Algorithms & Models of Computation CS/ECE 374, Fall 2017

Deterministic Finite Automata (DFAs)

Lecture 3 Tuesday, September 5, 2017

Part I

DFA Introduction

DFAs also called Finite State Machines (FSMs)

- The "simplest" model for computers?
- State machines that are common in practice.
 - Vending machines
 - Elevators
 - Digital watches
 - Simple network protocols
- Programs with fixed memory

A simple program

Program to check if a given input string w has odd length

```
int n = 0
While input is not finished
read next character c
n \leftarrow n + 1
endWhile
If (n is odd) output YES
Else output NO
```

```
bit x = 0
While input is not finished
read next character c
x \leftarrow flip(x)
endWhile
If (x = 1) output YES
Else output NO
```

A simple program

Program to check if a given input string w has odd length

```
int n = 0
While input is not finished
read next character c
n \leftarrow n + 1
endWhile
If (n is odd) output YES
Else output NO
```

```
bit x = 0

While input is not finished

read next character c

x \leftarrow flip(x)

endWhile

If (x = 1) output YES

Else output NO
```

Another view

- Machine has input written on a *read-only* tape
- Start in specified start state
- Start at left, scan symbol, change state and move right
- Circled states are *accepting*
- Machine *accepts* input string if it is in an accepting state after scanning the last symbol.

Graphical Representation/State Machine

- Directed graph with nodes representing states and edge/arcs representing transitions labeled by symbols in Σ
- For each state (vertex) *q* and symbol *a* ∈ Σ there is *exactly* one outgoing edge labeled by *a*
- Initial/start state has a pointer (or labeled as *s*, *q*₀ or "start")
- Some states with double circles labeled as accepting/final states

• Where does 001 lead? 10010?

- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.

- Where does 001 lead? 10010?
- Which strings end up in accepting state?
- Can you prove it?
- Every string w has a unique walk that it follows from a given state q by reading one letter of w from left to right.

- Where does 001 lead? 10010?
- Which strings end up in accepting state?
- Can you prove it?
- Every string *w* has a unique walk that it follows from a given state *q* by reading one letter of *w* from left to right.

- Where does 001 lead? 10010?
- Which strings end up in accepting state?
- Can you prove it?
- Every string *w* has a unique walk that it follows from a given state *q* by reading one letter of *w* from left to right.

Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.

Definition

The language accepted (or recognized) by a DFA M is denote by L(M) and defined as: $L(M) = \{w \mid M \text{ accepts } w\}$.

Definition

A DFA M accepts a string w iff the unique walk starting at the start state and spelling out w ends in an accepting state.

Definition

The language accepted (or recognized) by a DFA M is denote by L(M) and defined as: $L(M) = \{w \mid M \text{ accepts } w\}$.

"*M* accepts language *L*" does not mean simply that that *M* accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in $\Sigma^* \setminus L$.

M "recognizes" *L* is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

"*M* accepts language *L*" does not mean simply that that *M* accepts each string in L.

It means that M accepts each string in L and no others. Equivalently M accepts each string in L and does not accept/rejects strings in $\Sigma^* \setminus L$.

M "recognizes" *L* is a better term but "accepts" is widely accepted (and recognized) (joke attributed to Lenny Pitt)

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

• Q is a finite set whose elements are called states,

Σ is a finite set called the input alphabet,

- $ullet \, \delta : Q imes oldsymbol{\Sigma} o Q$ is the transition function,
- $s \in Q$ is the start state,

 $m{
ho} \; m{A} \subseteq m{Q}$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q imes \Sigma o Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,

• $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

Definition

A deterministic finite automata (DFA) $M = (Q, \Sigma, \delta, s, A)$ is a five tuple where

- Q is a finite set whose elements are called states,
- Σ is a finite set called the input alphabet,
- $\delta: Q \times \Sigma \rightarrow Q$ is the transition function,
- $s \in Q$ is the start state,
- $A \subseteq Q$ is the set of accepting/final states.

DFA Notation

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0, 1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0,1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$

- $Q = \{q_0, q_1, q_1, q_3\}$ • $\Sigma = \{0, 1\}$
- 8
- $s = q_0$
- $A = \{q_0\}$

- $Q = \{q_0, q_1, q_1, q_3\}$ • $\Sigma = \{0, 1\}$
- 8
- $s = q_0$
- $A = \{q_0\}$

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0,1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0,1\}$
- •δ
- $s = q_0$
- $A = \{q_0\}$

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0,1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma=\{0,1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$

- $Q = \{q_0, q_1, q_1, q_3\}$
- $\Sigma = \{0,1\}$
- δ
- $s = q_0$
- $A = \{q_0\}$

Extending the transition function to strings

Given DFA $M = (Q, \Sigma, \delta, s, A)$, $\delta(q, a)$ is the state that M goes to from q on reading letter a

Useful to have notation to specify the unique state that M will reach from q on reading *string* w

Transition function $\delta^*: Q imes \Sigma^* o Q$ defined inductively as follows:

•
$$\delta^*(q, w) = q$$
 if $w = \epsilon$

• $\delta^*(q, w) = \delta^*(\delta(q, a), x)$ if w = ax.

Extending the transition function to strings

Given DFA $M = (Q, \Sigma, \delta, s, A)$, $\delta(q, a)$ is the state that M goes to from q on reading letter a

Useful to have notation to specify the unique state that M will reach from q on reading *string* w

Transition function $\delta^*: Q \times \Sigma^* \to Q$ defined inductively as follows:

- $\delta^*(q, w) = q$ if $w = \epsilon$
- $\delta^*(q, w) = \delta^*(\delta(q, a), x)$ if w = ax.

Formal definition of language accepted by M

Definition

The language L(M) accepted by a DFA $M = (Q, \Sigma, \delta, s, A)$ is

 $\{w \in \mathbf{\Sigma}^* \mid \delta^*(s, w) \in A\}.$
Example

What is:

- $\delta^*(q_1,\epsilon)$
- $\delta^*(q_0, 1011)$
- $\delta^*(q_1, 010)$
- δ*(q₄, 10)

Example continued

- What is L(M) if start state is changed to q_1 ?
- What is L(M) if final/accept states are set to {q₂, q₃} instead of {q₀}?

Advantages of formal specification

- Necessary for proofs
- Necessary to specify abstractly for class of languages

Exercise: Prove by induction that for any two strings u, v, any state $q, \delta^*(q, uv) = \delta^*(\delta^*(q, u), v)$.

Part II

Constructing DFAs

How do we design a DFA M for a given language L? That is L(M) = L.

- DFA is a like a program that has fixed amount of memory independent of input size.
- The memory of a DFA is encoded in its states
- The state/memory must capture enough information from the input seen so far that it is sufficient for the suffix that is yet to be seen (note that DFA cannot go back)

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0,1\}^* \mid |w| \text{ is divisible by 5} \}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains 001 or 010 as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \text{ } k \text{ positions from the end} \}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0,1\}^* \mid |w| \text{ is divisible by } 5\}$
- $L = \{ w \in \{0, 1\}^* \mid w \text{ ends with } 01 \}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains 001 or 010 as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \ k \text{ positions from the end} \}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0,1\}^* \mid |w| \text{ is divisible by 5} \}$
- $L = \{w \in \{0,1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains 001 or 010 as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \ k \text{ positions from the end} \}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0,1\}^* \mid |w| \text{ is divisible by 5} \}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains 001 as substring}\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains } 001 \text{ or } 010 \text{ as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \ k \text{ positions from the end} \}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0,1\}^* \mid |w| \text{ is divisible by 5} \}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ contains 001 or 010 as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \ k \text{ positions from the end} \}$

- $L = \emptyset$, $L = \Sigma^*$, $L = \{\epsilon\}$, $L = \{0\}$.
- $L = \{w \in \{0,1\}^* \mid |w| \text{ is divisible by 5} \}$
- $L = \{w \in \{0, 1\}^* \mid w \text{ ends with } 01\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains } 001 \text{ as substring}\}$
- $L = \{w \in \{0,1\}^* \mid w \text{ contains 001 or 010 as substring}\}$
- $L = \{w \mid w \text{ has a } 1 \ k \text{ positions from the end} \}$

 $L = \{ \text{Binary numbers congruent to } 0 \mod 5 \}$ Example: 1101011 = 107 = 2 mod 5, 1010 = 10 = 0 mod 5 Key observation: w0 mod 5 = a implies w0 mod 5 = 2a mod 5 and w1 mod 5 = $(2a + 1) \mod 5$

 $L = \{ Binary numbers congruent to 0 \mod 5 \}$ Example: $1101011 = 107 = 2 \mod 5$, $1010 = 10 = 0 \mod 5$ Key observation:

w0 mod 5 = a implies

 $w0 \mod 5 = 2a \mod 5$ and $w1 \mod 5 = (2a + 1) \mod 5$

Part III

Product Construction and Closure Properties

Part IV

Complement

Question: If M is a DFA, is there a DFA M' such that $L(M') = \Sigma^* \setminus L(M)$? That is, are languages recognized by DFAs closed under complement?

Just flip the state of the states!

Theorem

Languages accepted by DFAs are closed under complement.

Proof.

Let $M = (Q, \Sigma, \delta, s, A)$ such that L = L(M). Let $M' = (Q, \Sigma, \delta, s, Q \setminus A)$. Claim: $L(M') = \overline{L}$. Why? $\delta_M^* = \delta_{M'}^*$. Thus, for every string $w, \delta_M^*(s, w) = \delta_{M'}^*(s, w)$. $\delta_M^*(s, w) \in A \Rightarrow \delta_{M'}^*(s, w) \notin Q \setminus A$. $\delta_M^*(s, w) \notin A \Rightarrow \delta_{M'}^*(s, w) \in Q \setminus A$.

Theorem

Languages accepted by DFAs are closed under complement.

Proof.

Let $M = (Q, \Sigma, \delta, s, A)$ such that L = L(M). Let $M' = (Q, \Sigma, \delta, s, Q \setminus A)$. Claim: $L(M') = \overline{L}$. Why? $\delta_M^* = \delta_{M'}^*$. Thus, for every string $w, \delta_M^*(s, w) = \delta_{M'}^*(s, w)$. $\delta_M^*(s, w) \in A \Rightarrow \delta_{M'}^*(s, w) \notin Q \setminus A$. $\delta_M^*(s, w) \notin A \Rightarrow \delta_{M'}^*(s, w) \in Q \setminus A$.

Theorem

Languages accepted by DFAs are closed under complement.

Proof.

Let $M = (Q, \Sigma, \delta, s, A)$ such that L = L(M). Let $M' = (Q, \Sigma, \delta, s, Q \setminus A)$. Claim: $L(M') = \overline{L}$. Why? $\delta_M^* = \delta_{M'}^*$. Thus, for every string $w, \delta_M^*(s, w) = \delta_{M'}^*(s, w)$. $\delta_M^*(s, w) \in A \Rightarrow \delta_{M'}^*(s, w) \notin Q \setminus A$. $\delta_M^*(s, w) \notin A \Rightarrow \delta_{M'}^*(s, w) \in Q \setminus A$.

$\mathsf{Part}\ \mathsf{V}$

Product Construction

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$?

How about intersection $L(M_1) \cap L(M_2)$?

- Simulate *M*₁ on *w*
- Simulate M₂ on w
- If both accept than $w \in L(M_1) \cap L(M_2)$. If at least one accepts then $w \in L(M_1) \cup L(M_2)$.
- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate *M*₁ and *M*₂ in parallel by keeping track of states of *both* machines

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$?

How about intersection $L(M_1) \cap L(M_2)$?

- Simulate M₁ on w
- Simulate M₂ on w
- If both accept than w ∈ L(M₁) ∩ L(M₂). If at least one accepts then w ∈ L(M₁) ∪ L(M₂).
- Catch: We want a single DFA *M* that can only read *w* once.
- Solution: Simulate *M*₁ and *M*₂ in parallel by keeping track of states of *both* machines

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$?

How about intersection $L(M_1) \cap L(M_2)$?

- Simulate M₁ on w
- Simulate M₂ on w
- If both accept than w ∈ L(M₁) ∩ L(M₂). If at least one accepts then w ∈ L(M₁) ∪ L(M₂).
- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate *M*₁ and *M*₂ in parallel by keeping track of states of *both* machines

Question: Are languages accepted by DFAs closed under union? That is, given DFAs M_1 and M_2 is there a DFA that accepts $L(M_1) \cup L(M_2)$?

How about intersection $L(M_1) \cap L(M_2)$?

- Simulate M₁ on w
- Simulate M₂ on w
- If both accept than w ∈ L(M₁) ∩ L(M₂). If at least one accepts then w ∈ L(M₁) ∪ L(M₂).
- Catch: We want a single DFA M that can only read w once.
- Solution: Simulate *M*₁ and *M*₂ in parallel by keeping track of states of *both* machines

 M_2 accepts #1 = odd

Example

 M_2 accepts #1 = odd

Cross-product machine

Example II Accept all binary strings of length divisible by **3** and **5**

Assume all edges are labeled by 0, 1.

Sariel Har-Peled (UIUC)

 $M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$ and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 imes Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

• $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

 $L(M) = L(M_1) \cap L(M_2).$

 $M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$ and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

• $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

 $L(M) = L(M_1) \cap L(M_2).$

 $M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$ and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

• $Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$

- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

• $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

I heorem $L(M) = L(M_1) \cap L(M_2).$

 $M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$ and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

• $Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$

•
$$\boldsymbol{s} = (s_1, s_2)$$

• $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

• $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

L(M) = $L(M_1) \cap L(M_2)$.

 $M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$ and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

• $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

I heorem $L(M) = L(M_1) \cap L(M_2).$

$$M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$$
 and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 \times Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

• $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

L(M) = $L(M_1) \cap L(M_1)$

$$M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$$
 and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 imes Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

• $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

L(M) = $L(M_1) \cap L(M_1)$

$$M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$$
 and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 imes Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

• $A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$

I heorem

 $L(M) = L(M_1) \cap L(M_2).$
Product construction for intersection

$$M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$$
 and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 imes Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

•
$$A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

 $L(M) = L(M_1) \cap L(M_2)$

Product construction for intersection

$$M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$$
 and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 imes Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

•
$$A = A_1 \times A_2 = \{(q_1, q_2) \mid q_1 \in A_1, q_2 \in A_2\}$$

Theorem $L(M) = L(M_1) \cap L(M_2).$

Correctness of construction

Lemma

For each string w,
$$\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w)).$$

Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on |*w*|

Correctness of construction

Lemma

For each string w, $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w)).$

Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on |w|

Correctness of construction

Lemma

For each string w, $\delta^*(s, w) = (\delta_1^*(s_1, w), \delta_2^*(s_2, w)).$

Exercise: Assuming lemma prove the theorem in previous slide. Proof of lemma by induction on |w|

Product construction for union

$$M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$$
 and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 imes Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

•
$$A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\}$$

I heorem

 $L(M) = L(M_1) \cup L(M_2).$

Product construction for union

$$M_1 = (Q_1, \boldsymbol{\Sigma}, \delta_1, s_1, A_1)$$
 and $M_2 = (Q_1, \boldsymbol{\Sigma}, \delta_2, s_2, A_2)$

Create $M = (Q, \Sigma, \delta, s, A)$ where

- $Q = Q_1 imes Q_2 = \{(q_1, q_2) \mid q_1 \in Q_1, q_2 \in Q_2\}$
- $s = (s_1, s_2)$
- $\delta: \boldsymbol{Q} imes \boldsymbol{\Sigma} o \boldsymbol{Q}$ where

 $\delta((q_1,q_2),a)=(\delta_1(q_1,a),\delta_2(q_2,a))$

•
$$A = \{(q_1, q_2) \mid q_1 \in A_1 \text{ or } q_2 \in A_2\}$$

Theorem $L(M) = L(M_1) \cup L(M_2).$ Sariel Har-Peled (UIUC) CS374 34 Fall 2017 34 / 36

Set Difference

Theorem

 M_1, M_2 DFAs. There is a DFA M such that $L(M) = L(M_1) \setminus L(M_2)$.

Exercise: Prove the above using two methods.

- Using a direct product construction
- Using closure under complement and intersection and union

Things to know: 2-way DFA

Question: Why are DFAs required to only move right? Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine's state.

• Can define a formal notion of a "2-way" DFA

- Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- Proof is tricky simulation via NFAs

Things to know: 2-way DFA

Question: Why are DFAs required to only move right? Can we allow DFA to scan back and forth? Caveat: Tape is read-only so only memory is in machine's state.

- Can define a formal notion of a "2-way" DFA
- $\bullet\,$ Can show that any language recognized by a 2-way DFA can be recognized by a regular (1-way) DFA
- $\bullet\,$ Proof is tricky simulation via NFAs