Algorithms & Models of Computation CS/ECE 374, Fall 2017

Depth First Search (DFS)

Lecture 16 Thursday, October 26, 2017

Today

Two topics:

- Structure of directed graphs
- **DFS** and its properties
- One application of **DFS** to obtain fast algorithms

Part I

Depth First Search (DFS)

- **DFS** special case of Basic Search.
- **OFS** is useful in understanding graph structure.
- **OFS** used to obtain linear time (O(m + n)) algorithms for
 - Finding cut-edges and cut-vertices of undirected graphs
 - Pinding strong connected components of directed graphs
 - S Linear time algorithm for testing whether a graph is planar
- ...many other applications as well.

DFS in Undirected Graphs

Recursive version. Easier to understand some properties.

```
DFS(G)

for all u \in V(G) do

Mark u as unvisited

Set pred(u) to null

T is set to \emptyset

while \exists unvisited u do

DFS(u)

Output T
```

DFS(u)
Mark u as visited
for each uv in Out(u) do
 if v is not visited then
 add edge uv to T
 set pred(v) to u
 DFS(v)

Implemented using a global array *Visited* for all recursive calls. T is the search tree/forest.

Edges classified into two types: $uv \in E$ is a

- tree edge: belongs to T
- non-tree edge: does not belong to T

Properties of DFS tree

Proposition

- T is a forest
- On connected components of T are same as those of G.
- If $uv \in E$ is a non-tree edge then, in T, either:
 - **1** *u* is an ancestor of *v*, or
 - **2 v** is an ancestor of **u**.

Question: Why are there no cross-edges?

DFS with Visit Times

Keep track of when nodes are visited.

```
DFS(G)
for all u \in V(G) do
Mark u as unvisited
T is set to \emptyset
time = 0
while \existsunvisited u do
DFS(u)
Output T
```

```
DFS(u)
```

```
Mark u as visited
pre(u) = ++time
for each uv in Out(u) do
    if v is not marked then
        add edge uv to T
        DFS(v)
post(u) = ++time
```


		1 7	9
2 3			
	4	$-\overline{5}$ $\overline{8}$	10
		6	
	vertex	[pre, post]	
	1	[1,]	
	2	[2,]	
	4	[3,]	
	5	[4,]	
	6	[5,6]	
	3	[7,]	
	7	[8,]	
	8	[9,]	

		$\overline{\mathcal{O}}$	9
2 3			
4	-5	8	10
	6		
vertex	[pre, po	st]	
1	[1,]		
2	[2,]		
4	[3,]		
5	[4,]		
6	[5,6]		
3	[7,]		
7	[8, 11	1	
8	[9, 10	j	

	1 7	9	
2 3			
4	-5 8	10	
	6		
vertex	[pre, post]		
1	[1,]		
2	[2,]		
4	[3,]		
5	[4,]		
6	[5,6]		
3	[7, 12]		
7	[8, 11]		
8	[9, 10]		

	1 7	9	
2 3			
4	-\$ 8	10	
	6		
vertex	[pre, post]		
1	[1,]	-	
2	[2,]		
4	[3,]		
5	[4, 13]		
6	[5,6]		
3	[7, 12]		
7	[8, 11]		
8	[9, 10]		

	1 7	9	
2 3			
4	-5 8	1	
	6		
vertex	[pre, post]		
1	[1,]	•	
2	[2,]		
4	[3, 14]		
5	[4, 13]		
6	[5,6]		
3	[7, 12]		
7	[8, 11]		
8	[9, 10]		

		79	
2 3			
4	-5 7	8 10	
	6		
vertex	[pre, post	t]	
1	[1,]		
2	[2, 15]		
4	[3, 14]		
5	[4, 13]		
6	[5,6]		
3	[7, 12]		
7	[8, 11]		
8	[9, 10]		

	<u>I</u>	Ø	9
2 3			
4	_5	8	
	6		
vertex	[pre, po	ost]	
1	[1, 16	<u>6]</u>	
2	[2, 15	j]	
4	[3, 14	4j –	
5	[4, 13	8Ī	
6	[5,6]	ĺ	
3	[7, 12	2]	
7	[8, 11	j –	
8	[9, 10)j	

4		
vertex	[pre, post]	
1	[1, 16]	-
2	[2, 15]	
4	[3, 14]	0 [17 20]
5	[4, 13]	9 [17, 20]
6	[5, 6]	10 [10, 19]
3	[7, 12]	
7	[8, 11]	
8	[9, 10]	

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- If DFS(v) invoked after DFS(u) finished, pre(v) > post(u)

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- If DFS(v) invoked after DFS(u) finished, pre(v) > post(u)

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- If $\mathsf{DFS}(v)$ invoked after $\mathsf{DFS}(u)$ finished, $\operatorname{pre}(v) > \operatorname{post}(u)$

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

Assume without loss of generality that pre(u) < pre(v). Then v visited after u.

 If DFS(v) invoked before DFS(u) finished, post(v) < post(u).

• If DFS(v) invoked after DFS(u) finished, pre(v) > post(u).

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- If DFS(v) invoked after DFS(u) finished, pre(v) > post(u)

Node u is active in time interval [pre(u), post(u)]

Proposition

For any two nodes u and v, the two intervals [pre(u), post(u)] and [pre(v), post(v)] are disjoint or one is contained in the other.

Proof.

- Assume without loss of generality that pre(u) < pre(v). Then v visited after u.
- If DFS(v) invoked before DFS(u) finished, post(v) < post(u).
- If DFS(v) invoked after DFS(u) finished, pre(v) > post(u)

 $\mathbf{pre} \text{ and } \mathbf{post} \text{ numbers useful in several applications of } \mathsf{DFS}$
DFS in Directed Graphs

```
DFS(u)
Mark u as visited
pre(u) = ++time
for each edge (u, v) in Out(u) do
    if v is not visited
        add edge (u, v) to T
        DFS(v)
post(u) = ++time
```

Example

Example

Generalizing ideas from undirected graphs:

DFS(G) takes O(m + n) time.

- Edges added form a *branching*: a forest of out-trees. Output of *DFS(G)* depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Note: Not obvious whether **DFS**(*G*) is useful in directed graphs but it is.

Generalizing ideas from undirected graphs:

- **OFS**(G) takes O(m + n) time.
- Edges added form a *branching*: a forest of out-trees. Output of *DFS(G)* depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.
- Note: Not obvious whether **DFS**(*G*) is useful in directed graphs but it is.

Generalizing ideas from undirected graphs:

- **DFS**(G) takes O(m + n) time.
- Edges added form a *branching*: a forest of out-trees. Output of *DFS(G)* depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Note: Not obvious whether **DFS**(*G*) is useful in directed graphs but it is.

Generalizing ideas from undirected graphs:

- **DFS**(G) takes O(m + n) time.
- Edges added form a *branching*: a forest of out-trees. Output of *DFS(G)* depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.
- Note: Not obvious whether **DFS**(*G*) is useful in directed graphs but it is.

Generalizing ideas from undirected graphs:

- **DFS**(G) takes O(m + n) time.
- Edges added form a *branching*: a forest of out-trees. Output of *DFS(G)* depends on the order in which vertices are considered.
- If u is the first vertex considered by DFS(G) then DFS(u) outputs a directed out-tree T rooted at u and a vertex v is in T if and only if v ∈ rch(u)
- For any two vertices x, y the intervals [pre(x), post(x)] and [pre(y), post(y)] are either disjoint or one is contained in the other.

Note: Not obvious whether DFS(G) is useful in directed graphs but it is.

DFS Tree

Edges of G can be classified with respect to the **DFS** tree T as:

- Tree edges that belong to T
- A forward edge is a non-tree edges (x, y) such that pre(x) < pre(y) < post(y) < post(x).</p>
- A backward edge is a non-tree edge (y, x) such that pre(x) < pre(y) < post(y) < post(x).</p>
- A cross edge is a non-tree edges (x, y) such that the intervals [pre(x), post(x)] and [pre(y), post(y)] are disjoint.

Types of Edges

Cycles in graphs

Question: Given an *undirected* graph how do we check whether it has a cycle and output one if it has one?

Question: Given an *directed* graph how do we check whether it has a cycle and output one if it has one?

Using DFS... ... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:

- Compute **DFS**(*G*)
- ② If there is a back edge e = (v, u) then G is not a DAG. Output cyclce C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.

Using DFS... ... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:

- Compute DFS(G)
- If there is a back edge e = (v, u) then G is not a DAG. Output cyclce C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, DFS(G) can output nodes in this order.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Using DFS... to check for Acylicity and compute Topological Ordering

Question

Given G, is it a DAG? If it is, generate a topological sort. Else output a cycle C.

DFS based algorithm:

- Compute DFS(G)
- 2 If there is a back edge e = (v, u) then G is not a DAG. Output cyclee C formed by path from u to v in T plus edge (v, u).
- Otherwise output nodes in decreasing post-visit order. Note: no need to sort, **DFS(G)** can output nodes in this order.

Algorithm runs in O(n + m) time.

Correctness is not so obvious. See next two propositions.

Back edge and Cycles

Proposition

G has a cycle iff there is a back-edge in **DFS**(G).

Proof.

If: (u, v) is a back edge implies there is a cycle C consisting of the path from v to u in **DFS** search tree and the edge (u, v).

Only if: Suppose there is a cycle $C = v_1 \rightarrow v_2 \rightarrow \ldots \rightarrow v_k \rightarrow v_1$. Let v_i be first node in C visited in **DFS**. All other nodes in C are descendants of v_i since they are reachable from v_i .

Therefore, (v_{i-1}, v_i) (or (v_k, v_1) if i = 1) is a back edge.

Proof

Proposition

If G is a DAG and post(v) > post(u), then (u, v) is not in G.

Proof.

Assume post(v) > post(u) and (u, v) is an edge in G. We derive a contradiction. One of two cases holds from DFS property.

- Case 1: [pre(u), post(u)] is contained in [pre(v), post(v)]. Implies that u is explored during DFS(v) and hence is a descendent of v. Edge (u, v) implies a cycle in G but G is assumed to be DAG!
- Case 2: [pre(u), post(u)] is disjoint from [pre(v), post(v)]. This cannot happen since v would be explored from u.

Example

Part II

Strong connected components

Strong Connected Components (SCCs)

Algorithmic Problem

Find all SCCs of a given directed graph.

Previous lecture: Saw an $O(n \cdot (n + m))$ time algorithm. This lecture: sketch of a O(n + m) time algorithm.

Graph of SCCs

Graph of $\underline{\mathrm{SCCs}}\; G^{\mathrm{SCC}}$

Meta-graph of SCCs

Let $S_1, S_2, \ldots S_k$ be the strong connected components (i.e., SCCs) of G. The graph of SCCs is G^{SCC}

- Vertices are $S_1, S_2, \ldots S_k$
- ② There is an edge (S_i, S_j) if there is some u ∈ S_i and v ∈ S_j such that (u, v) is an edge in G.

Reversal and SCCs

Proposition

For any graph G, the graph of SCCs of G^{rev} is the same as the reversal of G^{SCC} .

Proof.

Exercise.

SCCs and DAGs

Proposition

For any graph G, the graph G^{SCC} has no directed cycle.

Proof.

If G^{SCC} has a cycle S_1, S_2, \ldots, S_k then $S_1 \cup S_2 \cup \cdots \cup S_k$ should be in the same SCC in G. Formal details: exercise.

Part III

Directed Acyclic Graphs

Directed Acyclic Graphs

Definition

A directed graph G is a **directed acyclic graph** (DAG) if there is no directed cycle in G.

Is this a DAG?

Sources and Sinks

Definition

A vertex u is a source if it has no in-coming edges.

A vertex u is a sink if it has no out-going edges.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

- G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

- G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise

Simple DAG Properties

Proposition

Every DAG G has at least one source and at least one sink.

Proof.

Let $P = v_1, v_2, \ldots, v_k$ be a longest path in G. Claim that v_1 is a source and v_k is a sink. Suppose not. Then v_1 has an incoming edge which either creates a cycle or a longer path both of which are contradictions. Similarly if v_k has an outgoing edge.

- G is a DAG if and only if G^{rev} is a DAG.
- G is a DAG if and only each node is in its own strong connected component.

Formal proofs: exercise.

Topological Ordering/Sorting

Topological Ordering of G

Graph G

Definition

A topological ordering/topological sorting of G = (V, E) is an ordering \prec on V such that if $(u, v) \in E$ then $u \prec v$.

Informal equivalent definition:

One can order the vertices of the graph along a line (say the x-axis) such that all edges are from left to right.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered iff it is a DAG.

Need to show both directions.

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered if it is a DAG.

Proof.

Consider the following algorithm:

- Pick a source *u*, output it.
- Remove u and all edges out of u.
- 3 Repeat until graph is empty.

Exercise: prove this gives topological sort.

Exercise: show algorithm can be implemented in O(m + n) time.

Topological Sort: Example

DAGs and Topological Sort

Lemma

A directed graph G can be topologically ordered only if it is a DAG.

Proof.

Suppose G is not a DAG and has a topological ordering \prec . G has a cycle $C = u_1, u_2, \ldots, u_k, u_1$. Then $u_1 \prec u_2 \prec \ldots \prec u_k \prec u_1$! That is... $u_1 \prec u_1$. A contradiction (to \prec being an order). Not possible to topologically order the vertices.

DAGs and Topological Sort

Note: A DAG G may have many different topological sorts.

Question: What is a DAG with the most number of distinct topological sorts for a given number n of vertices?

Question: What is a DAG with the least number of distinct topological sorts for a given number n of vertices?

Cycles in graphs

Question: Given an *undirected* graph how do we check whether it has a cycle and output one if it has one?

Question: Given an *directed* graph how do we check whether it has a cycle and output one if it has one?
To Remember: Structure of Graphs

Undirected graph: connected components of G = (V, E) partition V and can be computed in O(m + n) time.

Directed graph: the meta-graph G^{SCC} of **G** can be computed in O(m + n) time. G^{SCC} gives information on the partition of **V** into strong connected components and how they form a DAG structure.

Above structural decomposition will be useful in several algorithms

Part IV

Linear time algorithm for finding all strong connected components of a directed graph

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u) Compute rch(G^{rev} , u) using $DFS(G^{rev}$, u) SCC(G, u) \leftarrow rch(G, u) \cap rch(G^{rev} , u) $\forall u \in SCC(G, u)$: Mark u as visited.

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u)Compute $rch(G^{rev}, u)$ using $DFS(G^{rev}, u)$ $SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev}, u)$ $\forall u \in SCC(G, u)$: Mark u as visited.

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Finding all SCCs of a Directed Graph

Problem

Given a directed graph G = (V, E), output *all* its strong connected components.

Straightforward algorithm:

Mark all vertices in V as not visited. for each vertex $u \in V$ not visited yet do find SCC(G, u) the strong component of u: Compute rch(G, u) using DFS(G, u) Compute rch(G^{rev} , u) using DFS(G^{rev} , u) SCC(G, u) \Leftarrow rch(G, u) \cap rch(G^{rev} , u) $\forall u \in SCC(G, u)$: Mark u as visited.

Running time: O(n(n + m))Is there an O(n + m) time algorithm?

Structure of a Directed Graph

Graph of SCCs $\mathsf{G}^{\mathrm{SCC}}$

Graph G

Reminder

 $\mathsf{G}^{\mathrm{SCC}}$ is created by collapsing every strong connected component to a single vertex.

Proposition

For a directed graph G, its meta-graph G^{SCC} is a DAG.

Wishful Thinking Algorithm

- Let u be a vertex in a *sink* SCC of G^{SCC}
- **2** Do **DFS(**u**)** to compute **SCC(**u**)**
- 8 Remove SCC(u) and repeat

Justification

DFS(u) only visits vertices (and edges) in SCC(u)

2

Wishful Thinking Algorithm

- Let u be a vertex in a *sink* SCC of G^{SCC}
- **2** Do **DFS(**u**)** to compute **SCC(**u**)**
- Remove SCC(u) and repeat

Justification

DFS(*u*) only visits vertices (and edges) in SCC(*u*)

Wishful Thinking Algorithm

- Let u be a vertex in a *sink* SCC of G^{SCC}
- **2** Do **DFS(**u**)** to compute **SCC(**u**)**
- Remove SCC(u) and repeat

Justification

3 4

- **OFS**(u) only visits vertices (and edges) in SCC(u)
- In since there are no edges coming out a sink!

Wishful Thinking Algorithm

- Let u be a vertex in a *sink* SCC of G^{SCC}
- **O DFS(**u**)** to compute SCC(u**)**
- Remove SCC(u) and repeat

Justification

4

- **OFS**(u) only visits vertices (and edges) in SCC(u)
- In since there are no edges coming out a sink!
- **OFS**(u) takes time proportional to size of SCC(u)

Wishful Thinking Algorithm

- Let u be a vertex in a *sink* SCC of G^{SCC}
- **2** Do **DFS(**u**)** to compute SCC(u**)**
- Remove SCC(u) and repeat

Justification

- **OFS**(u) only visits vertices (and edges) in SCC(u)
- In since there are no edges coming out a sink!
- **OFS**(u) takes time proportional to size of SCC(u)
- Therefore, total time O(n + m)!

Big Challenge(s)

How do we find a vertex in a sink \underline{SCC} of \underline{G}^{SCC} ?

Can we obtain an *implicit* topological sort of G^{SCC} without computing G^{SCC}?

Answer: **DFS(***G***)** gives some information!

Big Challenge(s)

How do we find a vertex in a sink SCC of G^{SCC} ?

Can we obtain an implicit topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}?$

Answer: **DFS**(G) gives some information!

How do we find a vertex in a sink SCC of G^{SCC} ?

Can we obtain an implicit topological sort of $G^{\rm SCC}$ without computing $G^{\rm SCC}?$

Answer: **DFS**(G) gives some information!

Linear Time Algorithm

... for computing the strong connected components in G

Theorem

Algorithm runs in time O(m + n) and correctly outputs all the SCCs of G.

Linear Time Algorithm: An Example - Initial steps

Graph G:

Reverse graph G^{rev} :

DFS of reverse graph:

Pre/Post **DFS** numbering of reverse graph:

Linear Time Algorithm: An Example Removing connected components: 1

Original graph G with rev post numbers:

Do **DFS** from vertex G remove it. 12 6 C 4 10 E F 11 D 5H 15

SCC computed: {*G*}

Linear Time Algorithm: An Example

Removing connected components: 2

SCC computed: {G}

SCC computed: $\{G\}, \{H\}$

Linear Time Algorithm: An Example Removing connected components: 3

Do **DFS** from vertex **B** Remove visited vertices: $\{F, B, E\}$.

SCC computed: {*G*}, {*H*}

SCC computed: $\{G\}, \{H\}, \{F, B, E\}$

Linear Time Algorithm: An Example

Removing connected components: 4

Do **DFS** from vertex **F** Remove visited vertices: $\{F, B, E\}.$ D)5 SCC computed:

 $\{G\}, \{H\}, \{F, B, E\}$

Do **DFS** from vertex ARemove visited vertices: $\{A, C, D\}$.

SCC computed: $\{G\}, \{H\}, \{F, B, E\}, \{A, C, D\}$

Linear Time Algorithm: An Example Final result

SCC computed: {*G*}, {*H*}, {*F*, *B*, *E*}, {*A*, *C*, *D*} Which is the correct answer!

Obtaining the meta-graph...

Once the strong connected components are computed.

Exercise:

Given all the strong connected components of a directed graph G = (V, E) show that the meta-graph G^{SCC} can be obtained in O(m + n) time.

Solving Problems on Directed Graphs

A template for a class of problems on directed graphs:

- Is the problem solvable when **G** is strongly connected?
- Is the problem solvable when G is a DAG?
- If the above two are feasible then is the problem solvable in a general directed graph G by considering the meta graph G^{SCC}?

$\mathsf{Part}\ \mathsf{V}$

An Application to make

Make/Makefile

(A) I know what make/makefile is.

(B) I do NOT know what make/makefile is.

make Utility [Feldman]

- Unix utility for automatically building large software applications
- A makefile specifies
 - Object files to be created,
 - Source/object files to be used in creation, and
 - 3 How to create them

project: main.o utils.o command.o
 cc -o project main.o utils.o command.o
main.o: main.c defs.h
 cc -c main.c
utils.o: utils.c defs.h command.h
 cc -c utils.c
command.o: command.c defs.h command.h

cc -c command.c

makefile as a Digraph

Computational Problems for make

- Is the makefile reasonable?
- If it is reasonable, in what order should the object files be created?
- If it is not reasonable, provide helpful debugging information.
- If some file is modified, find the fewest compilations needed to make application consistent.

Algorithms for make

- Is the makefile reasonable? Is G a DAG?
- If it is reasonable, in what order should the object files be created? Find a topological sort of a DAG.
- If it is not reasonable, provide helpful debugging information.
 Output a cycle. More generally, output all strong connected components.
- If some file is modified, find the fewest compilations needed to make application consistent.
 - Find all vertices reachable (using DFS/BFS) from modified files in directed graph, and recompile them in proper order. Verify that one can find the files to recompile and the ordering in linear time.

Take away Points

- Given a directed graph G, its SCCs and the associated acyclic meta-graph G^{SCC} give a structural decomposition of G that should be kept in mind.
- There is a DFS based linear time algorithm to compute all the SCCs and the meta-graph. Properties of DFS crucial for the algorithm.
- DAGs arise in many application and topological sort is a key property in algorithm design. Linear time algorithms to compute a topological sort (there can be many possible orderings so not unique).