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Part I

Recursion and Memoization
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Fibonacci Numbers

Fibonacci numbers defined by recurrence:

F (n) = F (n − 1) + F (n − 2) and F (0) = 0,F (1) = 1.

These numbers have many interesting and amazing properties.
A journal The Fibonacci Quarterly!

1 F (n) = (φn − (1− φ)n)/
√

5 where φ is the golden ratio

(1 +
√

5)/2 ' 1.618.

2 limn→∞F (n + 1)/F (n) = φ
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How many bits?

Consider the nth Fibonacci number F (n). Writing the number F (n)
in base 2 requires

(A) Θ(n2) bits.

(B) Θ(n) bits.

(C) Θ(log n) bits.

(D) Θ(log log n) bits.
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Recursive Algorithm for Fibonacci Numbers

Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0
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Question: Given n, compute F (n).

Fib(n):
if (n = 0)

return 0

else if (n = 1)
return 1

else
return Fib(n − 1) + Fib(n − 2)

Running time? Let T (n) be the number of additions in Fib(n).

T (n) = T (n − 1) + T (n − 2) + 1 and T (0) = T (1) = 0

Roughly same as F (n)

T (n) = Θ(φn)

The number of additions is exponential in n. Can we do better?
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Recursion tree for the Recursive Fibonacci
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An iterative algorithm for Fibonacci numbers

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

F [0] = 0
F [1] = 1
for i = 2 to n do

F [i ] = F [i − 1] + F [i − 2]
return F [n]

What is the running time of the algorithm? O(n) additions.
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What is the difference?

1 Recursive algorithm is computing the same numbers again and
again.

2 Iterative algorithm is storing computed values and building
bottom up the final value. Memoization.

Dynamic Programming:

Finding a recursion that can be effectively/efficiently memoized.

Leads to polynomial time algorithm if number of sub-problems is
polynomial in input size.
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Automatic Memoization

Can we convert recursive algorithm into an efficient algorithm
without explicitly doing an iterative algorithm?

Fib(n):
if (n = 0)

return 0
if (n = 1)

return 1
if (Fib(n) was previously computed)

return stored value of Fib(n)

else
return Fib(n − 1) + Fib(n − 2)

How do we keep track of previously computed values?
Two methods: explicitly and implicitly (via data structure)
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Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val ⇐ Fib(n − 1) + Fib(n − 2)
Store (n, val) in D
return val

Use hash-table or a map to remember which values were already
computed.
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Automatic explicit memoization

1 Initialize table/array M of size n: M[i ] = −1 for
i = 0, . . . , n.

2 Resulting code:
Fib(n):

if (n = 0)
return 0

if (n = 1)
return 1

if (M[n] 6= −1) // M[n]: stored value of Fib(n)
return M[n]

M[n]⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

3 Need to know upfront the number of subproblems to allocate
memory.
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Automatic Memoization

1 Recursive version:

f (x1, x2, . . . , xd ):
CODE

2 Recursive version with memoization:

g(x1, x2, . . . , xd ):
if f already computed for (x1, x2, . . . , xd ) then

return value already computed

NEW CODE

3 NEW CODE:
1 Replaces any “return α” with
2 Remember “f (x1, . . . , xd ) = α”; return α.
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Explicit vs Implicit Memoization

1 Explicit memoization (iterative algorithm) preferred:
1 analyze problem ahead of time
2 Allows for efficient memory allocation and access.

2 Implicit (automatic) memoization:
1 problem structure or algorithm is not well understood.
2 Need to pay overhead of data-structure.
3 Functional languages (e.g., LISP) automatically do

memoization, usually via hashing based dictionaries.
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Automatic explicit memoization

Initialize table/array M of size n such that M[i ] = −1 for
i = 0, . . . , n.

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (M[n] 6= −1) (* M[n] has stored value of Fib(n) *)

return M[n]
M[n]⇐ Fib(n − 1) + Fib(n − 2)
return M[n]

To allocate memory need to know upfront the number of
subproblems for a given input size n
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Automatic implicit memoization

Initialize a (dynamic) dictionary data structure D to empty

Fib(n):
if (n = 0)

return 0

if (n = 1)
return 1

if (n is already in D)

return value stored with n in D
val ⇐ Fib(n − 1) + Fib(n − 2)

Store (n, val) in D
return val
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Explicit vs Implicit Memoization

1 Explicit memoization or iterative algorithm preferred if one can
analyze problem ahead of time. Allows for efficient memory
allocation and access.

2 Implicit and automatic memoization used when problem
structure or algorithm is either not well understood or in fact
unknown to the underlying system.

1 Need to pay overhead of data-structure.
2 Functional languages such as LISP automatically do

memoization, usually via hashing based dictionaries.
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How many distinct calls?

binom(t, b) // computes
(t
b

)
if t = 0 then return 0

if b = t or b = 0 then return 1

return binom(t − 1, b − 1) + binom(t − 1, b).

How many distinct calls does binom(n, bn/2c) makes during its
recursive execution?

(A) Θ(1).

(B) Θ(n).

(C) Θ(n log n).

(D) Θ(n2).

(E) Θ
(( n
bn/2c

))
.

That is, if the algorithm calls recursively binom(17, 5) about 5000
times during the computation, we count this is a single distinct call.
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Running time of memoized binom?

D: Initially an empty dictionary.

binomM(t, b) // computes
(t
b

)
if b = t then return 1

if b = 0 then return 0

if D[t, b] is defined then return D[t, b]
D[t, b]⇐ binomM(t − 1, b − 1) + binomM(t − 1, b).
return D[t, b]

Assuming that every arithmetic operation takes O(1) time, What is
the running time of binomM(n, bn/2c)?

(A) Θ(1).

(B) Θ(n).

(C) Θ(n2).

(D) Θ
(
n3

)
.

(E) Θ
(( n
bn/2c

))
.
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Back to Fibonacci Numbers

Is the iterative algorithm a polynomial time algorithm? Does it take
O(n) time?

1 input is n and hence input size is Θ(log n)

2 output is F (n) and output size is Θ(n). Why?

3 Hence output size is exponential in input size so no polynomial
time algorithm possible!

4 Running time of iterative algorithm: Θ(n) additions but number
sizes are O(n) bits long! Hence total time is O(n2), in fact
Θ(n2). Why?
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Back to Fibonacci Numbers

Saving space. Do we need an array of n numbers? Not really.

FibIter(n):
if (n = 0) then

return 0

if (n = 1) then
return 1

prev2 = 0
prev1 = 1
for i = 2 to n do

temp = prev1 + prev2
prev2 = prev1
prev1 = temp

return prev1
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Part II

Dynamic programming
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Dynamic Programming

Dynamic Programming is smart recursion plus memoization

Question: Suppose we have a recursive program foo(x) that takes
an input x .

On input of size n the number of distinct sub-problems that
foo(x) generates is at most A(n)

foo(x) spends at most B(n) time not counting the time for its
recursive calls.

Suppose wememoize the recursion.
Assumption: Storing and retrieving solutions to pre-computed
problems takes O(1) time.
Q: What is an upper bound on the running time of memoized
version of foo(x) if |x| = n? O(A(n)B(n)).
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Part III

Checking if a string is in L∗
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Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if w ∈ L∗ using IsStrInL(string x) as a black
box sub-routine
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Problem

Input A string w ∈ Σ∗ and access to a language L ⊆ Σ∗ via
function IsStrInL(string x) that decides whether x is
in L

Goal Decide if using IsStrInL(string x) as a black box
sub-routine

Example
Suppose L is English and we have a procedure to check whether a
string/word is in the English dictionary.

Is the string “isthisanenglishsentence” in English∗?
Is “stampstamp” in English∗?
Is “zibzzzad” in English∗?
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Recursive Solution

When is w ∈ L∗?

a w ∈ L∗ if w ∈ L or if w = uv where u ∈ L and v ∈ L∗,
|u| ≥ 1

Assume w is stored in array A[1..n]

IsStringinLstar(A[1..n]):
If (n = 0) Output YES

If (IsStrInL(A[1..n]))
Output YES

Else

For (i = 1 to n − 1) do

If (IsStrInL(A[1..i ]) and IsStrInLstar(A[i + 1..n]))
Output YES

Output NO
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Example

Consider string samiam
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Naming subproblems and recursive equation

After seeing that number of subproblems is O(n) we name them to
help us understand the structure better.

ISL(i): a boolean which is 1 if A[i ..n] is in L∗, 0 otherwise

Base case: ISL(n + 1) = 1 interpreting A[n + 1..n] as ε
Recursive relation:

ISL(i) = 1 if
∃i < j ≤ n + 1 s.t ISL(j) and IsStrInL(A[i ..(j − 1])

ISL(i) = 0 otherwise

Output: ISL(1)
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Removing recursion to obtain iterative algorithm

Typically, after finding a dynamic programming recursion, we often
convert the recursive algorithm into an iterative algorithm via explicit
memoization and bottom up computation.

Why? Mainly for further optimization of running time and space.

How?

First, allocate a data structure (usually an array or a
multi-dimensional array that can hold values for each of the
subproblems)

Figure out a way to order the computation of the sub-problems
starting from the base case.

Caveat: Dynamic programming is not about filling tables. It
is about finding a smart recursion. First, find the correct
recursion.
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Iterative Algorithm

IsStringinLstar-Iterative(A[1..n]):
boolean ISL[1..(n + 1)]
ISL[n + 1] = TRUE
for (i = n down to 1)

ISL[i ] = FALSE
for (j = i + 1 to n + 1)

If (ISL[j ] and IsStrInL(A[i ..j − 1]))
ISL[i ] = TRUE
Break

If (ISL[1] = 1) Output YES

Else Output NO

Running time: O(n2) (assuming call to IsStrInL is O(1)
time)

Space: O(n)
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Example

Consider string samiam
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Part IV

Longest Increasing Subsequence
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Sequences

Definition
Sequence: an ordered list a1, a2, . . . , an. Length of a sequence is
number of elements in the list.

Definition
ai1, . . . , aik is a subsequence of a1, . . . , an if
1 ≤ i1 < i2 < . . . < ik ≤ n.

Definition
A sequence is increasing if a1 < a2 < . . . < an. It is
non-decreasing if a1 ≤ a2 ≤ . . . ≤ an. Similarly decreasing and
non-increasing.
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Sequences
Example...

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1, 9

2 Subsequence of above sequence: 5, 2, 1

3 Increasing sequence: 3, 5, 9, 17, 54

4 Decreasing sequence: 34, 21, 7, 5, 1

5 Increasing subsequence of the first sequence: 2, 7, 9.
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Longest Increasing Subsequence Problem

Input A sequence of numbers a1, a2, . . . , an

Goal Find an increasing subsequence ai1, ai2, . . . , aik of
maximum length

Example
1 Sequence: 6, 3, 5, 2, 7, 8, 1

2 Increasing subsequences: 6, 7, 8 and 3, 5, 7, 8 and 2, 7 etc

3 Longest increasing subsequence: 3, 5, 7, 8
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Recursive Approach: Take 1
LIS: Longest increasing subsequence

Can we find a recursive algorithm for LIS?

LIS(A[1..n]):
1 Case 1: Does not contain A[n] in which case

LIS(A[1..n]) = LIS(A[1..(n − 1)])
2 Case 2: contains A[n] in which case LIS(A[1..n]) is not so

clear.

Observation
For second case we want to find a subsequence in A[1..(n − 1)]
that is restricted to numbers less than A[n]. This suggests that a
more general problem is LIS smaller(A[1..n], x) which gives the
longest increasing subsequence in A where each number in the
sequence is less than x .
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Recursive Approach

LIS(A[1..n]): the length of longest increasing subsequence in A

LIS smaller(A[1..n], x): length of longest increasing subsequence
in A[1..n] with all numbers in subsequence less than x

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)
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Example

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1
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Recursive Approach

LIS smaller(A[1..n], x):
if (n = 0) then return 0
m = LIS smaller(A[1..(n − 1)], x)
if (A[n] < x) then

m = max(m, 1 + LIS smaller(A[1..(n − 1)],A[n]))
Output m

LIS(A[1..n]):
return LIS smaller(A[1..n],∞)

How many distinct sub-problems will LIS smaller(A[1..n],∞)
generate? O(n2)

What is the running time if we memoize recursion? O(n2) since
each call takes O(1) time to assemble the answers from to
recursive calls and no other computation.

How much space for memoization? O(n2)
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Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to
help us understand the structure better. For notational ease we add
∞ at end of array (in position n + 1)

LIS(i , j): length of longest increasing sequence in A[1..i ] among
numbers less than A[j ] (defined only for i < j)

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i ] > A[j ]
LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if
A[i ] ≤ A[j ]

Output: LIS(n, n + 1)

Sariel Har-Peled (UIUC) CS374 41 Fall 2017 41 / 50



Naming subproblems and recursive equation

After seeing that number of subproblems is O(n2) we name them to
help us understand the structure better. For notational ease we add
∞ at end of array (in position n + 1)
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Iterative algorithm

LIS-Iterative(A[1..n]):
A[n + 1] =∞
int LIS[0..n, 1..n + 1]
for (j = 1 to n + 1) do

LIS[0, j ] = 0

for (i = 1 to n) do

for (j = i + 1 to n)
If (A[i ] > A[j ]) LIS[i , j ] = LIS[i − 1, j ]
Else LIS[i , j ] = max{LIS[i − 1, j ], 1 + LIS[i − 1, i ]}

Return LIS[n, n + 1]

Running time: O(n2)
Space: O(n2)
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How to order bottom up computation?

C
S 

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Base case: LIS(0, j) = 0 for 1 ≤ j ≤ n + 1
Recursive relation:

LIS(i , j) = LIS(i − 1, j) if A[i ] > A[j ]

LIS(i , j) = max{LIS(i − 1, j), 1 + LIS(i − 1, i)} if A[i ] ≤ A[j ]
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How to order bottom up computation?

Sequence: A[1..7] = 6, 3, 5, 2, 7, 8, 1
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Two comments

Question: Can we compute an optimum solution and not just its
value?
Yes! See notes.

Question: Is there a faster algorithm for LIS? Yes! Using a different
recursion and optimizing one can obtain an O(n log n) time and
O(n) space algorithm. O(n log n) time is not obvious. Depends on
improving time by using data structures on top of dynamic
programming.
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Dynamic Programming

1 Find a “smart” recursion for the problem in which the number of
distinct subproblems is small; polynomial in the original problem
size.

2 Estimate the number of subproblems, the time to evaluate each
subproblem and the space needed to store the value. This gives
an upper bound on the total running time if we use automatic
memoization.

3 Eliminate recursion and find an iterative algorithm to compute
the problems bottom up by storing the intermediate values in an
appropriate data structure; need to find the right way or order
the subproblem evaluation. This leads to an explicit algorithm.

4 Optimize the resulting algorithm further
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Part V

Some experiments with memoization

Sariel Har-Peled (UIUC) CS374 47 Fall 2017 47 / 50



Edit distance: different memoizations

Input size Running time in seconds
n DP Partial Implicit memoization

1, 250 0.01 0.04 0.20
2, 500 0.04 0.15 0.84
5, 000 0.18 0.64 3.73

10, 000 0.72 2.50 15.05
20, 000 2.88 9.91 55.35
40, 000 12.00 40.00 out of memory

For the input n, two random strings of length n were generated, and
their distance computed using edit distance.
Note, that edit-distance is simple enough to that DP gets very good
performance. For more complicated problems, the advantage of DP
would probably be much smaller.
The asymptotic running time here is Θ(n2).
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Edit distance: different memoizations
More details

1 The implementation was done in C++, using -O9 in compilation.

2 DP = Dynamic Programming = iterative implementation using
arrays.

3 Partial memoization = Still uses recursive code, but remembers
the results in tables that are managed directly by the code.

4 Implicit memoization = implemented using the standard
unordered map.
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Edit distance: different memoizations
Conclusions

1 If you are in interview setup, you should probably solve the
problem using DP. That what you would be expected to do.

2 Otherwise, I would probably implement partial memoization – it
still has the simplicity of the recursive solution, while having a
decent performance. If I really care about performance I would
implement the DP.

3 Using implicit memoization probably makes sense only if running
time is not really an issue.
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