$. $\delta_M^*(s, w) \in A \Rightarrow \delta_{M'}^*(s, w) \not\in Q \setminus A$. $\delta_M^*(s, w) \not\in A \Rightarrow \delta_{M'}^*(s, w) \in Q \setminus A$.

Sariel Har-Peled (UIUC)

CS374

2

all 2017 26

Union and Intersection

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$?

How about intersection $L(M_1) \cap L(M_2)$?

Idea from programming: on input string w

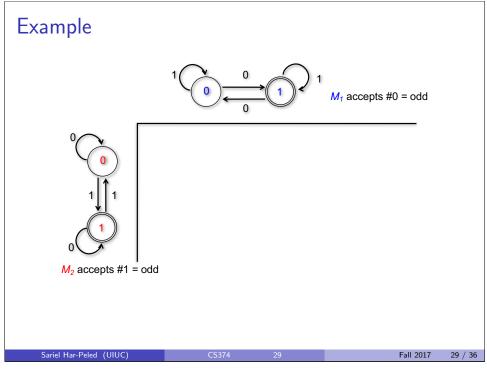
- Simulate M_1 on w
- Simulate M_2 on w
- If both accept than $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.
- Catch: We want a single DFA **M** that can only read **w** once.
- Solution: Simulate M_1 and M_2 in parallel by keeping track of states of both machines

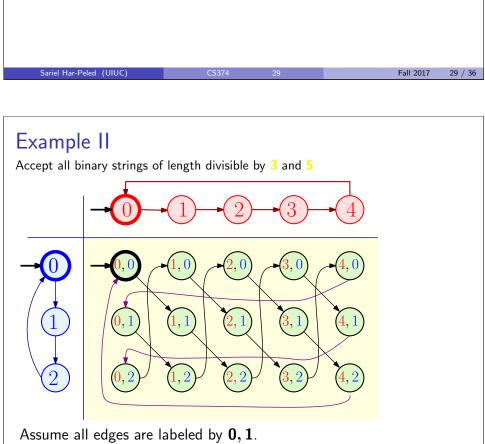
Sariel Har-Peled (UIUC) CS374 27 Fall 2017 27 /

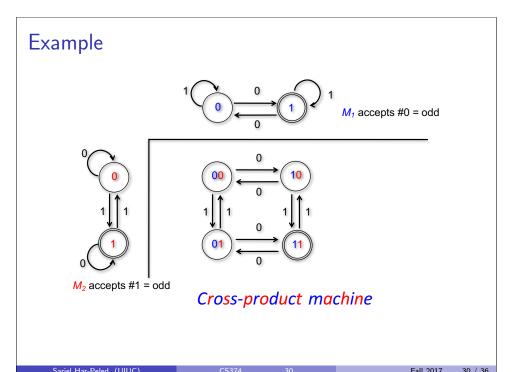
Sariel Har-Peled (UIUC)

CS374

Fall 2017







Product construction for intersection

$$M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1)$$
 and $M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

•
$$Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$$

•
$$s = (s_1, s_2)$$

ullet $\delta: Q imes oldsymbol{\Sigma} o Q$ where

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

•
$$A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

Theorem

$$L(M) = L(M_1) \cap L(M_2).$$

ariel Har-Peled (UIUC) CS374 32 Fall 2017 32 /

Correctness of construction

Lemma

For each string w, $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w))$.

Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on |w|

Sariel Har-Peled (UIUC)

CS374

33

II 2017 33 / 3

Product construction for union

$$M_1 = (Q_1, \Sigma, \delta_1, s_1, A_1)$$
 and $M_2 = (Q_1, \Sigma, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

•
$$Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$$

•
$$s = (s_1, s_2)$$

ullet $\delta:Q imesoldsymbol{\Sigma} o Q$ where

$$\delta((q_1, q_2), a) = (\delta_1(q_1, a), \delta_2(q_2, a))$$

• $A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\}$

Theorem

$$L(M) = L(M_1) \cup L(M_2).$$

Sariel Har-Peled (UIUC

S374

34

2017 34 / 3

Set Difference

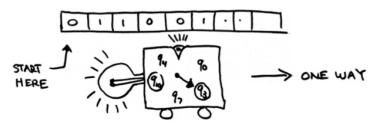
Theorem

 M_1 , M_2 DFAs. There is a DFA M such that $L(M) = L(M_1) \setminus L(M_2)$.

Exercise: Prove the above using two methods.

- Using a direct product construction
- Using closure under complement and intersection and union

Things to know: 2-way DFA



Question: Why are DFAs required to only move right? Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine's state.

- Can define a formal notion of a "2-way" DFA
- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs

6 1111 B. 1 (11116)

Fall 2017 36