Algorithms \& Models of Computation

 CS/ECE 374, Fall 2017
Circuit satisfiability and Cook-Levin Theorem

Lecture 25
Thursday, December 7, 2017

25.1: Recap

Recap

NP: languages that have non-deterministic polynomial time algorithms

Theorem (Cook-Levin)

SAT is NP-Comnlete

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language \boldsymbol{L} is NP-Complete iff

- \boldsymbol{L} is in NP
- for every \boldsymbol{L}^{\prime} in $N P, \boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$
\boldsymbol{L} is NP-Hard if for every \boldsymbol{L}^{\prime} in $N P, \boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$.

Theorem (Cook-Levin)

SAT is NP-Comnlete

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language \boldsymbol{L} is NP-Complete iff

- \boldsymbol{L} is in NP
- for every \boldsymbol{L}^{\prime} in $N P, \boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$
\boldsymbol{L} is $\mathbf{N P}$-Hard if for every \boldsymbol{L}^{\prime} in $\mathbf{N P}, \boldsymbol{L}^{\prime} \leq_{P} \boldsymbol{L}$.

Theorem (Cook-Levin)
 SAT is NP-Comnlete

Recap

NP: languages that have non-deterministic polynomial time algorithms

A language L is NP-Complete iff

- L is in NP
- for every \boldsymbol{L}^{\prime} in $N P, \boldsymbol{L}^{\prime} \leq_{p} \boldsymbol{L}$
\boldsymbol{L} is $\mathbf{N P}$-Hard if for every \boldsymbol{L}^{\prime} in $\mathbf{N P}, \boldsymbol{L}^{\prime} \leq_{\boldsymbol{P}} \boldsymbol{L}$.

Theorem (Cook-Levin)

SAT is NP-Complete.

Pictorial View

P and NP

Possible scenarios:

(1) $P=N P$.
(2) $P \neq N P$

Question: Suppose $P \neq N P$. Is every problem in NP $\backslash P$ also

 NP-Complete?
Theorem (Ladner)

If $\mathbf{P} \neq \mathrm{NP}$ then there is a problem/language $\boldsymbol{X} \in \mathrm{NP} \backslash \mathrm{P}$ such that \boldsymbol{X} is not NP-Complete.

P and NP

Possible scenarios:
(1) $P=N P$.
(2) $P \neq N P$

Question: Suppose $\mathbf{P} \neq \mathbf{N P}$. Is every problem in NP $\backslash \mathbf{P}$ also NP-Complete?

Theorem (Ladner)
 If $\mathbf{P} \neq \mathrm{NP}$ then there is a problem/language $\boldsymbol{X} \in \mathrm{NP} \backslash \mathrm{P}$ such that X is not NP-Complete.

P and NP

Possible scenarios:
(1) $P=N P$.
(2) $P \neq N P$

Question: Suppose $\mathbf{P} \neq \mathbf{N P}$. Is every problem in NP $\backslash \mathbf{P}$ also NP-Complete?

Theorem (Ladner)
 If $\mathbf{P} \neq \mathbf{N P}$ then there is a problem/language $\boldsymbol{X} \in \mathbf{N P} \backslash \mathbf{P}$ such that \boldsymbol{X} is not NP-Complete.

Today

NP-Completeness of three problems:

- 3-Color
- Circuit SAT

Important: understanding the problems and that they are hard.
Proofs and reductions will be sketchy and mainly to give a flavor

25.2: Circuit SAT

Circuits

Definition

A circuit is a directed acyclic graph with

(1) Input vertices (without incoming edges) labelled with 0, $\mathbf{1}$ or a distinct variable.
(2) Every other vertex is labelled \vee, \wedge or \neg.
(3) Single node output vertex with no outgoing edges.

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1 ?}$

Claim

(1) Certificate:
(2) Certifier

CSAT: Circuit Satisfaction

Definition (Circuit Satisfaction (CSAT).)

Given a circuit as input, is there an assignment to the input variables that causes the output to get value $\mathbf{1}$?

Claim

CSAT is in NP.

(1) Certificate: Assignment to input variables.
(2) Certifier: Evaluate the value of each gate in a topological sort of DAG and check the output gate value.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem
 $S A T \leq_{P} 3 S A T \leq_{P} C S A T$.

Theorem
$\boldsymbol{C S A T} \leq_{p} S A T \leq_{p} 3 S A T$.

Circuit SAT vs SAT

CNF formulas are a rather restricted form of Boolean formulas.

Circuits are a much more powerful (and hence easier) way to express Boolean formulas

However they are equivalent in terms of polynomial-time solvability.

Theorem

$S A T \leq_{p} 3 S A T \leq_{p} C S A T$.

Theorem

$$
C S A T \leq_{P} S A T \leq_{P} 3 S A T .
$$

Converting a CNF formula into a Circuit

3SAT $\leq_{\text {p }}$ CSAT

Given 3CNF formula $\boldsymbol{\varphi}$ with \boldsymbol{n} variables and \boldsymbol{m} clauses, create a Circuit C.

- Inputs to \boldsymbol{C} are the \boldsymbol{n} boolean variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$
- Use NOT gate to generate literal $\neg x_{i}$ for each variable x_{i}
- For each clause ($\ell_{1} \vee \ell_{2} \vee \ell_{3}$) use two OR gates to mimic formula
- Combine the outputs for the clauses using AND gates to obtain the final output

Example

3 SAT \leq_{p} CSAT

$$
\varphi=\left(x_{1} \vee \vee x_{3} \vee x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4}\right)
$$

Converting a circuit into a CNF formula

Label the nodes

(A) Input circuit

Inputs
(B) Label the nodes.

The other direction: CSAT \leq_{p} 3SAT

(1) Now: CSAT \leq_{P} SAT
(2) More "interesting" direction.

Converting a circuit into a CNF formula

 Introduce a variable for each node
(B) Label the nodes.

(C) Introduce var for each node.

Converting a circuit into a CNF formula

Write a sub-formula for each variable that is true if the var is computed correctly.

$$
\begin{aligned}
& x_{k} \quad(\text { Demand a sat' assignment!) } \\
& x_{k}=x_{i} \wedge x_{j} \\
& x_{j}=x_{g} \wedge x_{h} \\
& x_{i}=\neg x_{f} \\
& x_{h}=x_{d} \vee x_{e} \\
& x_{g}=x_{b} \vee x_{c} \\
& x_{f}=x_{a} \wedge x_{b} \\
& x_{d}=0 \\
& x_{a}=1
\end{aligned}
$$

(D) Write a sub-formula for each variable that is true if the var is computed correctly.

Converting a circuit into a CNF formula

Convert each sub-formula to an equivalent CNF formula

x_{k}	x_{k}
$x_{k}=x_{i} \wedge x_{j}$	$\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right)$
$x_{j}=x_{g} \wedge x_{h}$	$\left(\neg x_{j} \vee x_{g}\right) \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right)$
$x_{i}=\neg x_{f}$	$\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee \neg x_{f}\right)$
$x_{h}=x_{d} \vee x_{e}$	$\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right)$
$x_{g}=x_{b} \vee x_{c}$	$\left(x_{g} \vee \neg x_{b}\right) \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right)$
$x_{f}=x_{a} \wedge x_{b}$	$\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right)$
$x_{d}=0$	$\neg x_{d}$
$x_{a}=1$	x_{a}

Converting a circuit into a CNF formula

Take the conjunction of all the CNF sub-formulas

$$
\begin{aligned}
& x_{k} \wedge\left(\neg x_{k} \vee x_{i}\right) \wedge\left(\neg x_{k} \vee x_{j}\right) \\
& \wedge\left(x_{k} \vee \neg x_{i} \vee \neg x_{j}\right) \wedge\left(\neg x_{j} \vee x_{g}\right) \\
& \wedge\left(\neg x_{j} \vee x_{h}\right) \wedge\left(x_{j} \vee \neg x_{g} \vee \neg x_{h}\right) \\
& \wedge\left(x_{i} \vee x_{f}\right) \wedge\left(\neg x_{i} \vee \neg x_{f}\right) \\
& \wedge\left(x_{h} \vee \neg x_{d}\right) \wedge\left(x_{h} \vee \neg x_{e}\right) \\
& \wedge\left(\neg x_{h} \vee x_{d} \vee x_{e}\right) \wedge\left(x_{g} \vee \neg x_{b}\right) \\
& \wedge\left(x_{g} \vee \neg x_{c}\right) \wedge\left(\neg x_{g} \vee x_{b} \vee x_{c}\right) \\
& \wedge\left(\neg x_{f} \vee x_{a}\right) \wedge\left(\neg x_{f} \vee x_{b}\right) \\
& \wedge\left(x_{f} \vee \neg x_{a} \vee \neg x_{b}\right) \wedge\left(\neg x_{d}\right) \wedge x_{a}
\end{aligned}
$$

We got a CNF formula that is satisfiable if and only if the original circuit is satisfiable.

Reduction: CSAT \leq_{p} SAT

(1) For each gate (vertex) \boldsymbol{v} in the circuit, create a variable $\boldsymbol{x}_{\boldsymbol{v}}$
(2) Case $\neg: \boldsymbol{v}$ is labeled \neg and has one incoming edge from \boldsymbol{u} (so $\boldsymbol{x}_{v}=\neg \boldsymbol{x}_{u}$). In SAT formula generate, add clauses $\left(\boldsymbol{x}_{\boldsymbol{u}} \vee \boldsymbol{x}_{v}\right)$, $\left(\neg x_{u} \vee \neg x_{v}\right)$. Observe that

$$
x_{v}=\neg x_{u} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(x_{u} \vee x_{v}\right) \\
& \left(\neg x_{u} \vee \neg x_{v}\right)
\end{aligned} \text { both true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) Case \vee : So $x_{v}=x_{u} \vee x_{w}$. In SAT formula generated, add clauses $\left(x_{v} \vee \neg \boldsymbol{x}_{u}\right),\left(\boldsymbol{x}_{v} \vee \neg \boldsymbol{x}_{w}\right)$, and $\left(\neg \boldsymbol{x}_{v} \vee \boldsymbol{x}_{u} \vee \boldsymbol{x}_{w}\right)$. Again, observe that

$$
\left(x_{v}=x_{u} \vee x_{w}\right) \text { is true } \Longleftrightarrow \quad \begin{aligned}
& \left(x_{v} \vee \neg x_{u}\right), \\
& \left(x_{v} \vee \neg x_{w}\right), \\
& \left(\neg x_{v} \vee x_{u} \vee x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) Case \wedge : So $x_{v}=x_{u} \wedge x_{w}$. In SAT formula generated, add clauses $\left(\neg x_{v} \vee x_{u}\right),\left(\neg x_{v} \vee x_{w}\right)$, and $\left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)$. Again observe that

$$
x_{v}=x_{u} \wedge x_{w} \text { is true } \Longleftrightarrow \begin{aligned}
& \left(\neg x_{v} \vee x_{u}\right), \\
& \left(\neg x_{v} \vee x_{w}\right), \\
& \left(x_{v} \vee \neg x_{u} \vee \neg x_{w}\right)
\end{aligned} \quad \text { all true. }
$$

Reduction: CSAT \leq_{p} SAT

Continued...

(1) If \boldsymbol{v} is an input gate with a fixed value then we do the following. If $\boldsymbol{x}_{\boldsymbol{v}}=\mathbf{1}$ add clause $\boldsymbol{x}_{\boldsymbol{v}}$. If $\boldsymbol{x}_{\boldsymbol{v}}=\mathbf{0}$ add clause $\neg \boldsymbol{x}_{\boldsymbol{v}}$
(2) Add the clause $\boldsymbol{x}_{\boldsymbol{v}}$ where \boldsymbol{v} is the variable for the output gate

Correctness of Reduction

Need to show circuit C is satisfiable iff φ_{C} is satisfiable
\Rightarrow Consider a satisfying assignment \boldsymbol{a} for \boldsymbol{C}
(1) Find values of all gates in \boldsymbol{C} under \boldsymbol{a}
(2) Give value of gate \boldsymbol{v} to variable $\boldsymbol{x}_{\boldsymbol{v}}$; call this assignment \boldsymbol{a}^{\prime}
(3) a^{\prime} satisfies φ_{C} (exercise)
\Leftarrow Consider a satisfying assignment \boldsymbol{a} for φ_{C}
(1) Let \boldsymbol{a}^{\prime} be the restriction of \boldsymbol{a} to only the input variables
(2) Value of gate \boldsymbol{v} under \boldsymbol{a}^{\prime} is the same as value of $\boldsymbol{x}_{\boldsymbol{v}}$ in \boldsymbol{a}
(3) Thus, \boldsymbol{a}^{\prime} satisfies \boldsymbol{C}

List of NP-Complete Problems to Remember

Problems

© SAT
(2) 3SAT
© CircuitSAT
© Independent Set

- Clique
(0) Vertex Cover
(1) Hamilton Cycle and Hamilton Path in both directed and undirected graphs
(3 3Color and Color

25.3: NP-Completeness of Graph Coloring

Graph Coloring

Problem: Graph Coloring

Instance: $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$: Undirected graph, integer \boldsymbol{k}. Question: Can the vertices of the graph be colored using \boldsymbol{k} colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(\boldsymbol{V}, \boldsymbol{E})$: Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph 3-Coloring

Problem: 3 Coloring

Instance: $G=(\boldsymbol{V}, \boldsymbol{E})$: Undirected graph.
Question: Can the vertices of the graph be colored using 3 colors so that vertices connected by an edge do not get the same color?

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}.
(2) G can be partitioned into k independent sets iff G is k-colorable.
(3) Graph 2-Coloring can be decided in polynomial time.
(9) G is 2 -colorable iff G is bipartite!
(© There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}.
(2) G can be partitioned into k independent sets iff G is k-colorable.
(3) Graph 2-Coloring can be decided in polynomial time.
(9) G is 2 -colorable iff G is bipartite!
© There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}.
(2) \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.
© Graph 2-Coloring can be decided in polynomial time.
(9) G is 2 -colorable iff G is bipartite!
(6) There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier).

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}.
(2) \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.
(3) Graph 2-Coloring can be decided in polynomial time.
(a) G is 2 -colorable iff G is bipartite!
(0) There is a linear time algorithm to check if \boldsymbol{G} is bipartite using BFS (we saw this earlier).

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}.
(2) \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.
(3) Graph 2-Coloring can be decided in polynomial time.
(4) \boldsymbol{G} is 2 -colorable iff \boldsymbol{G} is bipartite!
(© There is a linear time algorithm to check if G is bipartite using BFS (we saw this earlier)

Graph Coloring

(1) Observation: If \boldsymbol{G} is colored with \boldsymbol{k} colors then each color class (nodes of same color) form an independent set in \boldsymbol{G}.
(2) \boldsymbol{G} can be partitioned into \boldsymbol{k} independent sets iff \boldsymbol{G} is \boldsymbol{k}-colorable.
(3) Graph 2-Coloring can be decided in polynomial time.
(4) \boldsymbol{G} is 2 -colorable iff \boldsymbol{G} is bipartite!
(5) There is a linear time algorithm to check if \boldsymbol{G} is bipartite using BFS (we saw this earlier).

25.3.1: Problems related to graph coloring

Graph Coloring and Register Allocation

Register Allocation

Assign variables to (at most) \boldsymbol{k} registers such that variables needed at the same time are not assigned to the same register

Interference Graph

Vertices are variables, and there is an edge between two vertices, if the two variables are "live" at the same time.

Observations

- [Chaitin] Register allocation problem is equivalent to coloring the interference graph with \boldsymbol{k} colors
- Moreover, 3-COLOR \leq_{p} k-Register Allocation, for any $k \geq 3$

Class Room Scheduling

(1) Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?
(2) Reduce to Graph \boldsymbol{k}-Coloring problem
(3) Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes i and j conflict
(9) Exercise: G is k-colorable iff k rooms are sufficient.

Class Room Scheduling

(1) Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?
(2) Reduce to Graph k-Coloring problem
(3) Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class i
- an edge between v_{i} and v_{j} if classes i and j conflict
(9) Exercise: \boldsymbol{G} is \boldsymbol{k}-colorable iff \boldsymbol{k} rooms are sufficient.

Class Room Scheduling

(1) Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?
(2) Reduce to Graph \boldsymbol{k}-Coloring problem
(3) Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes i and \boldsymbol{j} conflict
(9) Exercise: G is k-colorable iff k rooms are sufficient.

Class Room Scheduling

(1) Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?
(2) Reduce to Graph \boldsymbol{k}-Coloring problem
(3) Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes \boldsymbol{i} and \boldsymbol{j} conflict
(9) Exercise: G is k-colorable iff k rooms are sufficient.

Class Room Scheduling

(1) Given \boldsymbol{n} classes and their meeting times, are \boldsymbol{k} rooms sufficient?
(2) Reduce to Graph \boldsymbol{k}-Coloring problem
(3) Create graph G

- a node $\boldsymbol{v}_{\boldsymbol{i}}$ for each class \boldsymbol{i}
- an edge between $\boldsymbol{v}_{\boldsymbol{i}}$ and $\boldsymbol{v}_{\boldsymbol{j}}$ if classes \boldsymbol{i} and \boldsymbol{j} conflict
(4) Exercise: \boldsymbol{G} is \boldsymbol{k}-colorable iff \boldsymbol{k} rooms are sufficient.

Frequency Assignments in Cellular Networks

(1) Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[\boldsymbol{a}, \boldsymbol{b}]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
(2) Problem: given k bands and some region with n towers, is there a way to assign the bands to avoid interference?
(3) Can reduce to \boldsymbol{k}-coloring by creating interference/conflict graph on towers

Frequency Assignments in Cellular Networks

(1) Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[\boldsymbol{a}, \boldsymbol{b}]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
(2) Problem: given \boldsymbol{k} bands and some region with \boldsymbol{n} towers, is there a way to assign the bands to avoid interference?
O Can reduce to k-coloring by creating interference/conflict graph on towers.

Frequency Assignments in Cellular Networks

(1) Cellular telephone systems that use Frequency Division Multiple Access (FDMA) (example: GSM in Europe and Asia and AT\&T in USA)

- Breakup a frequency range $[\boldsymbol{a}, \boldsymbol{b}]$ into disjoint bands of frequencies $\left[a_{0}, b_{0}\right],\left[a_{1}, b_{1}\right], \ldots,\left[a_{k}, b_{k}\right]$
- Each cell phone tower (simplifying) gets one band
- Constraint: nearby towers cannot be assigned same band, otherwise signals will interference
(2) Problem: given \boldsymbol{k} bands and some region with \boldsymbol{n} towers, is there a way to assign the bands to avoid interference?
(3) Can reduce to \boldsymbol{k}-coloring by creating interference/conflict graph on towers.

25.4: Showing hardness of 3 COLORING

3 color this gadget.

Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.
(B) No.

3 color this gadget II

Clicker question

You are given three colors: red, green and blue. Can the following graph be three colored in a valid way (assuming the two nodes are already colored as indicated).

(A) Yes.
(B) No.

3-Coloring is NP-Complete

- 3-Coloring is in NP.
- Certificate: for each node a color from $\{\mathbf{1}, \mathbf{2}, \mathbf{3}\}$.
- Certifier: Check if for each edge ($\boldsymbol{u}, \boldsymbol{v}$), the color of \boldsymbol{u} is different from that of \boldsymbol{v}.
- Hardness: We will show 3-SAT \leq_{P} 3-Coloring.

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph G_{φ} s.t. G_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).

© φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
 - Create graph \boldsymbol{G}_{φ} s.t. \boldsymbol{G}_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph G_{φ} s.t. G_{φ} 3-colorable \Longleftrightarrow φ satisfiable.

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses $C_{1}, \ldots, \boldsymbol{C}_{\boldsymbol{m}}$.
(3) Create graph \boldsymbol{G}_{φ} s.t. \boldsymbol{G}_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of $\boldsymbol{G}_{\boldsymbol{\varphi}}$.
- create triangle with node True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base
- If graph is 3-colored, either v_{i} or \bar{v}_{i} gets the same color as True. Interpret this as a truth assignment to v_{i}
- Need to add constraints to ensure clauses are satisfied (next phase)

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph \boldsymbol{G}_{φ} s.t. \boldsymbol{G}_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of \boldsymbol{G}_{φ}.
- create triangle with node True, False, Base
- for each variable x_{i} two nodes v_{i} and \bar{v}_{i} connected in a triangle with common Base
- If graph is 3-colored, either v_{i} or \bar{v}_{i} gets the same color as True. Interpret this as a truth assignment to v_{i}
- Need to add constraints to ensure clauses are satisfied (next phase)

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph \boldsymbol{G}_{φ} s.t. \boldsymbol{G}_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of \boldsymbol{G}_{φ}.
- create triangle with node True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- If graph is 3 -colored, either v_{i} or \bar{v}_{i} gets the same color as True. Interpret this as a truth assignment to \boldsymbol{v}_{i}
- Need to add constraints to ensure clauses are satisfied (next phase)

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph \boldsymbol{G}_{φ} s.t. \boldsymbol{G}_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of \boldsymbol{G}_{φ}.
- create triangle with node True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- If graph is 3-colored, either $\boldsymbol{v}_{\boldsymbol{i}}$ or $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ gets the same color as True. Interpret this as a truth assignment to $\boldsymbol{v}_{\boldsymbol{i}}$

Reduction Idea

(1) φ : Given 3SAT formula (i.e., 3CNF formula).
(2) φ : variables x_{1}, \ldots, x_{n} and clauses C_{1}, \ldots, C_{m}.
(3) Create graph \boldsymbol{G}_{φ} s.t. \boldsymbol{G}_{φ} 3-colorable $\Longleftrightarrow \varphi$ satisfiable.

- encode assignment $\boldsymbol{x}_{\mathbf{1}}, \ldots, \boldsymbol{x}_{\boldsymbol{n}}$ in colors assigned nodes of \boldsymbol{G}_{φ}.
- create triangle with node True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- If graph is 3-colored, either $\boldsymbol{v}_{\boldsymbol{i}}$ or $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ gets the same color as True. Interpret this as a truth assignment to $\boldsymbol{v}_{\boldsymbol{i}}$
- Need to add constraints to ensure clauses are satisfied (next phase)

Figure

Clause Satisfiability Gadget

(1) For each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, create a small gadget graph

- gadget graph connects to nodes corresponding to $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$
- needs to implement OR

(2) OR-gadget-graph:

Clause Satisfiability Gadget

(1) For each clause $\boldsymbol{C}_{j}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, create a small gadget graph

- gadget graph connects to nodes corresponding to $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$
- needs to implement OR
(2) OR-gadget-graph:

OR-Gadget Graph

Property: if $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored False in a 3-coloring then output node of OR-gadget has to be colored False.

Property: if one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True then OR-gadget can be 3-colored such that output node of OR-gadget is colored True.

Reduction

- create triangle with nodes True, False, Base
- for each variable $\boldsymbol{x}_{\boldsymbol{i}}$ two nodes $\boldsymbol{v}_{\boldsymbol{i}}$ and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ connected in a triangle with common Base
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$, add OR-gadget graph with input nodes $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ and connect output node of gadget to both False and Base

Reduction

Claim

No legal 3-coloring of above graph (with coloring of nodes $\boldsymbol{T}, \boldsymbol{F}, \boldsymbol{B}$ fixed) in which a, b, colored False. If any of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are colored True then there is a legal 3-coloring of above graph.

3 coloring of the clause gadget

Reduction Outline

Example

$$
\varphi=(u \vee \neg v \vee w) \wedge(v \vee x \vee \neg y)
$$

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3-colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $C_{j}=(a \vee b \vee c)$ at least one of a, b, c is colored True. OR-gadget for \boldsymbol{C}_{j} can be 3-colored such that output is True.

\boldsymbol{G}_{φ} is 3 -colorable implies φ is satisfiable

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3 -colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ can be 3-colored such that output is True.
\boldsymbol{G}_{φ} is 3-colorable implies φ is satisfiable

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3 -colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ can be 3-colored such that output is True.
\boldsymbol{G}_{φ} is 3-colorable implies φ is satisfiable

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3 -colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ can be 3-colored such that output is True.
\boldsymbol{G}_{φ} is 3-colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment
- consider any clause $C_{j}=(a \vee b \vee c)$. it cannot be that all $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are False. If so, output of OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ has to be
colored False but output is connected to Base and False!

Correctness of Reduction

φ is satisfiable implies \boldsymbol{G}_{φ} is 3-colorable

- if $\boldsymbol{x}_{\boldsymbol{i}}$ is assigned True, color $\boldsymbol{v}_{\boldsymbol{i}}$ True and $\overline{\boldsymbol{v}}_{\boldsymbol{i}}$ False
- for each clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$ at least one of $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ is colored True. OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ can be 3-colored such that output is True.
\boldsymbol{G}_{φ} is 3-colorable implies φ is satisfiable
- if $\boldsymbol{v}_{\boldsymbol{i}}$ is colored True then set $\boldsymbol{x}_{\boldsymbol{i}}$ to be True, this is a legal truth assignment
- consider any clause $\boldsymbol{C}_{\boldsymbol{j}}=(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c})$. it cannot be that all $\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}$ are False. If so, output of OR-gadget for $\boldsymbol{C}_{\boldsymbol{j}}$ has to be colored False but output is connected to Base and False!

Graph generated in reduction...

... from 3SAT to 3COLOR
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...

... from 3SAT to 3COLOR
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...

... from 3SAT to 3COLOR
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...
... from 3SAT to 3COLOR
$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...
... from 3SAT to 3COLOR
$(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c}) \wedge(\boldsymbol{b} \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Graph generated in reduction...

... from 3SAT to 3COLOR
$(\boldsymbol{a} \vee \boldsymbol{b} \vee \boldsymbol{c}) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

25.5: Proof of Cook-Levin Theorem

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language $L \in N P, L \leq_{P}$ SAT

Difficulty: Infinite number of languages in NP. Must simultaneously show a generic reduction strategy.

Cook-Levin Theorem

Theorem (Cook-Levin)

SAT is NP-Complete.

We have already seen that SAT is in NP.

Need to prove that every language $L \in N P, L \leq_{P}$ SAT

Difficulty: Infinite number of languages in NP. Must simultaneously show a generic reduction strategy.

High-level Plan

What does it mean that $L \in N P$?
$\boldsymbol{L} \in \mathbf{N P}$ implies that there is a non-deterministic TM M and polynomial $\boldsymbol{p}()$ such that

$$
\boldsymbol{L}=\left\{\boldsymbol{x} \in \boldsymbol{\Sigma}^{*} \mid \boldsymbol{M} \text { accepts } \boldsymbol{x} \text { in at most } \boldsymbol{p}(|\boldsymbol{x}|) \text { steps }\right\}
$$

We will describe a reduction $\boldsymbol{f}_{\boldsymbol{M}}$ that depends on $\boldsymbol{M}, \boldsymbol{p}$ such that: - \boldsymbol{f}_{M} takes as input a string \boldsymbol{x} and outputs a SAT formula $\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$

- f_{M} runs in time polynomial in $|x|$
- $\boldsymbol{x} \in L$ if and only if $\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$ is satisfiable

High-level Plan

What does it mean that $L \in N P$?
$\boldsymbol{L} \in \boldsymbol{N P}$ implies that there is a non-deterministic TM \mathbf{M} and polynomial $\boldsymbol{p}()$ such that

$$
\boldsymbol{L}=\left\{\boldsymbol{x} \in \boldsymbol{\Sigma}^{*} \mid \boldsymbol{M} \text { accepts } \boldsymbol{x} \text { in at most } \boldsymbol{p}(|\boldsymbol{x}|) \text { steps }\right\}
$$

We will describe a reduction $\boldsymbol{f}_{\boldsymbol{M}}$ that depends on $\boldsymbol{M}, \boldsymbol{p}$ such that:

- $\boldsymbol{f}_{\boldsymbol{M}}$ takes as input a string \boldsymbol{x} and outputs a SAT formula $\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$
- \boldsymbol{f}_{M} runs in time polynomial in $|\boldsymbol{x}|$
- $\boldsymbol{x} \in L$ if and only if $\boldsymbol{f}_{M}(\boldsymbol{x})$ is satisfiable

Plan continued

$\boldsymbol{f}_{M}(\boldsymbol{x})$ is satisfiable if and only if $\boldsymbol{x} \in \boldsymbol{L}$
$\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$ is satisfiable if and only if nondeterministic \boldsymbol{M} accepts \boldsymbol{x} in $\boldsymbol{p}(|\boldsymbol{x}|)$ steps

BIG IDEA

- $\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$ will express " \boldsymbol{M} on input x accepts in $p(|x|)$ steps"
- $f_{M}(x)$ will encode a computation history of M on x
$f_{M}(\boldsymbol{x})$ will be a carefully constructed CNF formula s.t if we have a satisfying assignment to it, then we will be able to see a complete accepting computation of M on x down to the last detail of where the head is, what transition is chosen, what the tape contents are, at each step

Plan continued

$\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$ is satisfiable if and only if $\boldsymbol{x} \in \boldsymbol{L}$
$\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$ is satisfiable if and only if nondeterministic \boldsymbol{M} accepts \boldsymbol{x} in $\boldsymbol{p}(|\boldsymbol{x}|)$ steps

BIG IDEA

- $\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$ will express " \boldsymbol{M} on input \boldsymbol{x} accepts in $\boldsymbol{p}(|\boldsymbol{x}|)$ steps"
- $f_{M}(x)$ will encode a computation history of \boldsymbol{M} on \boldsymbol{x}
$\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$ will be a carefully constructed CNF formula s.t if we have a satisfying assignment to it, then we will be able to see a complete accepting computation of \boldsymbol{M} on \boldsymbol{x} down to the last detail of where the head is, what transition is chosen, what the tape contents are, at each step.

Tableau of Computation

\boldsymbol{M} runs in time $\boldsymbol{p}(|\boldsymbol{x}|)$ on \boldsymbol{x}. Entire computation of \boldsymbol{M} on \boldsymbol{x} can be represented by a "tableau"

Row \boldsymbol{i} gives contents of all cells at time \boldsymbol{i}
At time $\mathbf{0}$ tape has input \boldsymbol{x} followed by blanks
Each row long enough to hold all cells M might ever have scanned.

Variable of $f_{M}(x)$

Four types of variable to describe computation of \boldsymbol{M} on \boldsymbol{x}

- $\boldsymbol{T}(\boldsymbol{b}, \boldsymbol{h}, \boldsymbol{i})$: tape cell at position \boldsymbol{h} holds symbol \boldsymbol{b} at time \boldsymbol{i}.

$$
\mathbf{1} \leq \boldsymbol{h} \leq \boldsymbol{p}(|\boldsymbol{x}|), \boldsymbol{b} \in \boldsymbol{\Gamma}, \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)
$$

- $\boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i}):$ read $/$ write head is at position \boldsymbol{h} at time \boldsymbol{i}.

$$
\mathbf{1} \leq \boldsymbol{h} \leq \boldsymbol{p}(|x|), \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|x|)
$$

- $\boldsymbol{S}(\boldsymbol{q}, \boldsymbol{i})$ state of \boldsymbol{M} is \boldsymbol{q} at time $\boldsymbol{i} \boldsymbol{q} \in \boldsymbol{Q}, \mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{p}(|\boldsymbol{x}|)$
- $\boldsymbol{I}(\boldsymbol{j}, \boldsymbol{i})$ instruction number \boldsymbol{j} is executed at time \boldsymbol{i}
\boldsymbol{M} is non-deterministic, need to specify transitions in some way.
Number transitions as $\mathbf{1 , 2}, \ldots, \ell$ where \boldsymbol{j} th transition is $<\boldsymbol{q}_{j}, \boldsymbol{b}_{j}, \boldsymbol{q}_{j}^{\prime}, \boldsymbol{b}_{j}^{\prime}, \boldsymbol{d}_{j}>$ indication $\left(\boldsymbol{q}_{j}^{\prime}, \boldsymbol{b}_{j}^{\prime}, \boldsymbol{d}_{j}\right) \in \delta\left(\boldsymbol{q}_{j}, \boldsymbol{b}_{j}\right)$, direction $\boldsymbol{d}_{j} \in\{-\mathbf{1}, \mathbf{0}, \mathbf{1}\}$.
Number of variables is $\boldsymbol{O}\left(\boldsymbol{p}(|\boldsymbol{x}|)^{2}\right)$ where constant in $\boldsymbol{O}()$ hides dependence on fixed machine \boldsymbol{M}.

Notation

Some abbreviations for ease of notation $\bigwedge_{k=1}^{m} x_{k}$ means $x_{1} \wedge x_{2} \wedge \ldots \wedge x_{m}$
$\bigvee_{k=1}^{m} x_{k}$ means $\boldsymbol{x}_{1} \vee \boldsymbol{x}_{2} \vee \ldots \vee \boldsymbol{x}_{\boldsymbol{m}}$
$\bigoplus\left(x_{1}, x_{2}, \ldots, x_{k}\right)$ is a formula that means exactly one of $x_{1}, x_{2}, \ldots, x_{m}$ is true. Can be converted to CNF form

Clauses of $f_{M}(x)$

$f_{M}(x)$ is the conjunction of $\mathbf{8}$ clause groups:

$$
f_{M}(x)=\varphi_{1} \wedge \varphi_{2} \wedge \varphi_{3} \wedge \varphi_{4} \wedge \varphi_{5} \wedge \varphi_{6} \wedge \varphi_{7} \wedge \varphi_{8}
$$

where each φ_{i} is a CNF formula. Described in subsequent slides. Property: $\boldsymbol{f}_{M}(\boldsymbol{x})$ is satisfied iff there is a truth assignment to the variables that simultaneously satisfy $\varphi_{1}, \ldots, \varphi_{8}$.
φ_{1} asserts (is true iff) the variables are set T / F indicating that M starts in state $\boldsymbol{q}_{\mathbf{0}}$ at time $\mathbf{0}$ with tape contents containing \boldsymbol{x} followed by blanks.

Let $x=a_{1} a_{2} \ldots a_{n}$

$\varphi_{1}=S(q, 0)$ state at time 0 is q_{0}
\bigwedge and
$\bigwedge_{h=1}^{n} T\left(\boldsymbol{a}_{\boldsymbol{h}}, \boldsymbol{h}, \mathbf{0}\right)$ at time 0 cells 1 to n have a_{1} to a_{n}
$\left.\bigwedge_{\substack{p(|x|}}^{\boldsymbol{h}=\boldsymbol{n}+1}\right) T(B, h, 0)$ at time 0 cells $n+1$ to $p(|x|)$ have blanks
\bigwedge and
$H(\mathbf{1}, \mathbf{0})$ head at time 0 is in position 1
φ_{2} asserts M in exactly one state at any time \boldsymbol{i}

$$
\varphi_{2}=\bigwedge_{i=0}^{p(|x|)}\left(\oplus\left(S\left(q_{0}, i\right), S\left(q_{1}, i\right), \ldots, S\left(q_{|Q|}, i\right)\right)\right)
$$

φ_{3} asserts that each tape cell holds a unique symbol at any given time.

$$
\varphi_{3}=\bigwedge_{i=0}^{p(|x|)} \bigwedge_{h=1}^{p(|x|)} \oplus\left(T\left(b_{1}, h, i\right), T\left(b_{2}, h, i\right), \ldots, T\left(b_{|\Gamma|}, h, i\right)\right)
$$

For each time \boldsymbol{i} and for each cell position \boldsymbol{h} exactly one symbol $\boldsymbol{b} \in \boldsymbol{\Gamma}$ at cell position \boldsymbol{h} at time \boldsymbol{i}
φ_{4} asserts that the read/write head of M is in exactly one position at any time \boldsymbol{i}

$$
\varphi_{4}=\bigwedge_{i=0}^{p(|x|)}(\oplus(H(1, i), H(2, i), \ldots, H(p(|x|), i)))
$$

φ_{5} asserts that M accepts

- Let $\boldsymbol{q}_{\boldsymbol{a}}$ be unique accept state of \boldsymbol{M}
- without loss of generality assume \boldsymbol{M} runs all $\boldsymbol{p}(|\boldsymbol{x}|)$ steps

$$
\varphi_{5}=S\left(q_{a}, p(|x|)\right)
$$

State at time $\boldsymbol{p}(|\boldsymbol{x}|)$ is $\boldsymbol{q}_{\boldsymbol{a}}$ the accept state.

If we don't want to make assumption of running for all steps

$$
\varphi_{5}=\bigvee_{i=1}^{p(|x|)} S\left(q_{a}, i\right)
$$

which means \boldsymbol{M} enters accepts state at some time.
φ_{6} asserts that M executes a unique instruction at each time

$$
\varphi_{6}=\bigwedge_{i=0}^{p(|x|)} \oplus(I(1, i), I(2, i), \ldots, I(m, i))
$$

where \boldsymbol{m} is max instruction number.
φ_{7} ensures that variables don't allow tape to change from one moment to next if the read/write head was not there.
"If head is not at position \boldsymbol{h} at time \boldsymbol{i} then at time $\boldsymbol{i}+\mathbf{1}$ the symbol at cell \boldsymbol{h} must be unchanged"

$$
\varphi_{7}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c}(\overline{H(h, i)} \Rightarrow \overline{T(b, h, i) \bigwedge T(c, h, i+1)})
$$

since $\boldsymbol{A} \Rightarrow \boldsymbol{B}$ is same as $\neg \boldsymbol{A} \vee \boldsymbol{B}$, rewrite above in CNF form

$$
\varphi_{7}=\bigwedge_{i} \bigwedge_{h} \bigwedge_{b \neq c}(H(h, i) \vee \neg T(b, h, i) \vee \neg T(c, h, i+1))
$$

φ_{8} asserts that changes in tableau/tape correspond to transitions of \boldsymbol{M} (as Lenny says, this is the big cookie).

Let \boldsymbol{j} th instruction be $<\boldsymbol{q}_{\boldsymbol{j}}, \boldsymbol{b}_{\boldsymbol{j}}, \boldsymbol{q}_{\boldsymbol{j}}^{\prime}, \boldsymbol{b}_{\boldsymbol{j}}^{\prime}, \boldsymbol{d}_{\boldsymbol{j}}>$
$\varphi_{8}=\bigwedge_{i} \bigwedge_{j}\left(I(j, i) \Rightarrow \boldsymbol{S}\left(\boldsymbol{q}_{j}, \boldsymbol{i}\right)\right)$ If instr j executed at time i then state must be correct to do j
\wedge
 \wedge
 position n, then cell h has screes symbol for $j \wedge$ $\wedge_{i} \wedge_{j} \wedge_{h}\left[(I(j, i) \wedge \boldsymbol{H}(\boldsymbol{h}, \boldsymbol{i})) \Rightarrow \boldsymbol{T}\left(\boldsymbol{b}_{j}^{\prime}, \boldsymbol{h}, \boldsymbol{i}+1\right)\right]$ ff was done tee at mme i with
 $\wedge_{i} \wedge_{j} \wedge_{h}\left[(I(j, i) \wedge \boldsymbol{H}(h, i)) \Rightarrow \boldsymbol{H}\left(\boldsymbol{h}+\boldsymbol{d}_{j}, \boldsymbol{i}+1\right)\right]$ and head i moved property according to instr \boldsymbol{j}.

Proof of Correctness

(Sketch)

- Given $\boldsymbol{M}, \boldsymbol{x}$, poly-time algorithm to construct $\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$
- if $\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$ is satisfiable then the truth assignment completely specifies an accepting computation of \boldsymbol{M} on \boldsymbol{x}
- if \boldsymbol{M} accepts \boldsymbol{x} then the accepting computation leads to an "obvious" truth assignment to $\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$. Simply assign the variables according to the state of \boldsymbol{M} and cells at each time \boldsymbol{i}.
Thus \boldsymbol{M} accepts \boldsymbol{x} if and only if $\boldsymbol{f}_{\boldsymbol{M}}(\boldsymbol{x})$ is satisfiable

