Algorithms & Models of Computation CS/ECE 374, Fall 2017

Strings and Languages

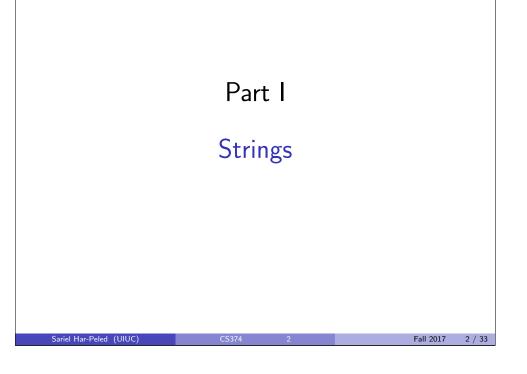
Lecture 1b Tuesday, August 29, 2017

String Definitions

Sariel Har-Peled (UIUC

Definition

- An alphabet is a finite set of symbols. For example $\Sigma = \{0, 1\}, \Sigma = \{a, b, c, \dots, z\},$
 - $\Sigma = \{ \langle \text{moveforward} \rangle, \langle \text{moveback} \rangle \}$ are alphabets.
- (a) ϵ is the empty string.
- The length of a string w (denoted by |w|) is the number of symbols in w. For example, |101| = 3, $|\epsilon| = 0$
- So For integer $n \ge 0$, Σⁿ is set of all strings over Σ of length n. Σ* is th set of all strings over Σ.



Formally

Formally strings are defined recursively/inductively:

- ϵ is a string of length **0**
- ax is a string if $a \in \Sigma$ and x is a string. The length of ax is 1 + |x|

The above definition helps prove statements rigorously via induction.

• Alternative recursive definiton useful in some proofs: xa is a string if $a \in \Sigma$ and x is a string. The length of xa is 1 + |x|

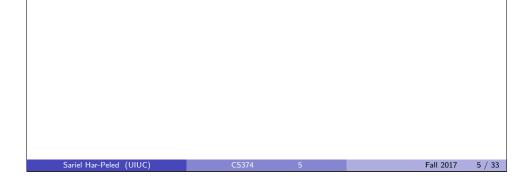
Convention

- a, b, c, \ldots denote elements of Σ
- w, x, y, z, \ldots denote strings
- A, B, C, ... denote sets of strings

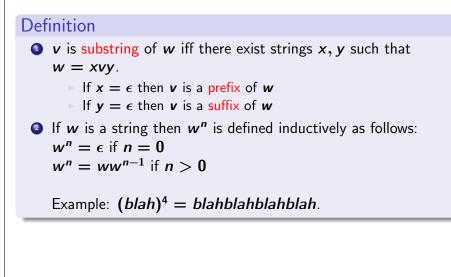
Fall 2017

Much ado about nothing

- ϵ is a string containing no symbols. It is not a set
- {e} is a set containing one string: the empty string. It is a set, not a string.
- \emptyset is the empty set. It contains no strings.
- {Ø} is a set containing one element, which itself is a set that contains no elements.



Substrings, prefix, suffix, exponents



Concatenation and properties

- If x and y are strings then xy denotes their concatenation. Formally we define concatenation recursively based on definition of strings:
 - xy = y if $x = \epsilon$
 - xy = a(wy) if x = aw

Sometimes xy is written as $x \bullet y$ to explicitly note that \bullet is a binary operator that takes two strings and produces another string.

- concatenation is associative: (uv)w = u(vw) and hence we write uvw
- **not** commutative: uv not necessarily equal to vu
- identity element: $\epsilon u = u\epsilon = u$

Set Concatenation

Definition

Given two sets A and B of strings (over some common alphabet Σ) the concatenation of A and B is defined as:

$$AB = \{xy \mid x \in A, y \in B\}$$

Example: $A = \{fido, rover, spot\}, B = \{fluffy, tabby\}$ then $AB = \{fidofluffy, fidotabby, roverfluffy, \ldots\}$.

CS374

Fall 2017

$\boldsymbol{\Sigma}^*$ and languages

Definition

- Σⁿ is the set of all strings of length n. Defined inductively as follows:
 - $\Sigma^{n} = \{\epsilon\} \text{ if } n = 0$ $\Sigma^{n} = \Sigma \Sigma^{n-1} \text{ if } n > 0$
- $\ \, {\bf } {\bf$
- **3** $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$ is the set of non-empty strings.

Definition

A language L is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Canonical order and countability of strings

Definition

Sariel Har-Peled (UIUC

An set A is countably infinite if there is a bijection f between the natural numbers and A.

Alternatively: A is countably infinite if A is an infinite set and there enumeration of elements of A

Theorem

 $\boldsymbol{\Sigma}^*$ is countably infinite for every finite $\boldsymbol{\Sigma}$.

Enumerate strings in order of increasing length and for each given length enumerate strings in dictionary order (based on some fixed ordering of Σ).

Example: $\{0,1\}^* = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, \ldots\}$. $\{a, b, c\}^* = \{\epsilon, a, b, c, aa, ab, ac, ba, bb, bc, \ldots\}$

Fall 2017

Exercise

Answer the following questions taking $\Sigma = \{0, 1\}$.

- What is Σ^0 ?
- **2** How many elements are there in Σ^3 ?
- **3** How many elements are there in Σ^n ?
- What is the length of the longest string in Σ? Does Σ* have strings of infinite length?
- So If |u| = 2 and |v| = 3 then what is $|u \cdot v|$?
- **(**) Let u be an arbitrary string Σ^* . What is ϵu ? What is $u\epsilon$?
- Is uv = vu for every $u, v \in \Sigma^*$?
- **3** Is (uv)w = u(vw) for every $u, v, w \in \Sigma^*$?

Exercise

Sariel Har-Peled (11110

Question: Is $\Sigma^* \times \Sigma^* = \{(x, y) \mid x, y \in \Sigma^*\}$ countably infinite?

Question: Is $\Sigma^* \times \Sigma^* \times \Sigma^* = \{(x, y, z) \mid x, y, x \in \Sigma^*\}$ countably infinite?

5374 12

Fall 2017

10 / 33

Inductive proofs on strings

Inductive proofs on strings and related problems follow inductive definitions.

Definition

The reverse w^R of a string w is defined as follows:

•
$$w^R = \epsilon$$
 if $w = \epsilon$

• $w^R = x^R a$ if w = ax for some $a \in \Sigma$ and string x

Theorem

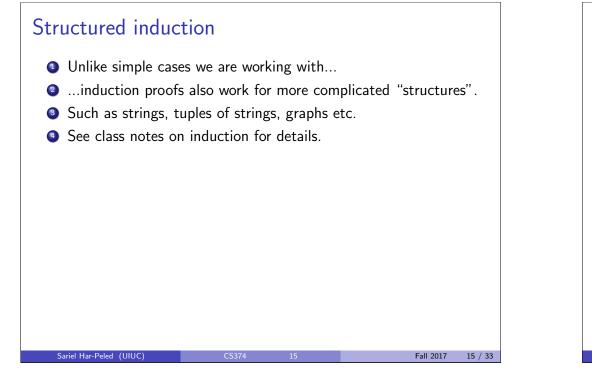
Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Example:
$$(dog \bullet cat)^R = (cat)^R \bullet (dog)^R = tacgod$$
.

Sariel Har-Peled (UIUC)

Fall 2017

13 / 3



Principle of mathematical induction

Induction is a way to prove statements of the form $\forall n \ge 0, P(n)$ where P(n) is a statement that holds for integer n.

Example: Prove that $\sum_{i=0}^{n} i = n(n+1)/2$ for all n.

Induction template:

- Base case: Prove P(0)
- Induction hypothesis: Let k > 0 be an arbitrary integer. Assume that P(n) holds for any $k \le n$.
- Induction Step: Prove that P(n) holds, for n = k + 1.

Proving the theorem

Theorem

Sariel Har-Peled (UIUC

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof: by induction. On what?? |uv| = |u| + |v|? |u|? |v|?

What does it mean to say "induction on |u|"?

Fall 2017

14 / 33

By induction on **u**

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| means that we are proving the following. **Base case:** Let u be an arbitrary stirng of length 0. $u = \epsilon$ since there is only one such string. Then

 $(uv)^R = (\epsilon v)^R = v^R = v^R \epsilon = v^R \epsilon^R = v^R u^R$

Induction hypothesis: $\forall n \geq 0$, for any string u of length n (for all strings $v \in \Sigma^*$, $(uv)^R = v^R u^R$).

Note that we did not assume anything about ν , hence the statement holds for all $\nu \in \Sigma^*$.

Sariel Har-Peled (UIUC)

Fall 2017

17 / 33

Induction on v

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |v| means that we are proving the following. Induction hypothesis: $\forall n \ge 0$, for any string v of length n (for all strings $u \in \Sigma^*$, $(uv)^R = v^R u^R$).

Base case: Let v be an arbitrary stirng of length **0**. $v = \epsilon$ since there is only one such string. Then

$$(uv)^{R} = (u\epsilon)^{R} = u^{R} = \epsilon u^{R} = \epsilon^{R} u^{R} = v^{R} u^{R}$$

Inductive step

- Let u be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |u| = n > 0 we have u = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

(uv) ^F	= = = =	$((ay)v)^{R}$ $(a(yv))^{R}$ $(yv)^{R}a^{R}$ $(v^{R}y^{R})a^{R}$ $v^{R}(y^{R}a^{R})$ $v^{R}(ay)^{R}$ $v^{R}(ay)^{R}$			
Sariel Har-Peled (UIUC)		CS374	18	Fall 2017	18 / 33

Inductive step

- Let v be an arbitrary string of length n > 0. Assume inductive hypothesis holds for all strings w of length < n.
- Since |v| = n > 0 we have v = ay for some string y with |y| < n and $a \in \Sigma$.
- Then

$$(uv)^{R} = (u(ay))^{R}$$

= $((ua)y)^{R}$
= $y^{R}(ua)^{R}$
= ??

Cannot simplify $(ua)^R$ using inductive hypothesi. Can simplify if we extend base case to include n = 0 and n = 1. However, n = 1 itself requires induction on |u|!

19

C 527

Induction on $|\mathbf{u}| + |\mathbf{v}|$

Theorem

Prove that for any strings $u, v \in \Sigma^*$, $(uv)^R = v^R u^R$.

Proof by induction on |u| + |v| means that we are proving the following. Induction hypothesis: $\forall n > 0$, for any $u, v \in \Sigma^*$ with

induction hypothesis: $\forall n \ge 0$, for any $u, v \in \Sigma^*$ with $|u| + |v| \le n$, $(uv)^R = v^R u^R$.

Base case: n = 0. Let u, v be an arbitrary stirngs such that |u| + |v| = 0. Implies $u, v = \epsilon$.

Inductive stepe: n > 0. Let u, v be arbitrary strings such that |u| + |v| = n.

Sariel Har-Peled (UIUC)

Fall 2017

21 / 33

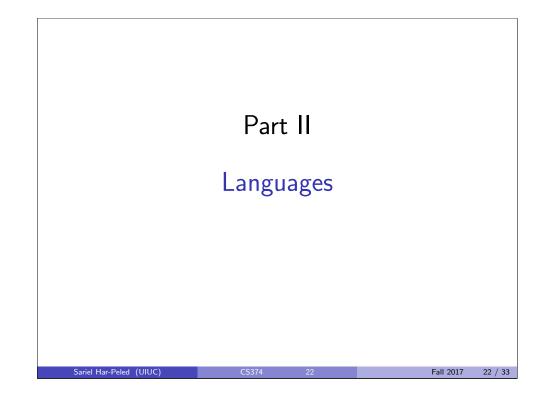
Languages

Definition

A language *L* is a set of strings over Σ . In other words $L \subseteq \Sigma^*$.

Standard set operations apply to languages.

- For languages A, B the concatenation of A, B is $AB = \{xy \mid x \in A, y \in B\}.$
- For languages A, B, their union is $A \cup B$, intersection is $A \cap B$, and difference is $A \setminus B$ (also written as A B).
- For language $A \subseteq \Sigma^*$ the complement of A is $\overline{A} = \Sigma^* \setminus A$.



Exponentiation, Kleene star etc

Definition

For a language $L \subseteq \Sigma^*$ and $n \in \mathbb{N}$, define L^n inductively as follows.

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L \bullet (L^{n-1}) & \text{if } n > 0 \end{cases}$$

And define
$$L^* = \bigcup_{n>0} L^n$$
, and $L^+ = \bigcup_{n>1} L^n$

24

Exercise

Problem

Answer the following questions taking $A, B \subseteq \{0, 1\}^*$.

- $Is \epsilon = \{\epsilon\}? \ Is \emptyset = \{\epsilon\}?$
- **2** What is $\emptyset \bullet A$? What is $A \bullet \emptyset$?
- **3** What is $\{\epsilon\} \bullet A$? And $A \bullet \{\epsilon\}$?
- If |A| = 2 and |B| = 3, what is $|A \cdot B|$?

Languages and Computation

What are we interested in computing? Mostly functions.

Informal definition: An algorithm \mathcal{A} computes a function $f: \Sigma^* \to \Sigma^*$ if for all $w \in \Sigma^*$ the algorithm \mathcal{A} on input w terminates in a finite number of steps and outputs f(w).

Examples of functions:

Sariel Har-Peled (IIIIIC

- Numerical functions: length, addition, multiplication, division etc
- Given graph G and s, t find shortest paths from s to t
- Given program *M* check if *M* halts on empty input
- Posts Correspondence problem

Exercise

Problem

Consider languages over $\Sigma = \{0, 1\}$.

- What is \emptyset^0 ?
- If |L| = 2, then what is $|L^4|$?
- 3 What is \emptyset^* , $\{\epsilon\}^*$, ϵ^* ?
- For what **L** is **L*** finite?
- **(3)** What is \emptyset^+ , $\{\epsilon\}^+$, ϵ^+ ?

Sariel Har-Peled (UIUC)	CS374	26	Fall

Languages and Computation

Definition

A function f over Σ^* is a boolean if $f: \Sigma^* \to \{0, 1\}$.

Observation: There is a bijection between boolean functions and languages.

- Given boolean function $f: \Sigma^* \to \{0, 1\}$ define language $L_f = \{w \in \Sigma^* \mid f(w) = 1\}$
- Given language $L \subseteq \Sigma^*$ define boolean function $f : \Sigma^* \to \{0, 1\}$ as follows: f(w) = 1 if $w \in L$ and f(w) = 0 otherwise.

27

Fall 2017

25 / 33

CS374

26 / 33

2017

Language recognition problem

Definition

For a language $L \subseteq \Sigma^*$ the language recognition problem associate with L is the following: given $w \in \Sigma^*$, is $w \in L$?

- Equivalent to the problem of "computing" the function f_L .
- Language recognition is same as boolean function computation
- How difficult is a function f to compute? How difficult is the recognizing L_f?

Why two different views? Helpful in understanding different aspects?

Cantor's diagonalization argument

Theorem (Cantor)

 $\mathbb{P}(\mathbb{N})$ is not countably infinite.

- Suppose $\mathbb{P}(\mathbb{N})$ is countable infinite. Let S_1, S_2, \ldots , be an enumeration of all subsets of numbers.
- Let D be the following diagonal subset of numbers.

 $D = \{i \mid i \notin S_i\}$

- Since D is a set of numbers, by assumption, $D = S_j$ for some j.
- Question: Is $j \in D$?

How many languages are there?

Recall:

Definition

An set A is countably infinite if there is a bijection f between the natural numbers and A.

Theorem

 Σ^* is countably infinite for every finite Σ .

The set of all languages is $\mathbb{P}(\Sigma^*)$ the power set of Σ^*

Theorem (Cantor)

 $\mathbb{P}(\Sigma^*)$ is not countably infinite for any finite Σ .

Consequences for Computation

- How many *C* programs are there? The set of *C* programs is countably infinite since each of them can be represented as a string over a finite alphabet.
- How many languages are there? Uncountably many!
- Hence some (in fact almost all!) languages/boolean functions do not have any *C* program to recognize them.

Questions:

- Maybe interesting languages/functions have *C* programs and hence computable. Only uninteresting langues uncomputable?
- Why should *C* programs be the definition of computability?
- Ok, there are difficult problems/languages. what lanauges are computable and which have efficient algorithms?

3

Fall 2017 31 / 33

Fall 2017

32

Fall 2017

30 / 33

Easy languages

Definition

A language $L \subseteq \Sigma^*$ is finite if |L| = n for some integer n.

Exercise: Prove the following.

Theorem

The set of all finite languages is countably infinite.

Sariel Har-Peled (UIUC)

33

Fall 2017 33 / 33

