Algorithms \& Models of Computation

 CS/ECE 374, Fall 2017
Poly-Time Reductions II

Lecture 23
Thursday, November 30, 2017

Part I

Review: Polynomial reductions

Polynomial-time Reduction

Definition

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$: polynomial time reduction from a decision problem \boldsymbol{X} to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{\boldsymbol{X}}\right| . \quad\left(\left|\boldsymbol{I}_{\boldsymbol{Y}}\right|=\right.$ size of $\left.\boldsymbol{I}_{\boldsymbol{Y}}\right)$.
(0) Answer to $\boldsymbol{I}_{\boldsymbol{X}} \mathrm{YES} \Longleftrightarrow$ answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES .

Polynomial-time Reduction

Definition

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$: polynomial time reduction from a decision problem \boldsymbol{X} to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{X}\right|$. $\quad\left(\left|\boldsymbol{I}_{\boldsymbol{Y}}\right|=\right.$ size of $\left.\boldsymbol{I}_{Y}\right)$.
(0) Answer to $\boldsymbol{I}_{\boldsymbol{X}} \mathrm{YES} \Longleftrightarrow$ answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES .

Proposition

If $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ then a polynomial time algorithm for \boldsymbol{Y} implies a polynomial time algorithm for \boldsymbol{X}.

Polynomial-time Reduction

Definition

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$: polynomial time reduction from a decision problem \boldsymbol{X} to a decision problem \boldsymbol{Y} is an algorithm \mathcal{A} such that:
(1) Given an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of $\boldsymbol{X}, \mathcal{A}$ produces an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) \mathcal{A} runs in time polynomial in $\left|\boldsymbol{I}_{\boldsymbol{X}}\right| . \quad\left(\left|\boldsymbol{I}_{\boldsymbol{Y}}\right|=\right.$ size of $\left.\boldsymbol{I}_{\boldsymbol{Y}}\right)$.
(0) Answer to $\boldsymbol{I}_{\boldsymbol{X}} \mathrm{YES} \Longleftrightarrow$ answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES .

Proposition

If $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ then a polynomial time algorithm for \boldsymbol{Y} implies a polynomial time algorithm for \boldsymbol{X}.

This is a Karp reduction.

Composing polynomials...

A quick reminder
(1) \boldsymbol{f} and \boldsymbol{g} monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(© Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder
(1) \boldsymbol{f} and \boldsymbol{g} monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{n})) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
((Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder
(1) \boldsymbol{f} and \boldsymbol{g} monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(\boldsymbol{n}^{\boldsymbol{b}}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $\boldsymbol{g}(\boldsymbol{f}(\boldsymbol{n})) \leq \boldsymbol{g}\left(\boldsymbol{a} * \boldsymbol{n}^{\boldsymbol{b}}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(9) Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $f(n)=O\left(n^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d}$ $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(등 Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $f(n)=O\left(n^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(8) $\Longrightarrow g(f(n))=O\left(n^{b d}\right)$ is a polynomial.
(ㄷ) Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) \boldsymbol{f} and \boldsymbol{g} monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(n^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=\boldsymbol{O}\left(n^{b d}\right)$ is a polynomial.
(-) Conclusion: Composition of two polynomials, is a polynomial.

Composing polynomials...

A quick reminder

(1) f and g monotone increasing. Assume that:
(1) $f(n) \leq a * n^{b}$
(i.e., $\boldsymbol{f}(\boldsymbol{n})=\boldsymbol{O}\left(n^{b}\right)$)
(2) $g(n) \leq c * n^{d}$
(i.e., $g(n)=O\left(n^{d}\right)$)
$\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d}$: constants.
(2) $g(f(n)) \leq g\left(a * n^{b}\right) \leq c *\left(a * n^{b}\right)^{d} \leq c \cdot a^{d} * n^{b d}$
(3) $\Longrightarrow g(f(n))=\boldsymbol{O}\left(n^{b d}\right)$ is a polynomial.
(4) Conclusion: Composition of two polynomials, is a polynomial.

Transitivity of Reductions

Proposition

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ and $\boldsymbol{Y} \leq_{p} \boldsymbol{Z}$ implies that $\boldsymbol{X} \leq_{p} \boldsymbol{Z}$.
(1) Note: $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $X \leq_{p} Y$ you need to show a reduction FROM X TO
(3) ...show that an algorithm for \boldsymbol{Y} implies an algorithm for \boldsymbol{X}.

Transitivity of Reductions

Proposition

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ and $\boldsymbol{Y} \leq_{p} \boldsymbol{Z}$ implies that $\boldsymbol{X} \leq_{p} \boldsymbol{Z}$.
(1) Note: $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ you need to show a reduction FROM \boldsymbol{X} TO Y
(8) ...show that an algorithm for Y implies an algorithm for X.

Transitivity of Reductions

Proposition

$\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ and $\boldsymbol{Y} \leq_{p} \boldsymbol{Z}$ implies that $\boldsymbol{X} \leq_{p} \boldsymbol{Z}$.
(1) Note: $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ does not imply that $\boldsymbol{Y} \leq_{P} \boldsymbol{X}$ and hence it is very important to know the FROM and TO in a reduction.
(2) To prove $\boldsymbol{X} \leq_{p} \boldsymbol{Y}$ you need to show a reduction FROM \boldsymbol{X} TO Y
(3) ...show that an algorithm for \boldsymbol{Y} implies an algorithm for \boldsymbol{X}.

Part II

Independent Set and Vertex Cover

Vertex Cover

Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a set of vertices \boldsymbol{S} is:
(1) vertex cover if every $\boldsymbol{e} \in \boldsymbol{E}$ has at least one endpoint in \boldsymbol{S}.

Vertex Cover

Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a set of vertices \boldsymbol{S} is:
(1) vertex cover if every $\boldsymbol{e} \in \boldsymbol{E}$ has at least one endpoint in \boldsymbol{S}.

Vertex Cover

Given a graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$, a set of vertices \boldsymbol{S} is:
(1) vertex cover if every $\boldsymbol{e} \in \boldsymbol{E}$ has at least one endpoint in \boldsymbol{S}.

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer \boldsymbol{k}.
Goal: Is there a vertex cover of size $\leq \boldsymbol{k}$ in G ?

Can we relate Independent Set and Vertex Cover?

The Vertex Cover Problem

Problem (Vertex Cover)

Input: A graph G and integer \boldsymbol{k}.
Goal: Is there a vertex cover of size $\leq \boldsymbol{k}$ in G ?

Can we relate Independent Set and Vertex Cover?

Relationship between...

Vertex Cover and Independent Set

Proposition

Let $G=(V, E)$ be a graph.
$\boldsymbol{S} \subseteq V$ is independent set $\Longleftrightarrow V \backslash \boldsymbol{S}$ is vertex cover.

Proof.

(\Rightarrow) Let \boldsymbol{S} be an independent set
(1) Consider any edge $\boldsymbol{u v} \in E$.
(2) Since \boldsymbol{S} is an independent set, either $\boldsymbol{u} \notin \boldsymbol{S}$ or $\boldsymbol{v} \notin \boldsymbol{S}$.
(3) Thus, either $\boldsymbol{u} \in \boldsymbol{V} \backslash \boldsymbol{S}$ or $\boldsymbol{v} \in \boldsymbol{V} \backslash \boldsymbol{S}$.
(9) $\boldsymbol{V} \backslash \boldsymbol{S}$ is a vertex cover.
(\Leftarrow) Let $\boldsymbol{V} \backslash \boldsymbol{S}$ be some vertex cover:
(1) Consider $\boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{S}$
(2) $\boldsymbol{u v}$ is not an edge of G, as otherwise $\boldsymbol{V} \backslash \boldsymbol{S}$ does not cover $\boldsymbol{u} \boldsymbol{v}$.
(3 $\Longrightarrow S$ is thus an independent set.

Independent Set \leq_{p} Vertex Cover

(1) G: graph with \boldsymbol{n} vertices, and an integer \boldsymbol{k} be an instance of the Independent Set problem.
(2) G has an independent set of size $\geq k$ iff G has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$
(3) (G, \boldsymbol{k}) : instance of Independent Set ($G, n-k$): instance of Vertex Cover with the same answer. (9) \Longrightarrow Independent Set \leq_{P} Vertex Cover.
© Same argument in reverse..
© \Longrightarrow Vertex Cover \leq_{p} Independent Set.

Independent Set \leq_{p} Vertex Cover

(1) G: graph with \boldsymbol{n} vertices, and an integer \boldsymbol{k} be an instance of the Independent Set problem.
(2) G has an independent set of size $\geq \boldsymbol{k}$ iff G has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$

- (G, k): instance of Independent Set ($G, \boldsymbol{n}-\boldsymbol{k}$): instance of Vertex Cover with the same answer. - \Longrightarrow Independent Set \leq_{p} Vertex Cover.
- Same argument in reverse..
- \Longrightarrow Vertex Cover \leq_{p} Independent Set.

Independent Set \leq_{p} Vertex Cover

(1) G: graph with \boldsymbol{n} vertices, and an integer \boldsymbol{k} be an instance of the Independent Set problem.
(2) G has an independent set of size $\geq \boldsymbol{k}$ iff G has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$
(3) (G, k) : instance of Independent Set $(G, \boldsymbol{n}-\boldsymbol{k})$: instance of Vertex Cover with the same answer.

Independent Set \leq_{p} Vertex Cover.
(5) Same argument in reverse.
© \Longrightarrow Vertex Cover \leq_{p} Independent Set.

Independent Set \leq_{p} Vertex Cover

(1) G: graph with \boldsymbol{n} vertices, and an integer \boldsymbol{k} be an instance of the Independent Set problem.
(2) G has an independent set of size $\geq \boldsymbol{k}$ iff G has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$
(3) (G, \boldsymbol{k}): instance of Independent Set $(G, \boldsymbol{n}-\boldsymbol{k})$: instance of Vertex Cover with the same answer.
(4) \Longrightarrow Independent Set \leq_{P} Vertex Cover.
(6) Same argument in reverse...
© \Longrightarrow Vertex Cover \leq_{P} Independent Set.

Independent Set \leq_{p} Vertex Cover

(1) G: graph with \boldsymbol{n} vertices, and an integer \boldsymbol{k} be an instance of the Independent Set problem.
(2) G has an independent set of size $\geq \boldsymbol{k}$ iff G has a vertex cover of size $\leq \boldsymbol{n}-\boldsymbol{k}$
(3) (G, k) : instance of Independent Set $(G, \boldsymbol{n}-\boldsymbol{k})$: instance of Vertex Cover with the same answer.
(4) \Longrightarrow Independent Set \leq_{P} Vertex Cover.
(6) Same argument in reverse...
(0) \Longrightarrow Vertex Cover \leq_{p} Independent Set.

Polynomial time reduction...

Proving Correctness of Reductions

To prove that $\boldsymbol{X} \leq_{\boldsymbol{P}} \boldsymbol{Y}$ you need to give an algorithm \mathcal{A} that:
(1) Transforms an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} into an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) Satisfies the property that answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES iff $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES.
(1) typical easy direction to prove: answer to I_{Y} is YES if answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES
(2) typical difficult direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES (equivalently answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is NO if answer to I_{Y} is NO).
(3) Runs in polynomial time.

Polynomial time reduction...

Proving Correctness of Reductions

To prove that $\boldsymbol{X} \leq_{P} \boldsymbol{Y}$ you need to give an algorithm \mathcal{A} that:
(1) Transforms an instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} into an instance $\boldsymbol{I}_{\boldsymbol{Y}}$ of \boldsymbol{Y}.
(2) Satisfies the property that answer to \boldsymbol{I}_{X} is YES iff \boldsymbol{I}_{Y} is YES.
(0 typical easy direction to prove: answer to I_{Y} is YES if answer to I_{X} is YES
(0) typical difficult direction to prove: answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is YES if answer to $\boldsymbol{I}_{\boldsymbol{Y}}$ is YES (equivalently answer to $\boldsymbol{I}_{\boldsymbol{X}}$ is NO if answer to I_{Y} is NO).
(3) Runs in

Part III

The Satisfiability Problem (SAT)

Propositional Formulas

Definition

Consider a set of boolean variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots \boldsymbol{x}_{\boldsymbol{n}}$.
(1) A literal is either a boolean variable $\boldsymbol{x}_{\boldsymbol{i}}$ or its negation $\neg \boldsymbol{x}_{\boldsymbol{i}}$.
(2) A clause is a disjunction of literals.

For example, $\boldsymbol{x}_{1} \vee \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{4}}$ is a clause.
(3) A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.
(9) A formula φ is a 3CNF

A CNF formula such that every clause has exactly 3 literals.
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right)$ is a 3CNF formula, but
$\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is not.

Propositional Formulas

Definition

Consider a set of boolean variables $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \ldots \boldsymbol{x}_{\boldsymbol{n}}$.
(1) A literal is either a boolean variable $\boldsymbol{x}_{\boldsymbol{i}}$ or its negation $\neg \boldsymbol{x}_{\boldsymbol{i}}$.
(2) A clause is a disjunction of literals.

For example, $\boldsymbol{x}_{1} \vee \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{4}$ is a clause.
(3) A formula in conjunctive normal form (CNF) is propositional formula which is a conjunction of clauses
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is a CNF formula.
(9) A formula φ is a 3 CNF :

A CNF formula such that every clause has exactly 3 literals.
(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3} \vee x_{1}\right)$ is a 3CNF formula, but $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is not.

Satisfiability

Problem: SAT

Instance: A CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Problem: 3SAT

Instance: A 3CNF formula φ.
Question: Is there a truth assignment to the variable of φ such that φ evaluates to true?

Satisfiability

SAT

Given a CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?

Example

(1) $\left(x_{1} \vee x_{2} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{3}\right) \wedge x_{5}$ is satisfiable; take $x_{1}, x_{2}, \ldots x_{5}$ to be all true
(2) $\left(x_{1} \vee \neg x_{2}\right) \wedge\left(\neg x_{1} \vee x_{2}\right) \wedge\left(\neg x_{1} \vee \neg x_{2}\right) \wedge\left(x_{1} \vee x_{2}\right)$ is not satisfiable.

3SAT

Given a 3 CNF formula φ, is there a truth assignment to variables such that φ evaluates to true?
(More on 2SAT in a bit...)

Importance of SAT and 3SAT

(1) SAT and 3SAT are basic constraint satisfaction problems.
(2) Many different problems can reduced to them because of the simple yet powerful expressively of logical constraints.
(3) Arise naturally in many applications involving hardware and software verification and correctness.
(4) As we will see, it is a fundamental problem in theory of NP-Completeness.

$\mathrm{z}=\overline{\mathrm{x}}$

Given two bits $\boldsymbol{x}, \boldsymbol{z}$ which of the following SAT formulas is equivalent to the formula $z=\bar{x}$:
(A) $(\bar{z} \vee x) \wedge(z \vee \bar{x})$.
(B) $(z \vee x) \wedge(\bar{z} \vee \bar{x})$.
(C) $(\bar{z} \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(\bar{z} \vee \bar{x})$.
(D) $z \oplus x$.
(E) $(z \vee x) \wedge(\bar{z} \vee \bar{x}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x)$.

$z=x \wedge y$

Given three bits $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ which of the following SAT formulas is equivalent to the formula $\boldsymbol{z}=\boldsymbol{x} \wedge \boldsymbol{y}$:
(A) $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(B) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(C) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(D) $(z \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(E) $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$ $(\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\bar{z} \vee \bar{x} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \bar{x} \vee \bar{y})$.

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$\mid l l l l$		
0	0	0			
0	0	1			
0	1	0			
0	1	1			
1	0	0			
1	0	1			
1	1	0			
1	1	1			

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$		
0	0	0	1		
0	0	1	1		
0	1	0	1		
0	1	1	0		
1	0	0	0		
1	0	1	0		
1	1	0	0		
1	1	1	1		

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

	x		x				
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y \\| z \bar{x} \vee \bar{y}$				
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y \\|$	$z \vee \bar{x} \vee \bar{y}$	$\bar{z} \vee x \vee y$		
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y \\|$	$z \vee \bar{x} \vee \bar{y}$	$\bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

$z z$	x	y	$z=x \wedge y$	$z \vee \bar{x} \vee \bar{y}$	$\bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	$\bar{z} \vee \bar{x} \vee y$
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	$z \vee \bar{x} \vee \bar{y} \mid \bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	$\bar{z} \vee \bar{x} \vee y$	
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y\|z \vee \bar{x} \vee \bar{y}\| \bar{z} \vee x \vee y$	$\bar{z} \vee x \vee \bar{y}$	$\bar{z} \vee \bar{x} \vee y$		
0	0	0	1	1	1	1	1
0	0	1	1	1	1	1	1
0	1	0	1	1	1	1	1
0	1	1	0	0	1	1	1
1	0	0	0	1	0	1	1
1	0	1	0	1	1	0	1
1	1	0	0	1	1	1	0
1	1	1	1	1	1	1	1

$$
\begin{aligned}
& (z=x \wedge y) \\
& \equiv \\
& (z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y)
\end{aligned}
$$

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	\mid
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	
1	0	0	0	
1	0	1	0	
1	1	0	0	
1	1	1	1	

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$z \vee \bar{x} \vee \bar{y}$
1	0	0	0	$\bar{z} \vee x \vee y$
1	0	1	0	$\bar{z} \vee x \vee y$
1	1	0	0	$\bar{z} \vee x \vee y$
1	1	1	1	

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

z	x	y	$z=x \wedge y$	clauses
0	0	0	1	
0	0	1	1	
0	1	0	1	
0	1	1	0	$z \vee \bar{x} \vee \bar{y}$
1	0	0	0	$\bar{z} \vee x \vee y$
1	0	1	0	$\bar{z} \vee x \vee y$
1	1	0	0	$\bar{z} \vee x \vee y$
1	1	1	1	

$$
\begin{aligned}
& (z=x \wedge y) \\
& \equiv \\
& (z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y)
\end{aligned}
$$

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

Simplify further if you want to

(1) Using that $(x \vee y) \wedge(x \vee \bar{y})=x$, we have that:
(1) $(\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x)$
(2) $(\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})=(\bar{z} \vee \boldsymbol{y})$
(Using the above two observation, we have that our formula
$\psi \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee x \vee \bar{y}) \wedge(\bar{z} \vee \bar{x} \vee y)$
is equivalent to $\psi \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{y})$

Lemma

$(z=x \wedge y) \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)$

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

Simplify further if you want to

(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:

$$
\begin{aligned}
& \text { (1) }(\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x) \\
& \text { (2) }(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y)=(\bar{z} \vee y)
\end{aligned}
$$

(3) Using the above two observation, we have that our formula

is equivalent to $\psi \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{y})$

Lemma

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

Simplify further if you want to

(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:
(1) $(\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x)$
(2) $(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\overline{\boldsymbol{z}} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})=(\overline{\boldsymbol{z}} \vee \boldsymbol{y})$
(2) Using the above two observation, we have that our formula $\boldsymbol{\psi} \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})$ is equivalent to $\psi \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)$

Lemma

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

Simplify further if you want to

(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:

$$
\begin{aligned}
& \text { (1) }(\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x) \\
& \text { (2) }(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y)=(\bar{z} \vee \boldsymbol{y})
\end{aligned}
$$

(2) Using the above two observation, we have that our formula $\boldsymbol{\psi} \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})$ is equivalent to $\psi \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{y})$

Lemma

Converting $\mathrm{z}=\mathrm{x} \wedge \mathrm{y}$ to 3SAT

Simplify further if you want to

(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:

$$
\begin{aligned}
& \text { (1) }(\bar{z} \vee x \vee u) \wedge(\bar{z} \vee x \vee \bar{y})=(\bar{z} \vee x) \\
& \text { (2) }(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y)=(\bar{z} \vee y)
\end{aligned}
$$

(2) Using the above two observation, we have that our formula $\boldsymbol{\psi} \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y})$ is equivalent to $\psi \equiv(\boldsymbol{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{x}) \wedge(\overline{\boldsymbol{z}} \vee \boldsymbol{y})$

Lemma

$(z=x \wedge y) \equiv(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x) \wedge(\bar{z} \vee y)$

$z=x \vee y$

Given three bits $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ which of the following SAT formulas is equivalent to the formula $\boldsymbol{z}=\boldsymbol{x} \vee \boldsymbol{y}$:
(A) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(B) $(\bar{z} \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(C) $(z \vee x \vee y) \wedge(\bar{z} \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})$.
(D) $(z \vee x \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge$ $(\bar{z} \vee \boldsymbol{x} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \boldsymbol{x} \vee \overline{\boldsymbol{y}}) \wedge(\bar{z} \vee \overline{\boldsymbol{x}} \vee \boldsymbol{y}) \wedge(\bar{z} \vee \overline{\boldsymbol{x}} \vee \overline{\boldsymbol{y}})$.
(E) $(\bar{z} \vee x \vee y) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})$.

Converting $z=x \vee y$ to 3SAT

z	x	y	\mid
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

z	x	y	$z=x \vee y$	clauses
0	0	0	1	
0	0	1	0	
0	1	0	0	
0	1	1	0	
1	0	0	0	
1	0	1	1	
1	1	0	1	
1	1	1	1	

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

z	x	y	$z=x \vee y$	clauses
0	0	0	1	
0	0	1	0	$z \vee x \vee \bar{y}$
0	1	0	0	$z \vee \bar{x} \vee y$
0	1	1	0	$z \vee \bar{x} \vee \bar{y}$
1	0	0	0	$\bar{z} \vee x \vee y$
1	0	1	1	
1	1	0	1	
1	1	1	1	

Converting $z=x \vee y$ to 3SAT

z	x	y	$z=x \vee y$	clauses
0	0	0	1	
0	0	1	0	$z \vee x \vee \bar{y}$
0	1	0	0	$z \vee \bar{x} \vee y$
0	1	1	0	$z \vee \bar{x} \vee \bar{y}$
1	0	0	0	$\bar{z} \vee x \vee y$
1	0	1	1	
1	1	0	1	
1	1	1	1	

$$
\begin{aligned}
& (z=x \vee y) \\
& \equiv \\
& (z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)
\end{aligned}
$$

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to

$(z=x \vee y) \equiv(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)$
(1) Using that $(x \vee y) \wedge(x \vee \bar{y})=x$, we have that:
© $(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{y}$.
(2) $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{x}$
(Using the above two observation, we have the following.

Lemma
 The formula $z=x \vee y$ is equivalent to the CNF formula $(z=x \vee y) \equiv(z \vee \bar{y}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x \vee y)$

Converting $z=x \vee y$ to 3SAT

Simplify further if you want to

$(z=x \vee y) \equiv(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)$
(1) Using that $(x \vee y) \wedge(x \vee \bar{y})=x$, we have that:
(1) $(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{y}$.
(2) $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{x}$
(3) Using the above two observation, we have the following.

Lemma
 The formula $z=x \vee y$ is equivalent to the CNF formula $(z=x \vee y) \equiv(z \vee \bar{y}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x \vee y)$

Converting $z=x \vee y$ to 3SAT

Simplify further if you want to

$(z=x \vee y) \equiv(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)$
(1) Using that $(x \vee y) \wedge(x \vee \bar{y})=x$, we have that:
(1) $(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{y}$.
(2) $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{x}$
(2) Using the above two observation, we have the following.
\square

Converting $\mathrm{z}=\mathrm{x} \vee \mathrm{y}$ to 3SAT

Simplify further if you want to

$(z=x \vee y) \equiv(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y}) \wedge(\bar{z} \vee x \vee y)$
(1) Using that $(\boldsymbol{x} \vee \boldsymbol{y}) \wedge(\boldsymbol{x} \vee \overline{\boldsymbol{y}})=\boldsymbol{x}$, we have that:
(1) $(z \vee x \vee \bar{y}) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{y}$.
(2) $(z \vee \bar{x} \vee y) \wedge(z \vee \bar{x} \vee \bar{y})=z \vee \bar{x}$
(2) Using the above two observation, we have the following.

Lemma

The formula $\boldsymbol{z}=\boldsymbol{x} \vee \boldsymbol{y}$ is equivalent to the CNF formula
$(z=x \vee y) \equiv(z \vee \bar{y}) \wedge(z \vee \bar{x}) \wedge(\bar{z} \vee x \vee y)$

SAT $\leq \mathrm{p} 3 \mathrm{SAT}$

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg x \vee \neg y \vee \neg z \vee w \vee u) \wedge(\neg x)
$$

In 3SAT every clause must have exactly $\mathbf{3}$ different literals.

> To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses to have exactly 3 variables.

Basic idea

(1) Pad short clauses so they have 3 literals.

2 Break long clauses into shorter clauses
(3) Repeat the above till we have a 3CNE

SAT $\leq \mathrm{p} 3 \mathrm{SAT}$

How SAT is different from 3SAT?

In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:

$$
(x \vee y \vee z \vee w \vee u) \wedge(\neg x \vee \neg y \vee \neg z \vee w \vee u) \wedge(\neg x)
$$

In 3SAT every clause must have exactly $\mathbf{3}$ different literals.
To reduce from an instance of SAT to an instance of 3SAT, we must make all clauses to have exactly 3 variables...

Basic idea

(1) Pad short clauses so they have 3 literals.
(2) Break long clauses into shorter clauses.
(3) Repeat the above till we have a 3 CNF .

3 SAT \leq_{p} SAT

(1) 3 SAT \leq_{P} SAT.
(2) Because...

A 3SAT instance is also an instance of SAT.

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

Claim

SAT $\leq_{p} 3 S A T$.

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable iff φ^{\prime} is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3 , replace it with several clauses of length exactly 3 .

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

Claim

$S A T \leq_{p} 3 S A T$.

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable iff φ^{\prime} is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length 3 , replace it with several clauses of length exactly 3.

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

Claim

$S A T \leq_{p} 3 S A T$.

Given φ a SAT formula we create a 3SAT formula φ^{\prime} such that
(1) φ is satisfiable iff φ^{\prime} is satisfiable.
(2) φ^{\prime} can be constructed from φ in time polynomial in $|\varphi|$.

Idea: if a clause of φ is not of length $\mathbf{3}$, replace it with several clauses of length exactly 3 .

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

A clause with two literals

Reduction Ideas: clause with 2 literals

(1) Case clause with 2 literals: Let $\boldsymbol{c}=\boldsymbol{\ell}_{1} \vee \boldsymbol{\ell}_{2}$. Let \boldsymbol{u} be a new variable. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee u\right) \wedge\left(\ell_{1} \vee \ell_{2} \vee \neg u\right)
$$

(2) Suppose $\varphi=\psi \wedge c$. Then $\varphi^{\prime}=\psi \wedge c^{\prime}$ is satisfiable iff φ is satisfiable.

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

A clause with a single literal

Reduction Ideas: clause with 1 literal

(1) Case clause with one literal: Let \boldsymbol{c} be a clause with a single literal (i.e., $\boldsymbol{c}=\ell$). Let $\boldsymbol{u}, \boldsymbol{v}$ be new variables. Consider

$$
\begin{aligned}
\boldsymbol{c}^{\prime}= & (\ell \vee \boldsymbol{u} \vee \boldsymbol{v}) \wedge(\ell \vee \boldsymbol{u} \vee \neg \boldsymbol{v}) \\
& \wedge(\ell \vee \neg \boldsymbol{u} \vee \boldsymbol{v}) \wedge(\ell \vee \neg \boldsymbol{u} \vee \neg \boldsymbol{v})
\end{aligned}
$$

(2) Suppose $\varphi=\psi \wedge c$. Then $\varphi^{\prime}=\psi \wedge c^{\prime}$ is satisfiable iff φ is satisfiable.

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$

A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals

(1) Case clause with five literals: Let $c=\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee \ell_{4} \vee \ell_{5}$. Let \boldsymbol{u} be a new variable. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \vee \ell_{3} \vee u\right) \wedge\left(\ell_{4} \vee \ell_{5} \vee \neg u\right)
$$

(2) Suppose $\varphi=\psi \wedge c$. Then $\varphi^{\prime}=\psi \wedge c^{\prime}$ is satisfiable iff φ is satisfiable.

SAT $\leq_{p} 3$ SAT

A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals

(1) Case clause with $\boldsymbol{k}>3$ literals: Let $c=\ell_{1} \vee \ell_{2} \vee \ldots \vee \ell_{k}$. Let \boldsymbol{u} be a new variable. Consider

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \ell_{k-2} \vee u\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u\right)
$$

(2) Suppose $\varphi=\psi \wedge c$. Then $\varphi^{\prime}=\psi \wedge \boldsymbol{c}^{\prime}$ is satisfiable iff φ is satisfiable.

Breaking a clause

Lemma

For any boolean formulas \boldsymbol{X} and \boldsymbol{Y} and \boldsymbol{z} a new boolean variable. Then

$\boldsymbol{X} \vee \boldsymbol{Y}$ is satisfiable

if and only if, \mathbf{z} can be assigned a value such that

$$
(X \vee z) \wedge(Y \vee \neg z) \text { is satisfiable }
$$

(with the same assignment to the variables appearing in \boldsymbol{X} and \boldsymbol{Y}).

SAT $\leq_{\mathrm{p}} 3 \mathrm{SAT}$ (contd)

Clauses with more than 3 literals

Let $\boldsymbol{c}=\ell_{1} \vee \cdots \vee \ell_{\boldsymbol{k}}$. Let $\boldsymbol{u}_{\boldsymbol{1}}, \ldots \boldsymbol{u}_{\boldsymbol{k}-3}$ be new variables. Consider

$$
\begin{aligned}
\boldsymbol{c}^{\prime}= & \left(\ell_{1} \vee \ell_{2} \vee \boldsymbol{u}_{1}\right) \wedge\left(\ell_{3} \vee \neg \boldsymbol{u}_{1} \vee \boldsymbol{u}_{2}\right) \\
& \wedge\left(\ell_{4} \vee \neg \boldsymbol{u}_{2} \vee \boldsymbol{u}_{3}\right) \wedge \\
& \cdots \wedge\left(\ell_{k-2} \vee \neg \boldsymbol{u}_{k-4} \vee \boldsymbol{u}_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg \boldsymbol{u}_{k-3}\right) .
\end{aligned}
$$

Claim

$\varphi=\psi \wedge c$ is satisfiable jiff $\varphi^{\prime}=\psi \wedge c^{\prime}$ is satisfiable.
Another way to see it - reduce size of clause by one:

$$
c^{\prime}=\left(\ell_{1} \vee \ell_{2} \ldots \vee \ell_{k-2} \vee u_{k-3}\right) \wedge\left(\ell_{k-1} \vee \ell_{k} \vee \neg u_{k-3}\right)
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\boldsymbol{\psi}= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \boldsymbol{z}\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee \vee\right) \wedge\left(x_{1} \vee u \vee \neg \vee\right) \\
& \wedge\left(x_{1} \vee \neg u \vee \vee\right) \wedge\left(x_{1} \vee \neg u \vee \neg \vee\right) .
\end{aligned}
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\boldsymbol{\psi}= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \boldsymbol{z}\right) \\
& \wedge\left(\boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{3}}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee \vee\right) \wedge\left(x_{1} \vee u \vee \neg \vee\right) \\
& \wedge\left(x_{1} \vee \neg u \vee \vee\right) \wedge\left(x_{1} \vee \neg u \vee \neg \vee\right) .
\end{aligned}
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{z}\right) \wedge\left(\neg \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{4}} \vee \neg \boldsymbol{z}\right) \\
& \wedge\left(\boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{3}}\right) \\
& \wedge\left(\neg \boldsymbol{x}_{\mathbf{2}} \vee \neg \boldsymbol{x}_{\mathbf{3}} \vee \boldsymbol{y}_{\mathbf{1}}\right) \wedge\left(\boldsymbol{x}_{\mathbf{4}} \vee \boldsymbol{x}_{\mathbf{1}} \vee \neg \boldsymbol{y}_{\mathbf{1}}\right) \\
& \wedge\left(x_{1} \vee u \vee \vee\right) \wedge\left(x_{1} \vee u \vee \neg \vee\right) \\
& \wedge\left(x_{1} \vee \neg u \vee \vee\right) \wedge\left(x_{1} \vee \neg u \vee \neg \vee\right)
\end{aligned}
$$

An Example

Example

$$
\begin{aligned}
\varphi= & \left(\neg x_{1} \vee \neg x_{4}\right) \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee x_{4} \vee x_{1}\right) \wedge\left(x_{1}\right)
\end{aligned}
$$

Equivalent form:

$$
\begin{aligned}
\psi= & \left(\neg x_{1} \vee \neg x_{4} \vee z\right) \wedge\left(\neg x_{1} \vee \neg x_{4} \vee \neg z\right) \\
& \wedge\left(x_{1} \vee \neg x_{2} \vee \neg x_{3}\right) \\
& \wedge\left(\neg x_{2} \vee \neg x_{3} \vee y_{1}\right) \wedge\left(x_{4} \vee x_{1} \vee \neg y_{1}\right) \\
& \wedge\left(x_{1} \vee u \vee v\right) \wedge\left(x_{1} \vee u \vee \neg v\right) \\
& \wedge\left(x_{1} \vee \neg u \vee v\right) \wedge\left(x_{1} \vee \neg u \vee \neg v\right)
\end{aligned}
$$

Overall Reduction Algorithm

Reduction from SAT to 3SAT

```
ReduceSATTo3SAT ( }\varphi\mathrm{ ) :
    // \varphi: CNF formula.
    for each clause c of \varphi do
    if c does not have exactly 3 literals then
                construct c' as before
        else
        c}=
    \psi is conjunction of all c' constructed in loop
    return Solver3SAT( }\psi\mathrm{ )
```


Correctness (informal)

$\boldsymbol{\varphi}$ is satisfiable iff $\boldsymbol{\psi}$ is satisfiable because for each clause \boldsymbol{c}, the new 3 CNF formula \boldsymbol{c}^{\prime} is logically equivalent to \boldsymbol{c}.

What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)
No known polynomial time reduction from SAT (or 3SAT) to 2SAT. If there was, then SAT and 3SAT would be solvable in polynomial time.

Why the reduction from 3SAT to 2SAT fails?

Consider a clause $(\boldsymbol{x} \vee \boldsymbol{y} \vee \boldsymbol{z})$. We need to reduce it to a collection of 2 CNF clauses. Introduce a face variable $\boldsymbol{\alpha}$, and rewrite this as

$$
\begin{array}{lll}
& (x \vee y \vee \alpha) \wedge(\neg \alpha \vee z) & \text { (bad! clause with } 3 \text { vars) } \\
\text { or } \quad(x \vee \alpha) \wedge(\neg \alpha \vee y \vee z) & \text { (bad! clause with } 3 \text { vars). }
\end{array}
$$

(In animal farm language: 2SAT good, 3SAT bad.)

What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a variable \boldsymbol{x} there would be two vertices with labels $\boldsymbol{x}=\mathbf{0}$ and $\boldsymbol{x}=1$). For ever 2CNF clause add two directed edges in the graph. The edges are implication edges: They state that if you decide to assign a certain value to a variable, then you must assign a certain value to some other variable.
Now compute the strong connected components in this graph, and continue from there...)

What do we know so far

(1) Independent Set \leq_{P} Clique

Clique \leq_{p} Independent Set.

\Longrightarrow Clique $\approx p$ Independent Set.

(2) Vertex Cover \leq_{p} Independent Set Independent Set \leq_{P} Vertex Cover. \Longrightarrow Independent Set \approx_{p} Vertex Cover.
(3) $3 S A T \leq_{p}$ SAT

SAT \leq_{P} 3SAT.
\Longrightarrow 3SAT \approx_{p} SAT
(Clique \approx_{P} Independent Set \approx_{p} Vertex Cover 3SAT. \approx_{p} SAT

What do we know so far

(1) Independent Set \leq_{P} Clique

Clique \leq_{p} Independent Set.
\Longrightarrow Clique ${\underset{\sim}{p}}_{p}$ Independent Set.
(3) Vertex Cover \leq_{p} Independent Set Independent Set \leq_{p} Vertex Cover. \Longrightarrow Independent Set \approx_{p} Vertex Cover
© 3 SAT \leq_{p} SAT
SAT \leq_{p} 3SAT
\Longrightarrow 3SAT \approx_{p} SAT
© Clique \approx_{p} Independent Set \approx_{p} Vertex Cover 3SAT. \approx_{p} SAT

What do we know so far

(1) Independent Set \leq_{P} Clique Clique \leq_{p} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
(2) Vertex Cover \leq_{p} Independent Set Independent Set \leq_{p} Vertex Cover.
\Longrightarrow Independent Set \approx_{p} Vertex Cover

- 3SAT \leq_{p} SAT

SAT
\Longrightarrow 3SAT \approx_{p} SAT

- Clique \approx_{p} Independent Set \approx_{p} Vertex Cover 3SAT. \approx_{p} SAT

What do we know so far

(1) Independent Set \leq_{P} Clique Clique \leq_{p} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
(2) Vertex Cover \leq_{p} Independent Set Independent Set \leq_{p} Vertex Cover.
\Longrightarrow Independent Set $\widetilde{\approx}_{p}$ Vertex Cover.

- Clique \approx_{p} Independent Set \approx_{p} Vertex Cover 3SAT. \approx_{p} SAT

What do we know so far

(1) Independent Set \leq_{p} Clique

Clique \leq_{p} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
(2) Vertex Cover \leq_{p} Independent Set Independent Set \leq_{p} Vertex Cover.
\Longrightarrow Independent Set $\widetilde{\simeq}_{p}$ Vertex Cover.
(0) 3SAT \leq_{p} SAT SAT \leq_{P} 3SAT.
\Longrightarrow 3SAT \approx_{p} SAT

- Clique \approx_{p} Independent Set \approx_{p} Vertex Cover 3SAT. $\widetilde{\approx}_{p}$ SAT

What do we know so far

(1) Independent Set \leq_{p} Clique

Clique \leq_{p} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
(2) Vertex Cover \leq_{p} Independent Set Independent Set \leq_{p} Vertex Cover.
\Longrightarrow Independent Set $\widetilde{\simeq}_{p}$ Vertex Cover.
(0) 3SAT \leq_{p} SAT SAT $\leq_{p} 3$ SAT.
\Longrightarrow 3SAT \approx_{p} SAT.

- Clique \approx_{p} Independent Set \approx_{p} Vertex Cover 3SAT. $\widetilde{\cong}_{p}$ SAT

What do we know so far

(1) Independent Set \leq_{P} Clique

Clique \leq_{p} Independent Set.
\Longrightarrow Clique \approx_{p} Independent Set.
(2) Vertex Cover \leq_{p} Independent Set Independent Set \leq_{p} Vertex Cover.
\Longrightarrow Independent Set \approx_{p} Vertex Cover.
(0) 3SAT \leq_{p} SAT SAT $\leq_{p} 3$ SAT.
\Longrightarrow 3SAT \approx_{p} SAT.

- Clique \approx_{p} Independent Set \approx_{p} Vertex Cover 3SAT. \approx_{p} SAT.

Part IV

NP

P and NP and Turing Machines

(1) P: set of decision problems that have polynomial time algorithms.
(2) NP: set of decision problems that have polynomial time non-deterministic algorithms.

- Many natural problems we would like to solve are in NP.
- Every problem in NP has an exponential time algorithm
- $P \subseteq N P$
- Some problems in NP are in \boldsymbol{P} (example, shortest path problem)

Big Question: Does every problem in NP have an efficient algorithm? Same as asking whether $\boldsymbol{P}=\boldsymbol{N P}$.

Problems with no known polynomial time algorithms

Problems

(1) Independent Set
(2) Vertex Cover

- Set Cover
- SAT
- 3SAT

There are of course undecidable problems (no algorithm at all!) but many problems that we want to solve are of similar flavor to the above.

Question: What is common to above problems?

Efficient Checkability

Above problems share the following feature:

Checkability

For any $Y E S$ instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} there is a proof/certificate/solution that is of length poly $\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ such that given a proof one can efficiently check that $\boldsymbol{I}_{\boldsymbol{X}}$ is indeed a YES instance.

Examples:
(1) SAT formula φ : proof is a satisfying assignment.
(2) Independent Set in graph G and k : a subset S of vertices.
(3) Homework

Efficient Checkability

Above problems share the following feature:

Checkability

For any YES instance $\boldsymbol{I}_{\boldsymbol{X}}$ of \boldsymbol{X} there is a proof/certificate/solution that is of length poly $\left(\left|\boldsymbol{I}_{\boldsymbol{X}}\right|\right)$ such that given a proof one can efficiently check that $\boldsymbol{I}_{\mathbf{X}}$ is indeed a YES instance.

Examples:
(1) SAT formula φ : proof is a satisfying assignment.
(2) Independent Set in graph \boldsymbol{G} and \boldsymbol{k} : a subset \boldsymbol{S} of vertices.
(3) Homework

Sudoku

			2	5				
	3	6		4		8		
	4					1	6	
2								
7	6							
								9
1	5					7		
		9		8		2	4	
				3	7			

Given $\boldsymbol{n} \times \boldsymbol{n}$ sudoku puzzle, does it have a solution?

Solution to the Sudoku example...

1	8	7	$\mathbf{2}$	$\mathbf{5}$	6	9	3	4
9	$\mathbf{3}$	$\mathbf{6}$	7	$\mathbf{4}$	1	$\mathbf{8}$	5	2
5	$\mathbf{4}$	2	8	9	3	$\mathbf{1}$	$\mathbf{6}$	7
$\mathbf{2}$	9	1	3	7	4	6	8	5
$\mathbf{7}$	$\mathbf{6}$	3	5	2	8	4	$\mathbf{1}$	$\mathbf{9}$
8	5	4	6	1	9	7	2	$\mathbf{3}$
4	$\mathbf{1}$	$\mathbf{5}$	9	6	2	3	$\mathbf{7}$	8
3	7	$\mathbf{9}$	1	$\mathbf{8}$	5	$\mathbf{2}$	$\mathbf{4}$	6
6	2	8	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{7}$	5	9	1

Certifiers

Definition

An algorithm $\boldsymbol{C}(\cdot, \cdot)$ is a certifier for problem \boldsymbol{X} if the following two conditions hold:

- For every $\boldsymbol{s} \in \boldsymbol{X}$ there is some string \boldsymbol{t} such that $C(s, t)=$ "yes"
- If $\boldsymbol{s} \notin \boldsymbol{X}, \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "no" for every \boldsymbol{t}.

The string \boldsymbol{t} is called a certificate or proof for \boldsymbol{s}.

Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)

A certifier \boldsymbol{C} is an efficient certifier for problem \boldsymbol{X} if there is a polynomial $\boldsymbol{p}(\cdot)$ such that the following conditions hold:

- For every $\boldsymbol{s} \in \boldsymbol{X}$ there is some string \boldsymbol{t} such that

$$
\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=\text { "yes" and }|\boldsymbol{t}| \leq \boldsymbol{p}(|\boldsymbol{s}|) \text {. }
$$

- If $\boldsymbol{s} \notin \boldsymbol{X}, \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "no" for every \boldsymbol{t}.
- $\boldsymbol{C}(\cdot, \cdot)$ runs in polynomial time.

Example: Independent Set

(1) Problem: Does $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ have an independent set of size $\geq k$?
(1) Certificate: Set $\boldsymbol{S} \subseteq \boldsymbol{V}$.
(2) Certifier: Check $|\boldsymbol{S}| \geq \boldsymbol{k}$ and no pair of vertices in \boldsymbol{S} is connected by an edge.

Example: Vertex Cover

(1) Problem: Does \boldsymbol{G} have a vertex cover of size $\leq \boldsymbol{k}$?
(1) Certificate: $\boldsymbol{S} \subseteq \boldsymbol{V}$.
(1) Certifier: Check $|\boldsymbol{S}| \leq \boldsymbol{k}$ and that for every edge at least one endpoint is in \boldsymbol{S}.

Example: SAT

(1) Problem: Does formula φ have a satisfying truth assignment?
(1) Certificate: Assignment a of $\mathbf{0 / \mathbf { 1 }}$ values to each variable.
(2) Certifier: Check each clause under \boldsymbol{a} and say "yes" if all clauses are true.

Example: Composites

Problem: Composite

Instance: A number s.
Question: Is the number s a composite?
(1) Problem: Composite.
(1) Certificate: A factor $\boldsymbol{t} \leq \boldsymbol{s}$ such that $\boldsymbol{t} \neq 1$ and $\boldsymbol{t} \neq \boldsymbol{s}$.
(2) Certifier: Check that \boldsymbol{t} divides \boldsymbol{s}.

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M. Question: Is $L(M)=\Sigma^{*}$, that is, does M accept all strings?
(1) Problem: NFA Universality.
(1) Certificate: A DFA \boldsymbol{M}^{\prime} equivalent to \boldsymbol{M}
(2) Certifier: Check that $\boldsymbol{L}\left(\boldsymbol{M}^{\prime}\right)=\boldsymbol{\Sigma}^{*}$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in NP

Example: NFA Universality

Problem: NFA Universality

Instance: Description of a NFA M. Question: Is $L(M)=\boldsymbol{\Sigma}^{*}$, that is, does M accept all strings?
(1) Problem: NFA Universality.
(1) Certificate: A DFA \boldsymbol{M}^{\prime} equivalent to \boldsymbol{M}
(2) Certifier: Check that $\boldsymbol{L}\left(\mathbf{M}^{\prime}\right)=\boldsymbol{\Sigma}^{*}$

Certifier is efficient but certificate is not necessarily short! We do not know if the problem is in $\boldsymbol{N P}$.

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_{1}, \ldots, \alpha_{n}$ and $\boldsymbol{\beta}_{1}, \ldots, \boldsymbol{\beta}_{\boldsymbol{n}}$
Question: Are there indices $i_{1}, i_{2}, \ldots, i_{k}$ such that $\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\boldsymbol{\beta}_{i_{1}} \boldsymbol{\beta}_{i_{2}} \ldots \boldsymbol{\beta}_{i_{k}}$
(1) Problem: PCP
(1) Certificate: A sequence of indices $i_{1}, i_{2}, \ldots, i_{k}$
(2) Certifier: Check that $\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\boldsymbol{\beta}_{i_{1}} \boldsymbol{\beta}_{i_{2}} \ldots \boldsymbol{\beta}_{i_{k}}$

> PCP = Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

Example: A String Problem

Problem: PCP

Instance: Two sets of binary strings $\alpha_{1}, \ldots, \alpha_{n}$ and $\beta_{1}, \ldots, \beta_{n}$
Question: Are there indices $i_{1}, i_{2}, \ldots, i_{k}$ such that $\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\boldsymbol{\beta}_{i_{1}} \boldsymbol{\beta}_{i_{2}} \ldots \boldsymbol{\beta}_{i_{k}}$
(1) Problem: PCP
(1) Certificate: A sequence of indices $i_{1}, i_{2}, \ldots, i_{k}$
(2) Certifier: Check that $\alpha_{i_{1}} \alpha_{i_{2}} \ldots \alpha_{i_{k}}=\boldsymbol{\beta}_{i_{1}} \boldsymbol{\beta}_{i_{2}} \ldots \boldsymbol{\beta}_{i_{k}}$

PCP $=$ Posts Correspondence Problem and it is undecidable! Implies no finite bound on length of certificate!

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Nondeterministic Polynomial Time

Definition

Nondeterministic Polynomial Time (denoted by NP) is the class of all problems that have efficient certifiers.

Example

Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and Composite are all examples of problems in NP.

Why is it called...

Nondeterministic Polynomial Time

A certifier is an algorithm $C(I, c)$ with two inputs:
(3) I: instance.
(2) c: proof/certificate that the instance is indeed a YES instance of the given problem.

One can think about \boldsymbol{C} as an algorithm for the original problem, if:
(1) Given I, the algorithm guesses (non-deterministically, and who knows how) a certificate \boldsymbol{c}.
(2) The algorithm now verifies the certificate \boldsymbol{c} for the instance \boldsymbol{I}.

NP can be equivalently described using Turing machines.

Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO instances need not have a short certificate.

Example

SAT formula φ. No easy way to prove that φ is NOT satisfiable!
More on this and co-NP later on.

P versus NP

Proposition P \subseteq NP.

For a problem in P no need for a certificate!

Proof.

Consider problem $X \in P$ with algorithm A. Need to demonstrate that X has an efficient certifier:
(1) Certifier \boldsymbol{C} on input $\boldsymbol{s}, \boldsymbol{t}$, runs $\boldsymbol{A}(\boldsymbol{s})$ and returns the answer.
(2) C runs in polynomial time.
(3) If $s \in X$, then for every $t, C(s, t)=$ "yes".
(3) If $s \notin X$, then for every $t, C(s, t)=$ "no".

P versus NP

Proposition

$\mathbf{P} \subseteq$ NP.

For a problem in \mathbf{P} no need for a certificate!

Proof.

Consider problem $\boldsymbol{X} \in \mathbf{P}$ with algorithm \boldsymbol{A}. Need to demonstrate that \boldsymbol{X} has an efficient certifier:
(1) Certifier \boldsymbol{C} on input $\boldsymbol{s}, \boldsymbol{t}$, runs $\boldsymbol{A}(\boldsymbol{s})$ and returns the answer.
(2) C runs in polynomial time.
(0) If $\boldsymbol{s} \in \boldsymbol{X}$, then for every $\boldsymbol{t}, \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "yes".
(0) If $\boldsymbol{s} \notin \boldsymbol{X}$, then for every $\boldsymbol{t}, \boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})=$ "no".

Exponential Time

Definition

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input \boldsymbol{s} runs in exponential time, i.e., $O\left(2^{\text {poly }(|s|)}\right)$.

Example: $O\left(2^{n}\right), O\left(2^{n \log n}\right), O\left(2^{n^{3}}\right)$,

Exponential Time

Definition

Exponential Time (denoted EXP) is the collection of all problems that have an algorithm which on input \boldsymbol{s} runs in exponential time, i.e., $O\left(2^{\text {poly }(|s|)}\right)$.

Example: $O\left(2^{n}\right), O\left(2^{n \log n}\right), O\left(2^{n^{3}}\right), \ldots$

NP versus EXP

Proposition

$N P \subseteq E X P$.

Proof.

Let $\boldsymbol{X} \in$ NP with certifier \boldsymbol{C}. Need to design an exponential time algorithm for \boldsymbol{X}.
(1) For every \boldsymbol{t}, with $|\boldsymbol{t}| \leq \boldsymbol{p}(|\boldsymbol{s}|)$ run $\boldsymbol{C}(\boldsymbol{s}, \boldsymbol{t})$; answer "yes" if any one of these calls returns "yes".
(2) The above algorithm correctly solves \boldsymbol{X} (exercise).
(0) Algorithm runs in $\boldsymbol{O}\left(\boldsymbol{q}(|\boldsymbol{s}|+|\boldsymbol{p}(\boldsymbol{s})|) \mathbf{2}^{\boldsymbol{p}(|s|)}\right)$, where \boldsymbol{q} is the running time of \boldsymbol{C}.

Examples

(1) SAT: try all possible truth assignment to variables.
(2) Independent Set: try all possible subsets of vertices.
(3) Vertex Cover: try all possible subsets of vertices.

Is NP efficiently solvable?

We know $\mathbf{P} \subseteq \mathbf{N P} \subseteq \mathbf{E X P}$.

Is NP efficiently solvable?

We know $\mathbf{P} \subseteq \mathbf{N P} \subseteq E X P$.

Big Question

Is there are problem in NP that does not belong to \mathbf{P} ? Is $\mathbf{P}=\mathbf{N P}$?

Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
© No e-commerce . . .
© Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist)

Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
(응 No e-commerce . . .
© Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).

Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
© No e-commerce . .
(3) Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist)

Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
(4) No e-commerce . . .
© Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist)

Or: If pigs could fly then life would be sweet.
(1) Many important optimization problems can be solved efficiently.
(2) The RSA cryptosystem can be broken.
(3) No security on the web.
(4) No e-commerce . . .
(5) Creativity can be automated! Proofs for mathematical statement can be found by computers automatically (if short ones exist).
(A) Vertex Cover can be solved in polynomial time.
(B) $\mathrm{P}=\mathrm{EXP}$.
(C) $\mathrm{EXP} \subseteq \mathrm{P}$.
(D) All of the above.

P versus NP

Status

Relationship between \mathbf{P} and NP remains one of the most important open problems in mathematics/computer science.

Consensus: Most people feel/believe $\boldsymbol{P} \neq \boldsymbol{N}$.

Resolving \mathbf{P} versus NP is a Clay Millennium Prize Problem. You can win a million dollars in addition to a Turing award and major fame!

