NP hardness reduclions II

Lecture 23

MIN Vertex Cover

 Input: a graph $G(V, E)$- Output: Smallest set of vertices that touch every
 edge
- If I is Independent set in G, $\mathrm{V} \backslash \mathrm{I}$ is vertex cover!
- Largest IS in G is the complement of smallest $V C$ in G

what is G'? same graph as G
 Output is different

How to prove NP hardness To prove X is NP-hard:

- Step 1: Pick a known NP-hard problem Y
- Step 2: Assume for the sake of argument, a polynomial time algorithm for X.
- Step 3: Derive a polynomial time algorithm for Y, using algorithm for X as subroutine.
- Step 4: Contradiction

Reduce Y to X

Reduce FROM the problem
I know about
TO the problem
I am curious about

NP hardness of X

-

To show X is NP hard (example):

Poly time reduction from CircuitSAT.

- If there is a poly time algorithm to solve X, then there is poly time algorithm to solve CircuitSAT

NP hardness

Library of NP-hard problems

CircuitSAT
 SAT 3SAT
 MAX IS
 MAX Clique

Min Vertex Cover

Does a given boolean forumla, in CNF, have a satisfying assignment?
3-SAT
Does a given boolean forumla, in CNF with exactly three literals per clause, have a satisfying assignment?

Min Vertex Cover

In a given undirected graph, what is the (size of the) smallest subset of the vertices covering all of the edges?

Max Independent Set

In a given undirected graph, what is the (size of the) larges subset of the vertices having no edges in common?

Max Clique

What is the (size of the) largest complete subgraph of a given undirected graph?

Min Set Cover

Given a set S and a collection of subsets of S, what is smallest set of these subsets whose union is S ?

Min Hitting Set

Given a set S and a collection of subsets of S, what is smallest subset of S containing at least one element from every subset?

Hamilton Path

Does a given graph have a Hamilton Path?

Hamilton Cycle

Does a given graph have a Hamilton Cycle?

Traveling Salesperson

What is the minimum cost Hamilton Cycle in a weighted, complete, graph?

Longest Path

What is the longest path between two given nodes in a weighted, undirected, graph?

Subset Sum

Does a given set of positive integers have a subset with sum k ?

Partition

Can a given set of positive integers be partitioned into two subsets each with the same sum?

3-Partition

Can a given set of $3 n$ positive integers be partitioned into $n 3$-element subsets each with the same sum?

Minesweeper

In a given Minesweeper configuration, is it safe to click on a particular square?

Sodoku

Does a given Sodoku puzzle have a solution?

NP hardness

Library of NP-hard problems
CircuitSAT
SAT
3SAT
MAX IS
MAX Clique
Min Vertex Cover
3 Coloring

3 Coloring

Input: a graph $G(V, E)$

Output: True iff G has a proper 3 coloring

what problem to start with?

3COL

Given an arbitrary 3CNF formula F

Build a graph G as follows

Best described in pieces

1) piece that corresponds to variables
2) piece that corresponds to clauses
3) piece that enforces logical consistency "gadgets"

3COL

Given an arbitrary 3CNF formula F

Build a graph G as follows

Best described in pieces

1) Truth Gadget

3COL

- Given an arbitrary 3CNF formula F

Build a graph G as follows
Best described in pieces
2) Variable Gadget

one vertex in the graph for every variable and one for its negation. One vertex labeled X

3COL

Given an arbitrary 3CNF formula F

Build a graph G as follows
Best described in pieces
3) Clause Gadget

3COL

$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

in any proper coloring at least one of the three literals must be colored T
easier to prove with 2 SAT example
literal vertices, connected to X

3COL

$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

There are 8 possible colorings for the 3 literals on the left. - For 7 of them one gets colored T and I can properly color the gadget

- For the 8th, all of them are colored False and I can't properly color the gadget

$(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})$

Proof

Suppose F is satisfiable

Suppose G is 3-Colorable

So F is satisfiable

Proof

Suppose F is satisfiable

- Fix any satisfying assignment
- Color True literals same color as T
- Color False literals same color as F
- By case analysis:
extend the coloring to the clause gadget

Suppose G is 3-Colorable

So G is 3-Colorable
So F is satisfiable

Proof

Suppose F is satisfiable

- Fix any satisfying assignment
- Color True literals same color as T
- Color False literals same color as F
- By case analysis:
extend the coloring to the clause gadget

Suppose G is 3-Colorable

- Fix a proper 3 Coloring
- Each literal vertex is colored T or F
- This gives me an assignment of boolean values to variables
- By case analysis: At least one literal in each clause gadget is colored T

So G is 3-Colorable

4 Coloring?

Input: a graph $G(V, E)$

- Output: True iff G has a proper 4 coloring

Hamiltonian Cycle

Input: a directed graph $G(V, E)$

- Output: Is there a cycle in G that visits each vertex exactly once?
- Really asking if there is a way to order the vertices so that every adjacent pair is connected by an edge.
- Reduction from HC if a problem asks for ordering of vertices.

Anti-topological sort

NP hardness

Library of NP-hard problems

CircuitSAT
SAT
3SAT
MAX IS
MAX Clique
Min Vertex Cover
3 Coloring

Hamiltonian Cycle

Hamiltonian Cycle

Given an arbitrary graph G and parameter k

Build a graph H as follows
Best described in gadgets

Hamiltonian Cycle

1) edge gadget

both u, v in VC only u in VC only v in VC

Hamiltonian Cycle

2) vertex gadget

uv ${ }_{1}$ in $u v_{1}$ out
$u v_{3}$ in $u v_{3}$ out

Hamiltonian Cycle

2) vertex gadget

connected with edge gadget too

Hamiltonian Cycle
 3) cover gadget

