Algorithms & Models of Computation

CS/ECE 374, Fall 2017

Regular Languages and **Expressions**

Lecture 2

Thursday, August 31, 2017

Part I

Regular Languages

Regular Languages

A class of simple but useful languages.

The set of regular languages over some alphabet Σ is defined inductively as:

- Ø is a regular language.
- **3** $\{a\}$ is a regular language for each $a \in \Sigma$. Interpreting a as string of length 1.
- \bigcirc If L_1, L_2 are regular then $L_1 \cup L_2$ is regular.
- \bigcirc If L_1, L_2 are regular then L_1L_2 is regular.
- **1** If L is regular, then $L^* = \bigcup_{n>0} L^n$ is regular. The ⋅* operator name is **Kleene star**.

Regular languages are closed under the operations of union, concatenation and Kleene star.

Some simple regular languages

Lemma

If w is a string then $L = \{w\}$ is regular.

Example: {aba} or {abbabbab}. Why?

Lemma

Every finite language L is regular.

Examples: $L = \{a, abaab, aba\}$. $L = \{w \mid |w| < 100\}$. Why?

More Examples

- $\{w \mid w \text{ is a keyword in Python program}\}$
- $\{w \mid w \text{ is a valid date of the form } mm/dd/yy\}$
- {w | w describes a valid Roman numeral} {I, II, III, IV, V, VI, VII, VIII, IX, X, XI, ...}.
- $\{w \mid w \text{ contains "CS374" as a substring}\}$.

Sariel Har-Peled (UIUC)

CS374

5

all 2017 5 / 1

Part II

Regular Expressions

Sariel Har-Peled (UIUC)

CS374

6

017 6 / 16

Regular Expressions

A way to denote regular languages

- simple patterns to describe related strings
- useful in
 - text search (editors, Unix/grep, emacs)
 - ► compilers: lexical analysis
 - compact way to represent interesting/useful languages
 - ► dates back to 50's: Stephen Kleene who has a star names after him.

Inductive Definition

A regular expression \mathbf{r} over an alphabet Σ is one of the following:

Base cases:

- ullet \emptyset denotes the language \emptyset
- ϵ denotes the language $\{\epsilon\}$.
- \mathbf{a} denote the language $\{a\}$.

Inductive cases: If r_1 and r_2 are regular expressions denoting languages R_1 and R_2 respectively then,

- $(\mathbf{r}_1 + \mathbf{r}_2)$ denotes the language $R_1 \cup R_2$
- (r_1r_2) denotes the language R_1R_2
- $(r_1)^*$ denotes the language R_1^*

CS374 8

Fall 2017 8 / 1

Regular Languages vs Regular Expressions

Regular Languages

 R^* is regular if R is

Ø regular $\{\epsilon\}$ regular $\{a\}$ regular for $a \in \Sigma$ $R_1 \cup R_2$ regular if both are R_1R_2 regular if both are

Regular Expressions

 \emptyset denotes \emptyset ϵ denotes $\{\epsilon\}$ a denote $\{a\}$ $\mathbf{r}_1 + \mathbf{r}_2$ denotes $R_1 \cup R_2$ $\mathbf{r}_1\mathbf{r}_2$ denotes R_1R_2 \mathbf{r}^* denote \mathbf{R}^*

Regular expressions denote regular languages — they explicitly show the operations that were used to form the language

Skills

- Given a language L "in mind" (say an English description) we would like to write a regular expression for L (if possible)
- Given a regular expression \mathbf{r} we would like to "understand" $L(\mathbf{r})$ (say by giving an English description)

Notation and Parenthesis

- For a regular expression \mathbf{r} , $L(\mathbf{r})$ is the language denoted by \mathbf{r} . Multiple regular expressions can denote the same language! **Example:** (0+1) and (1+0) denote same language $\{0,1\}$
- Two regular expressions r_1 and r_2 are equivalent if $L(\mathbf{r}_1) = L(\mathbf{r}_2).$
- Omit parenthesis by adopting precedence order: *, concatenate, +.

Example: $r^*s + t = ((r^*)s) + t$

- Omit parenthesis by associativity of each of these operations. Example: rst = (rs)t = r(st), r + s + t = r + (s + t) = (r + s) + t.
- Superscript +. For convenience, define $r^+ = rr^*$. Hence if $L(\mathbf{r}) = R$ then $L(\mathbf{r}^+) = R^+$.
- Other notation: r + s, $r \cup s$, $r \mid s$ all denote union. rs is sometimes written as $r \cdot s$.

Understanding regular expressions

- $(0+1)^*$: set of all strings over $\{0,1\}$
- (0+1)*001(0+1)*: strings with 001 as substring
- $0^* + (0^*10^*10^*10^*)^*$: strings with number of 1's divisible by 3
- Ø0: {}
- $(\epsilon + 1)(01)^*(\epsilon + 0)$: alternating 0s and 1s. Alternatively, no two consecutive 0s and no two consecutive 1s
- $(\epsilon + 0)(1 + 10)^*$: strings without two consecutive 0s.

Creating regular expressions

• bitstrings with the pattern **001** or the pattern **100** occurring as a substring

one answer: $(0+1)^*001(0+1)^* + (0+1)^*100(0+1)^*$

- bitstrings with an even number of 1's one answer: $0^* + (0^*10^*10^*)^*$
- bitstrings with an odd number of 1's one answer: 0*1r where r is solution to previous part
- bitstrings that do not contain **011** as a substring
- Hard: bitstrings with an odd number of 1s and an odd number of 0s.

The regular expression is

$$(00 + 11)^*(01 + 10)$$

 $(00 + 11 + (01 + 10)(00 + 11)^*(01 + 10))^*$

Bit strings with odd number of 0s and 1s

(Solved using techniques to be presented in the following lectures...)

Regular expression identities

- $r^*r^* = r^*$ meaning for any regular expression r, $L(r^*r^*) = L(r^*)$
- $(r^*)^* = r^*$
- $rr^* = r^*r$
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Question: How does on prove an identity?

By induction. On what? Length of r since r is a string obtained from specific inductive rules.

A non-regular language and other closure properties

Consider $L = \{0^n 1^n \mid n > 0\} = \{\epsilon, 01, 0011, 000111, \ldots\}.$

Theorem

L is not a regular language.

How do we prove it?

Other questions:

- Suppose R_1 is regular and R_2 is regular. Is $R_1 \cap R_2$ regular?
- Suppose R_1 is regular is $\bar{R_1}$ (complement of R_1) regular?