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Part I

Review: Polynomial reductions
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Polynomial-time Reduction

Definition
X ≤P Y : polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

1 Given an instance IX of X , A produces an instance IY of Y .
2 A runs in time polynomial in |IX |. (|IY | = size of IY ).
3 Answer to IX YES ⇐⇒ answer to IY is YES.
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X ≤P Y : polynomial time reduction from a decision problem X
to a decision problem Y is an algorithm A such that:

1 Given an instance IX of X , A produces an instance IY of Y .
2 A runs in time polynomial in |IX |. (|IY | = size of IY ).
3 Answer to IX YES ⇐⇒ answer to IY is YES.

Proposition
If X ≤P Y then a polynomial time algorithm for Y implies a
polynomial time algorithm for X .

This is a Karp reduction.

Sariel Har-Peled (UIUC) CS374 3 Fall 2017 3 / 63



Composing polynomials...
A quick reminder

1 f and g monotone increasing. Assume that:
1 f (n) ≤ a ∗ nb (i.e., f (n) = O(nb))
2 g(n) ≤ c ∗ nd (i.e., g(n) = O(nd))

a, b, c, d : constants.
2 g

(
f (n)

)
≤ g

(
a ∗ nb) ≤ c ∗

(
a ∗ nb)d ≤ c · ad ∗ nbd

3 =⇒ g(f (n)) = O
(

nbd
)

is a polynomial.
4 Conclusion: Composition of two polynomials, is a

polynomial.
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Transitivity of Reductions

Proposition
X ≤P Y and Y ≤P Z implies that X ≤P Z .

1 Note: X ≤P Y does not imply that Y ≤P X and hence it is
very important to know the FROM and TO in a reduction.

2 To prove X ≤P Y you need to show a reduction FROM X TO
Y

3 ...show that an algorithm for Y implies an algorithm for X .
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Part II

Independent Set and Vertex Cover
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Vertex Cover

Given a graph G = (V ,E), a set of vertices S is:
1 vertex cover if every e ∈ E has at least one endpoint in S.
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The Vertex Cover Problem

Problem (Vertex Cover)
Input: A graph G and integer k.
Goal: Is there a vertex cover of size ≤ k in G?

Can we relate Independent Set and Vertex Cover?
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Relationship between...
Vertex Cover and Independent Set

Proposition
Let G = (V, E) be a graph.
S ⊆ V is independent set ⇐⇒ V \ S is vertex cover.

Proof.
(⇒) Let S be an independent set

1 Consider any edge uv ∈ E .
2 Since S is an independent set, either u 6∈ S or v 6∈ S.
3 Thus, either u ∈ V \ S or v ∈ V \ S.
4 V \ S is a vertex cover.

(⇐) Let V \ S be some vertex cover:
1 Consider u, v ∈ S
2 uv is not an edge of G, as otherwise V \ S does not cover uv .
3 =⇒ S is thus an independent set.
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Independent Set ≤P Vertex Cover

1 G: graph with n vertices, and an integer k be an instance of the
Independent Set problem.

2 G has an independent set of size ≥ k iff G has a vertex cover of
size ≤ n − k

3 (G, k): instance of Independent Set
(G, n − k): instance of Vertex Cover with the same answer.

4 =⇒ Independent Set ≤P Vertex Cover.
5 Same argument in reverse...
6 =⇒ Vertex Cover ≤P Independent Set.
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Polynomial time reduction...
Proving Correctness of Reductions

To prove that X ≤P Y you need to give an algorithm A that:
1 Transforms an instance IX of X into an instance IY of Y .
2 Satisfies the property that answer to IX is YES iff IY is YES.

1 typical easy direction to prove: answer to IY is YES if answer
to IX is YES

2 typical difficult direction to prove: answer to IX is YES if
answer to IY is YES (equivalently answer to IX is NO if answer
to IY is NO).

3 Runs in polynomial time.
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Part III

The Satisfiability Problem (SAT)
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Propositional Formulas

Definition
Consider a set of boolean variables x1, x2, . . . xn.

1 A literal is either a boolean variable xi or its negation ¬xi .
2 A clause is a disjunction of literals.

For example, x1 ∨ x2 ∨ ¬x4 is a clause.
3 A formula in conjunctive normal form (CNF) is

propositional formula which is a conjunction of clauses
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is a CNF formula.

4 A formula ϕ is a 3CNF:
A CNF formula such that every clause has exactly 3 literals.

1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3 ∨ x1) is a 3CNF formula, but
(x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is not.
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Satisfiability

Problem: SAT
Instance: A CNF formula ϕ.
Question: Is there a truth assignment to the variable
of ϕ such that ϕ evaluates to true?

Problem: 3SAT
Instance: A 3CNF formula ϕ.
Question: Is there a truth assignment to the variable
of ϕ such that ϕ evaluates to true?
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Satisfiability
SAT
Given a CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

Example
1 (x1 ∨ x2 ∨ ¬x4) ∧ (x2 ∨ ¬x3) ∧ x5 is satisfiable; take

x1, x2, . . . x5 to be all true
2 (x1 ∨ ¬x2) ∧ (¬x1 ∨ x2) ∧ (¬x1 ∨ ¬x2) ∧ (x1 ∨ x2) is not

satisfiable.

3SAT
Given a 3CNF formula ϕ, is there a truth assignment to variables
such that ϕ evaluates to true?

(More on 2SAT in a bit...)
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Importance of SAT and 3SAT

1 SAT and 3SAT are basic constraint satisfaction problems.
2 Many different problems can reduced to them because of the

simple yet powerful expressively of logical constraints.
3 Arise naturally in many applications involving hardware and

software verification and correctness.
4 As we will see, it is a fundamental problem in theory of

NP-Completeness.
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z = x

Given two bits x, z which of the following SAT formulas is
equivalent to the formula z = x:

(A) (z ∨ x) ∧ (z ∨ x).
(B) (z ∨ x) ∧ (z ∨ x).
(C) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).
(D) z ⊕ x.
(E) (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x) ∧ (z ∨ x).
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z = x ∧ y

Given three bits x, y, z which of the following SAT formulas is
equivalent to the formula z = x ∧ y :

(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(B) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(C) (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y).
(E) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧

(z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y).
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Converting z = x ∧ y to 3SAT
z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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Converting z = x ∧ y to 3SAT
z x y z = x ∧ y z ∨ x ∨ y
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1

0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1
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Converting z = x ∧ y to 3SAT
z x y z = x ∧ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y z ∨ x ∨ y
0 0 0 1 1 1 1 1
0 0 1 1 1 1 1 1
0 1 0 1 1 1 1 1
0 1 1 0 0 1 1 1
1 0 0 0 1 0 1 1
1 0 1 0 1 1 0 1
1 1 0 0 1 1 1 0
1 1 1 1 1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)
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Converting z = x ∧ y to 3SAT
z x y z = x ∧ y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
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Converting z = x ∧ y to 3SAT
z x y z = x ∧ y clauses
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Sariel Har-Peled (UIUC) CS374 20 Fall 2017 20 / 63



Converting z = x ∧ y to 3SAT
z x y z = x ∧ y clauses
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1
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Converting z = x ∧ y to 3SAT
z x y z = x ∧ y clauses
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 0 z ∨ x ∨ y
1 1 0 0 z ∨ x ∨ y
1 1 1 1(

z = x ∧ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)
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Converting z = x ∧ y to 3SAT
Simplify further if you want to

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:
1
(
z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ x

)
2
(
z ∨ x ∨ y

)
∧
(
z ∨ x ∨ y

)
=
(
z ∨ y

)
2 Using the above two observation, we have that our formula
ψ ≡

(
z ∨ x ∨ y

)
∧
(

z ∨ x ∨ y
)
∧
(

z ∨ x ∨ y
)
∧
(

z ∨ x ∨ y
)

is equivalent to ψ ≡
(

z ∨ x ∨ y
)
∧
(

z ∨ x
)
∧
(

z ∨ y
)

Lemma(
z = x ∧ y

)
≡

(
z ∨ x ∨ y

)
∧
(

z ∨ x
)
∧
(

z ∨ y
)
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1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:
1
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z ∨ x ∨ u

)
∧
(
z ∨ x ∨ y
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z ∨ x

)
2
(
z ∨ x ∨ y

)
∧
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z ∨ x ∨ y

)
=
(
z ∨ y

)
2 Using the above two observation, we have that our formula
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z = x ∨ y

Given three bits x, y, z which of the following SAT formulas is
equivalent to the formula z = x ∨ y :

(A) (z ∨ x ∨ y) ∧ (z ∨ x ∨ y) ∧ (z ∨ x ∨ y).
(B) (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y).
(C) (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y).
(D) (z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧(z ∨ x ∨ y)∧

(z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y).
(E) (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y)∧ (z ∨ x ∨ y).
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Converting z = x ∨ y to 3SAT
z x y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
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Converting z = x ∨ y to 3SAT
z x y z = x ∨ y clauses
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Sariel Har-Peled (UIUC) CS374 23 Fall 2017 23 / 63



Converting z = x ∨ y to 3SAT
z x y z = x ∨ y clauses
0 0 0 1
0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
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Converting z = x ∨ y to 3SAT
z x y z = x ∨ y clauses
0 0 0 1
0 0 1 0 z ∨ x ∨ y
0 1 0 0 z ∨ x ∨ y
0 1 1 0 z ∨ x ∨ y
1 0 0 0 z ∨ x ∨ y
1 0 1 1
1 1 0 1
1 1 1 1(

z = x ∨ y
)

≡
(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)
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Converting z = x ∨ y to 3SAT
Simplify further if you want to(

z = x ∨ y
)
≡(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y) ∧(z ∨ x ∨ y)

1 Using that (x ∨ y) ∧ (x ∨ y) = x, we have that:
1 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ y.
2 (z ∨ x ∨ y) ∧(z ∨ x ∨ y) = z ∨ x

2 Using the above two observation, we have the following.

Lemma
The formula z = x ∨ y is equivalent to the CNF formula(
z = x ∨ y

)
≡ (z ∨ y) ∧(z ∨ x) ∧(z ∨ x ∨ y)
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SAT ≤P 3SAT

How SAT is different from 3SAT?
In SAT clauses might have arbitrary length: 1, 2, 3, . . . variables:(

x ∨ y ∨ z ∨ w ∨ u
)
∧
(
¬x ∨ ¬y ∨ ¬z ∨ w ∨ u

)
∧
(
¬x

)
In 3SAT every clause must have exactly 3 different literals.

To reduce from an instance of SAT to an instance of 3SAT, we
must make all clauses to have exactly 3 variables...

Basic idea
1 Pad short clauses so they have 3 literals.
2 Break long clauses into shorter clauses.
3 Repeat the above till we have a 3CNF.
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3SAT ≤P SAT

1 3SAT ≤P SAT.
2 Because...

A 3SAT instance is also an instance of SAT.
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SAT ≤P 3SAT

Claim
SAT ≤P 3SAT.

Given ϕ a SAT formula we create a 3SAT formula ϕ′ such that
1 ϕ is satisfiable iff ϕ′ is satisfiable.
2 ϕ′ can be constructed from ϕ in time polynomial in |ϕ|.

Idea: if a clause of ϕ is not of length 3, replace it with several
clauses of length exactly 3.
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SAT ≤P 3SAT
A clause with two literals

Reduction Ideas: clause with 2 literals
1 Case clause with 2 literals: Let c = `1 ∨ `2. Let u be a new

variable. Consider

c ′ =
(
`1 ∨ `2 ∨ u

)
∧

(
`1 ∨ `2 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c. Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.
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SAT ≤P 3SAT
A clause with a single literal

Reduction Ideas: clause with 1 literal
1 Case clause with one literal: Let c be a clause with a single

literal (i.e., c = `). Let u, v be new variables. Consider

c ′ =
(
` ∨ u ∨ v

)
∧
(
` ∨ u ∨ ¬v

)
∧
(
` ∨ ¬u ∨ v

)
∧
(
` ∨ ¬u ∨ ¬v

)
.

2 Suppose ϕ = ψ ∧ c. Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.
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SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with five literals: Let c = `1 ∨ `2 ∨ `3 ∨ `4 ∨ `5.

Let u be a new variable. Consider

c ′ =
(
`1 ∨ `2 ∨ `3 ∨ u

)
∧

(
`4 ∨ `5 ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c. Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.
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SAT ≤P 3SAT
A clause with more than 3 literals

Reduction Ideas: clause with more than 3 literals
1 Case clause with k > 3 literals: Let c = `1 ∨ `2 ∨ . . . ∨ `k .

Let u be a new variable. Consider

c ′ =
(
`1 ∨ `2 . . . `k−2 ∨ u

)
∧

(
`k−1 ∨ `k ∨ ¬u

)
.

2 Suppose ϕ = ψ ∧ c. Then ϕ′ = ψ ∧ c ′ is satisfiable iff ϕ is
satisfiable.
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Breaking a clause

Lemma
For any boolean formulas X and Y and z a new boolean variable.
Then

X ∨ Y is satisfiable

if and only if, z can be assigned a value such that(
X ∨ z

)
∧

(
Y ∨ ¬z

)
is satisfiable

(with the same assignment to the variables appearing in X and Y ).
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SAT ≤P 3SAT (contd)
Clauses with more than 3 literals

Let c = `1 ∨ · · · ∨ `k . Let u1, . . . uk−3 be new variables. Consider

c ′ =
(
`1 ∨ `2 ∨ u1

)
∧

(
`3 ∨ ¬u1 ∨ u2

)
∧

(
`4 ∨ ¬u2 ∨ u3

)
∧

· · · ∧
(
`k−2 ∨ ¬uk−4 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.

Claim
ϕ = ψ ∧ c is satisfiable iff ϕ′ = ψ ∧ c ′ is satisfiable.

Another way to see it — reduce size of clause by one:

c ′ =
(
`1 ∨ `2 . . . ∨ `k−2 ∨ uk−3

)
∧

(
`k−1 ∨ `k ∨ ¬uk−3

)
.
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An Example

Example

ϕ =
(
¬x1 ∨ ¬x4

)
∧

(
x1 ∨ ¬x2 ∨ ¬x3

)
∧
(
¬x2 ∨ ¬x3 ∨ x4 ∨ x1

)
∧

(
x1

)
.

Equivalent form:

ψ = (¬x1 ∨ ¬x4 ∨ z) ∧ (¬x1 ∨ ¬x4 ∨ ¬z)
∧ (x1 ∨ ¬x2 ∨ ¬x3)

∧ (¬x2 ∨ ¬x3 ∨ y1) ∧ (x4 ∨ x1 ∨ ¬y1)

∧ (x1 ∨ u ∨ v) ∧ (x1 ∨ u ∨ ¬v)
∧ (x1 ∨ ¬u ∨ v) ∧(x1 ∨ ¬u ∨ ¬v) .
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Overall Reduction Algorithm
Reduction from SAT to 3SAT

ReduceSATTo3SAT(ϕ):
// ϕ: CNF formula.

for each clause c of ϕ do
if c does not have exactly 3 literals then

construct c′ as before
else

c′ = c
ψ is conjunction of all c′ constructed in loop
return Solver3SAT(ψ)

Correctness (informal)
ϕ is satisfiable iff ψ is satisfiable because for each clause c, the new
3CNF formula c ′ is logically equivalent to c.
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What about 2SAT?

2SAT can be solved in polynomial time! (specifically, linear time!)

No known polynomial time reduction from SAT (or 3SAT) to
2SAT. If there was, then SAT and 3SAT would be solvable in
polynomial time.

Why the reduction from 3SAT to 2SAT fails?
Consider a clause (x ∨ y ∨ z). We need to reduce it to a collection
of 2CNF clauses. Introduce a face variable α, and rewrite this as

(x ∨ y ∨ α) ∧ (¬α ∨ z) (bad! clause with 3 vars)
or (x ∨ α) ∧ (¬α ∨ y ∨ z) (bad! clause with 3 vars).

(In animal farm language: 2SAT good, 3SAT bad.)
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What about 2SAT?

A challenging exercise: Given a 2SAT formula show to compute its
satisfying assignment...
(Hint: Create a graph with two vertices for each variable (for a
variable x there would be two vertices with labels x = 0 and x = 1).
For ever 2CNF clause add two directed edges in the graph. The
edges are implication edges: They state that if you decide to assign a
certain value to a variable, then you must assign a certain value to
some other variable.
Now compute the strong connected components in this graph, and
continue from there...)
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What do we know so far

1 Independent Set ≤P Clique
Clique ≤P Independent Set.
=⇒ Clique uP Independent Set.

2 Vertex Cover ≤P Independent Set
Independent Set ≤P Vertex Cover.
=⇒ Independent Set uP Vertex Cover.

3 3SAT ≤P SAT
SAT ≤P 3SAT.
=⇒ 3SAT uP SAT.

4 Clique uP Independent Set uP Vertex Cover
3SAT. uP SAT.
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Part IV

NP
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P and NP and Turing Machines

1 P: set of decision problems that have polynomial time
algorithms.

2 NP: set of decision problems that have polynomial time
non-deterministic algorithms.

Many natural problems we would like to solve are in NP .
Every problem in NP has an exponential time algorithm
P ⊆ NP
Some problems in NP are in P (example, shortest path
problem)

Big Question: Does every problem in NP have an efficient
algorithm? Same as asking whether P = NP .
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Problems with no known polynomial time
algorithms

Problems
1 Independent Set
2 Vertex Cover
3 Set Cover
4 SAT
5 3SAT

There are of course undecidable problems (no algorithm at all!) but
many problems that we want to solve are of similar flavor to the
above.

Question: What is common to above problems?
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Efficient Checkability

Above problems share the following feature:

Checkability
For any YES instance IX of X there is a proof/certificate/solution
that is of length poly(|IX |) such that given a proof one can efficiently
check that IX is indeed a YES instance.

Examples:
1 SAT formula ϕ: proof is a satisfying assignment.
2 Independent Set in graph G and k: a subset S of vertices.
3 Homework
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Sudoku

Given n × n sudoku puzzle, does it have a solution?
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Solution to the Sudoku example...
1 8 7 2 5 6 9 3 4
9 3 6 7 4 1 8 5 2
5 4 2 8 9 3 1 6 7
2 9 1 3 7 4 6 8 5
7 6 3 5 2 8 4 1 9
8 5 4 6 1 9 7 2 3
4 1 5 9 6 2 3 7 8
3 7 9 1 8 5 2 4 6
6 2 8 4 3 7 5 9 1
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Certifiers

Definition
An algorithm C(·, ·) is a certifier for problem X if the following two
conditions hold:

For every s ∈ X there is some string t such that
C(s, t) = ”yes”
If s 6∈ X , C(s, t) = ”no” for every t.

The string t is called a certificate or proof for s.
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Efficient (polynomial time) Certifiers

Definition (Efficient Certifier.)
A certifier C is an efficient certifier for problem X if there is a
polynomial p(·) such that the following conditions hold:

For every s ∈ X there is some string t such that
C(s, t) = ”yes” and |t| ≤ p(|s|).
If s 6∈ X , C(s, t) = ”no” for every t.
C(·, ·) runs in polynomial time.
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Example: Independent Set

1 Problem: Does G = (V ,E) have an independent set of size
≥ k?

1 Certificate: Set S ⊆ V .
2 Certifier: Check |S| ≥ k and no pair of vertices in S is

connected by an edge.
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Example: Vertex Cover

1 Problem: Does G have a vertex cover of size ≤ k?
1 Certificate: S ⊆ V .
2 Certifier: Check |S| ≤ k and that for every edge at least one

endpoint is in S.
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Example: SAT

1 Problem: Does formula ϕ have a satisfying truth assignment?
1 Certificate: Assignment a of 0/1 values to each variable.
2 Certifier: Check each clause under a and say “yes” if all clauses

are true.
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Example: Composites

Problem: Composite
Instance: A number s.
Question: Is the number s a composite?

1 Problem: Composite.
1 Certificate: A factor t ≤ s such that t 6= 1 and t 6= s.
2 Certifier: Check that t divides s.
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Example: NFA Universality

Problem: NFA Universality
Instance: Description of a NFA M.
Question: Is L(M) = Σ∗, that is, does M accept all
strings?

1 Problem: NFA Universality.
1 Certificate: A DFA M′ equivalent to M
2 Certifier: Check that L(M′) = Σ∗

Certifier is efficient but certificate is not necessarily short! We do not
know if the problem is in NP .
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Example: A String Problem

Problem: PCP
Instance: Two sets of binary strings α1, . . . , αn and
β1, . . . , βn
Question: Are there indices i1, i2, . . . , ik such that
αi1αi2 . . . αik = βi1βi2 . . . βik

1 Problem: PCP
1 Certificate: A sequence of indices i1, i2, . . . , ik
2 Certifier: Check that αi1αi2 . . . αik = βi1βi2 . . . βik

PCP = Posts Correspondence Problem and it is undecidable!
Implies no finite bound on length of certificate!
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.
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Nondeterministic Polynomial Time

Definition
Nondeterministic Polynomial Time (denoted by NP) is the class of
all problems that have efficient certifiers.

Example
Independent Set, Vertex Cover, Set Cover, SAT, 3SAT, and
Composite are all examples of problems in NP.
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Why is it called...
Nondeterministic Polynomial Time

A certifier is an algorithm C(I, c) with two inputs:
1 I: instance.
2 c: proof/certificate that the instance is indeed a YES instance

of the given problem.

One can think about C as an algorithm for the original problem, if:
1 Given I, the algorithm guesses (non-deterministically, and who

knows how) a certificate c.
2 The algorithm now verifies the certificate c for the instance I.

NP can be equivalently described using Turing machines.
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Asymmetry in Definition of NP

Note that only YES instances have a short proof/certificate. NO
instances need not have a short certificate.

Example
SAT formula ϕ. No easy way to prove that ϕ is NOT satisfiable!

More on this and co-NP later on.
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P versus NP

Proposition
P ⊆ NP.

For a problem in P no need for a certificate!

Proof.
Consider problem X ∈ P with algorithm A. Need to demonstrate
that X has an efficient certifier:

1 Certifier C on input s, t, runs A(s) and returns the answer.
2 C runs in polynomial time.
3 If s ∈ X , then for every t, C(s, t) = ”yes”.
4 If s 6∈ X , then for every t, C(s, t) = ”no”.
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Exponential Time

Definition
Exponential Time (denoted EXP) is the collection of all problems
that have an algorithm which on input s runs in exponential time,
i.e., O(2poly(|s|)).

Example: O(2n), O(2n log n), O(2n3
), ...
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NP versus EXP

Proposition
NP ⊆ EXP.

Proof.
Let X ∈ NP with certifier C . Need to design an exponential time
algorithm for X .

1 For every t, with |t| ≤ p(|s|) run C(s, t); answer “yes” if any
one of these calls returns “yes”.

2 The above algorithm correctly solves X (exercise).
3 Algorithm runs in O(q(|s| + |p(s)|)2p(|s|)), where q is the

running time of C .
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Examples

1 SAT: try all possible truth assignment to variables.
2 Independent Set: try all possible subsets of vertices.
3 Vertex Cover: try all possible subsets of vertices.

Sariel Har-Peled (UIUC) CS374 59 Fall 2017 59 / 63



Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.
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Is NP efficiently solvable?

We know P ⊆ NP ⊆ EXP.

Big Question
Is there are problem in NP that does not belong to P? Is P = NP?
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If P = NP . . .
Or: If pigs could fly then life would be sweet.

1 Many important optimization problems can be solved efficiently.
2 The RSA cryptosystem can be broken.
3 No security on the web.
4 No e-commerce . . .
5 Creativity can be automated! Proofs for mathematical

statement can be found by computers automatically (if short
ones exist).
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If P = NP this implies that...

(A) Vertex Cover can be solved in polynomial time.
(B) P = EXP.
(C) EXP ⊆ P.
(D) All of the above.
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P versus NP

Status
Relationship between P and NP remains one of the most important
open problems in mathematics/computer science.

Consensus: Most people feel/believe P 6= NP .

Resolving P versus NP is a Clay Millennium Prize Problem. You can
win a million dollars in addition to a Turing award and major fame!
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