Algorithms \& Models of Computation CS/ECE 374, Fall 2017

Regular Languages and Expressions

Lecture 2
Thursday, August 31, 2017

Regular Languages

A class of simple but useful languages.
The set of regular languages over some alphabet $\boldsymbol{\Sigma}$ is defined inductively as:
(1) \emptyset is a regular language.
(3) $\{\epsilon\}$ is a regular language.
© $\{a\}$ is a regular language for each $\boldsymbol{a} \in \boldsymbol{\Sigma}$. Interpreting \boldsymbol{a} as string of length 1.
(1) If L_{1}, L_{2} are regular then $L_{1} \cup L_{2}$ is regular.
(0) If L_{1}, L_{2} are regular then $L_{1} L_{2}$ is regular.
(0) If L is regular, then $L^{*}=\cup_{n \geq 0} L^{n}$ is regular.

The •* operator name is Kleene star.
Regular languages are closed under the operations of union, concatenation and Kleene star.

Part I

Regular Languages

Some simple regular languages

Lemma

If w is a string then $L=\{w\}$ is regular.
Example: $\{a b a\}$ or $\{a b b a b b a b\}$. Why?

Lemma

Every finite language L is regular.
Examples: $L=\{a, a b a a b, a b a\}$. $L=\{w| | w \mid \leq 100\}$. Why?

More Examples

- $\{w \mid w$ is a keyword in Python program $\}$
- $\{w \mid w$ is a valid date of the form $\mathrm{mm} / \mathrm{dd} / \mathrm{yy}\}$
- $\{w \mid w$ describes a valid Roman numeral $\}$
$\{I, I I, I I I, I V, V, V I, V I I, V I I I, I X, X, X I, \ldots\}$.
- $\{w \mid w$ contains "CS374" as a substring $\}$.

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
- text search (editors, Unix/grep, emacs)
- compilers: lexical analysis
- compact way to represent interesting/useful languages
- dates back to 50's: Stephen Kleene who has a star names after him.

Part II
 Regular Expressions

Inductive Definition

A regular expression \mathbf{r} over an alphabet $\boldsymbol{\Sigma}$ is one of the following:

Base cases:

- \emptyset denotes the language \emptyset
- $\boldsymbol{\epsilon}$ denotes the language $\{\boldsymbol{\epsilon}\}$.
- a denote the language $\{a\}$.

Inductive cases: If $\mathbf{r}_{\mathbf{1}}$ and $\mathbf{r}_{\mathbf{2}}$ are regular expressions denoting languages R_{1} and R_{2} respectively then,

- $\left(r_{1}+r_{2}\right)$ denotes the language $R_{1} \cup R_{2}$
- $\left(r_{1} r_{2}\right)$ denotes the language $R_{1} R_{2}$
- $\left(r_{1}\right)^{*}$ denotes the language R_{1}^{*}

Regular Languages vs Regular Expressions

Regular Languages

\emptyset regular
$\{\epsilon\}$ regular
$\{a\}$ regular for $\boldsymbol{a} \in \boldsymbol{\Sigma}$
$R_{1} \cup R_{2}$ regular if both are
$R_{1} R_{2}$ regular if both are
R^{*} is regular if R is

Regular Expressions

\emptyset denotes \emptyset
ϵ denotes $\{\epsilon\}$
a denote $\{a\}$
$\mathrm{r}_{1}+\mathrm{r}_{2}$ denotes $\mathrm{R}_{1} \cup \mathrm{R}_{2}$
$r_{1} \mathbf{r}_{2}$ denotes $R_{1} R_{2}$
\mathbf{r}^{*} denote \boldsymbol{R}^{*}

Regular expressions denote regular languages - they explicitly show the operations that were used to form the language

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression \mathbf{r} we would like to "understand" $L(\mathbf{r})$ (say by giving an English description)

Notation and Parenthesis

- For a regular expression $\mathbf{r}, \mathbf{L (r)}$ is the language denoted by \mathbf{r}. Multiple regular expressions can denote the same language!
Example: $(\mathbf{0}+\mathbf{1})$ and $(\mathbf{1}+\mathbf{0})$ denote same language $\{\mathbf{0}, \mathbf{1}\}$
- Two regular expressions \mathbf{r}_{1} and \mathbf{r}_{2} are equivalent if $L\left(r_{1}\right)=L\left(r_{2}\right)$.
- Omit parenthesis by adopting precedence order: *, concatenate, $+$.
Example: $r^{*} s+t=\left(\left(r^{*}\right) s\right)+t$
- Omit parenthesis by associativity of each of these operations. Example: $r s t=(r s) t=r(s t)$,
$r+s+t=r+(s+t)=(r+s)+t$.
- Superscript + . For convenience, define $\mathbf{r}^{+}=\mathbf{r r}^{*}$. Hence if $L(\mathrm{r})=R$ then $L\left(\mathrm{r}^{+}\right)=R^{+}$.
- Other notation: $r+s, r \cup s, r \mid s$ all denote union. $r s$ is sometimes written as $r \bullet s$.

Understanding regular expressions

- $(0+1)^{*}$: set of all strings over $\{0,1\}$
- $(0+1)^{*} 001(0+1)^{*}$: strings with 001 as substring
- $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{1 0} \mathbf{1 0}^{*} \mathbf{1 0}\right)^{*}$: strings with number of $\mathbf{1}$'s divisible by 3
- Ø0: \{\}
- $(\epsilon+\mathbf{1})(\mathbf{0 1})^{*}(\epsilon+0)$: alternating 0 s and 1 s . Alternatively, no two consecutive 0 s and no two consecutive 1 s
- $(\epsilon+\mathbf{0})(\mathbf{1}+\mathbf{1 0})^{*}$: strings without two consecutive 0s.

Creating regular expressions

- bitstrings with the pattern $\mathbf{0 0 1}$ or the pattern $\mathbf{1 0 0}$ occurring as a substring
one answer: $(0+1)^{*} \mathbf{0 0 1}(0+1)^{*}+(0+1)^{*} \mathbf{1 0 0 (0 + 1)}{ }^{*}$
- bitstrings with an even number of 1 's one answer: $\mathbf{0}^{*}+\left(\mathbf{0}^{*} \mathbf{1 0} \mathbf{0}^{*} \mathbf{1 0}^{*}\right)^{*}$
- bitstrings with an odd number of $\mathbf{1}$'s one answer: $\mathbf{0}^{*} \mathbf{1} \boldsymbol{r}$ where r is solution to previous part
- bitstrings that do not contain 011 as a substring
- Hard: bitstrings with an odd number of 1 s and an odd number of 0 s .

Regular expression identities

- $r^{*} r^{*}=r^{*}$ meaning for any regular expression r,
$L\left(r^{*} r^{*}\right)=L\left(r^{*}\right)$
- $\left(r^{*}\right)^{*}=r^{*}$
- $r r^{*}=r^{*} r$
- $(r s)^{*} r=r(s r)^{*}$
- $(r+s)^{*}=\left(r^{*} s^{*}\right)^{*}=\left(r^{*}+s^{*}\right)^{*}=\left(r+s^{*}\right)^{*}=\ldots$

Question: How does on prove an identity?
By induction. On what? Length of r since r is a string obtained from specific inductive rules.

Bit strings with odd number of 0 s and 1 s

The regular expression is

$$
\begin{aligned}
& (00+11)^{*}(01+10) \\
& \quad\left(00+11+(01+10)(00+11)^{*}(01+10)\right)^{*}
\end{aligned}
$$

(Solved using techniques to be presented in the following lectures...)

A non-regular language and other closure properties
 Consider $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\epsilon, 01,0011,000111, \ldots\}$.

Theorem

L is not a regular language.
How do we prove it?
Other questions:

- Suppose R_{1} is regular and R_{2} is regular. Is $R_{1} \cap R_{2}$ regular?
- Suppose R_{1} is regular is \bar{R}_{1} (complement of R_{1}) regular?

