NP hardness reductions

Lecture 22

Recap

- $\quad \mathbf{P}=Y E S / N O$ questions that can be answered in polynomial time in input size (algorithm)
- $\mathbf{N P}=$ YES/No problems where YES instance can be verified in polynomial time
X is NP-hard: X in P implies $P=N P$
Cook-Levin: CircuitSAT NP hard

How to prove NP hardness To prove X is NP-hard:

- Step 1: Pick a known NP-hard problem Y
- Step 2: Assume for the sake of argument, a polynomial time algorithm for X.
- Step 3: Derive a polynomial time algorithm for Y, using algorithm for X as subroutine.
- Step 4: Contradiction

Reduce Y to X

Reduce FROM the problem
I know about
TO the problem
I am curious about

NP hardness

Library of NP-hard problems

CircuitSAT

SAT
?

Let's assume the problem is easy and see what ridiculous consequences follow

3SAT

Look at boolean formulas in CNF

clause
$\overbrace{(a \vee b \vee c \vee d)} \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b})$

3SAT

Look at boolean formulas in CNF

clause
 $\overbrace{(a \vee b \vee c \vee d)} \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b})$

3SAT: exactly three
literals per clause!
every literal is a variable or
the negation of a variable

3SAT

Look at boolean formulas in CNF

clause
$\overbrace{(a \vee b \vee c \vee d)} \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b})$

Parse tree:
3SAT: exactly three literals per clause! every literal is a variable or the negation of a variable

Not all boolean functions can be in the form $a V b V c V d$

3SAT

Look at boolean formulas in CNF

clause
$\overbrace{(a \vee b \vee c \vee d)} \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b})$
Parse tree:
3SAT special case of SAT. unlike when we are thinking about special cases in algorithms

2SAT there is algorithm!

NP hardness

Poly time reduction from CircuitSAT.

- If there is a poly time algorithm to solve 3SAT, then there is poly time algorithm to solve CircuitSAT

Reduction CircuitSAT to 3SAT

- Step 1: Make gates binary (blows up size by at most $2 x$ wires, if there were x wires). Poly time.
- Step 2: Transcribe

Reduction CircuitSAT to 3SAT

- Step 3: Make clauses in 3CNF

$$
\begin{aligned}
a=b \wedge c & \longmapsto(a \vee \bar{b} \vee \bar{c}) \wedge(\bar{a} \vee b) \wedge(\bar{a} \vee c) \\
a=b \vee c & \longmapsto(\bar{a} \vee b \vee c) \wedge(a \vee \bar{b}) \wedge(a \vee \bar{c}) \\
a=\bar{b} & \longmapsto(a \vee b) \wedge(\bar{a} \vee \bar{b}) \\
a \vee b & \longmapsto(a \vee b \vee x) \wedge(a \vee b \vee \bar{x}) \\
a & \longmapsto(a \vee x \vee y) \wedge(a \vee \bar{x} \vee y) \wedge(a \vee x \vee \bar{y}) \wedge(a \vee \bar{x} \vee \bar{y})
\end{aligned}
$$

$$
\begin{aligned}
& \left(y_{1} \vee \overline{x_{1}} \vee \overline{x_{4}}\right) \wedge\left(\overline{y_{1}} \vee x_{1} \vee z_{1}\right) \wedge\left(\overline{y_{1}} \vee x_{1} \vee \overline{z_{1}}\right) \wedge\left(\overline{y_{1}} \vee x_{4} \vee z_{2}\right) \wedge\left(\overline{y_{1}} \vee x_{4} \vee \overline{z_{2}}\right) \\
& \wedge\left(y_{2} \vee x_{4} \vee z_{3}\right) \wedge\left(y_{2} \vee x_{4} \vee \overline{z_{3}}\right) \wedge\left(\overline{y_{2}} \vee \overline{x_{4}} \vee z_{4}\right) \wedge\left(\overline{y_{2}} \vee \overline{x_{4}} \vee \overline{z_{4}}\right) \\
& \wedge\left(y_{3} \vee \overline{x_{3}} \vee \overline{y_{2}}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee z_{5}\right) \wedge\left(\overline{y_{3}} \vee x_{3} \vee \overline{z_{5}}\right) \wedge\left(\overline{y_{3}} \vee y_{2} \vee z_{6}\right) \wedge\left(\overline{y_{3}} \vee y_{2} \vee \overline{z_{6}}\right) \\
& \wedge\left(\overline{y_{4}} \vee y_{1} \vee x_{2}\right) \wedge\left(y_{4} \vee \overline{x_{2}} \vee z_{7}\right) \wedge\left(y_{4} \vee \overline{x_{2}} \vee \overline{z_{7}}\right) \wedge\left(y_{4} \vee \overline{y_{1}} \vee z_{8}\right) \wedge\left(y_{4} \vee \overline{y_{1}} \vee \overline{z_{8}}\right) \\
& \wedge\left(y_{5} \vee x_{2} \vee z_{9}\right) \wedge\left(y_{5} \vee x_{2} \vee \overline{z_{9}}\right) \wedge\left(\overline{y_{5}} \vee \overline{x_{2}} \vee z_{10}\right) \wedge\left(\overline{y_{5}} \vee \overline{x_{2}} \vee \overline{z_{10}}\right) \\
& \wedge\left(y_{6} \vee x_{5} \vee z_{11}\right) \wedge\left(y_{6} \vee x_{5} \vee \overline{z_{11}}\right) \wedge\left(\overline{y_{6}} \vee \overline{x_{5}} \vee z_{12}\right) \wedge\left(\overline{y_{6}} \vee \overline{x_{5}} \vee \overline{z_{12}}\right) \\
& \wedge\left(\overline{y_{7}} \vee y_{3} \vee y_{5}\right) \wedge\left(y_{7} \vee \overline{y_{3}} \vee z_{13}\right) \wedge\left(y_{7} \vee \overline{y_{3}} \vee \overline{z_{13}}\right) \wedge\left(y_{7} \vee \overline{y_{5}} \vee z_{14}\right) \wedge\left(y_{7} \vee \overline{y_{5}} \vee \overline{z_{14}}\right) \\
& \wedge\left(y_{8} \vee \overline{y_{4}} \vee \overline{y_{7}}\right) \wedge\left(\overline{y_{8}} \vee y_{4} \vee z_{15}\right) \wedge\left(\overline{y_{8}} \vee y_{4} \vee \overline{z_{15}}\right) \wedge\left(\overline{y_{8}} \vee y_{7} \vee z_{16}\right) \wedge\left(\overline{y_{8}} \vee y_{7} \vee \overline{z_{16}}\right) \\
& \wedge\left(y_{9} \vee \overline{y_{8}} \vee \overline{y_{6}}\right) \wedge\left(\overline{y_{9}} \vee y_{8} \vee z_{17}\right) \wedge\left(\overline{y_{9}} \vee y_{8} \vee \overline{z_{17}}\right) \wedge\left(\overline{y_{9}} \vee y_{6} \vee z_{18}\right) \wedge\left(\overline{y_{9}} \vee y_{6} \vee \overline{z_{18}}\right) \\
& \wedge\left(y_{9} \vee z_{19} \vee z_{20}\right) \wedge\left(y_{9} \vee \overline{z_{19}} \vee z_{20}\right) \wedge\left(y_{9} \vee z_{19} \vee \overline{z_{20}}\right) \wedge\left(y_{9} \vee \overline{z_{19}} \vee \overline{z_{20}}\right)
\end{aligned}
$$

Although this formula may look a lot more ugly and complicated than the original circuit at first glance, it's actually only a constant factor larger-every binary gate in the original

Algo runs in poly time Proof:

- Circuit satisfiable implies formula satisfiable
- formula satisfiable implies circuit satisfiable even though the reduction goes one direction, the proof needs to go both directions

MAX Independent Set

Input: a graph $G(V, E)$

- Output: Largest subset of vertices with no edges between them. (enough to find size)

How to prove NP hardness To prove X is NP-hard:

- Step 1: Pick a known NP-hard problem Y
- Step 2: Assume for the sake of argument, a polynomial time algorithm for X.
- Step 3: Derive a polynomial time algorithm for Y, using algorithm for X as subroutine.
- Step 4: Contradiction

Reduce Y to X

Reduce FROM the problem
I know about
TO the problem
I am curious about

NP hardness

Library of NP-hard problems

CircuitSAT
 SAT 3SAT

Let's assume the problem is easy and see what ridiculous consequences follow

MAX Independent Set

Input: a graph $G(V, E)$

- Output: Largest subset of vertices with no edges between them. (enough to find size)

Prove this is NP hard by reduction from 3SAT

Polynomial-time reduction from 3SAT to MaxIndSET

MAX Independent Set

Given an arbitrary 3CNF formula
Build a graph G as follows

1) For every clause 3 vertices connected in a

$$
\begin{aligned}
& \text { triangle } \\
& x \vee y \vee \neg z
\end{aligned}
$$

2) add edges between a literal and its negation

MAX Independent Set

Input: a graph $G(V, E)$

- Output: Largest subset of vertices with no edges between them. (enough to find size)

$$
(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
$$

k clauses -> 3k vertices
graph has IS of size k if and only if the formula is satisfiable

MAX Independent Set

Claim:

Graph has IS of size k if and only if the formula is satisfiable
2 steps to proof:
Step1) Assume formula satisfiable
-Choose satisfying assignment ($a=1, b=1, c=1, d=0$)

$$
(a y b \vee c) \wedge(b \bar{b} \vee \bar{c} \vee \bar{d}) \wedge(\bar{a}(c y d) \wedge(a \vee \bar{b}
$$

No long edges because every selected literal is true and no edges between each triangle

G Has IS of size k!

MAX Independent Set

Input: a graph $G(V, E)$

- Output: Largest subset of vertices with no edges between them. (enough to find size)

$$
(a \vee b \vee c) \wedge(b \vee \bar{c} \vee \bar{d}) \wedge(\bar{a} \vee c \vee d) \wedge(a \vee \bar{b} \vee \bar{d})
$$

k clauses -> 3k vertices
graph has IS of size k if and only if the formula is satisfiable

MAX Independent Set

Claim:
Graph has IS of size k if and only if the formula is satisfiable

$$
2 \text { steps to proof: }
$$

Step 2) Suppose G has IS of size k. Then this IS contains at most one node per triangle so it has exactly one node per triangle. These nodes provide a satisfying assignment to the formula

When you write reductions

- Step 1: Describe the algorithm (and it runs in poly time)
- Step 2: Prove one way
- Step 3: Prove the other way

NP hardness

Library of NP-hard problems

CircuitSAT
 SAT 3SAT MAX IS

Let's assume the problem is easy and see what ridiculous consequences follow

MAX Clique

 Input: a graph $G(V, E)$- Output: Largest subset of vertices that are all nairwise connected

- Reduction from MAX-IS
- Assume poly time algorithm

for MAX Clique

- Derive poly time algorithm for MAX IS

what is G'? Not the same graph as G

clique

NP hardness

Library of NP-hard problems

CircuitSAT
 SAT 3SAT MAX IS

MAX Clique

Let's assume the problem is easy and see what ridiculous consequences follow

MIN Vertex Cover

 Input: a graph $G(V, E)$- Output: Smallest set of vertices that touch every
 edge
- Reduction from MAX-IS
- Assume poly time algorithm for MIN Vertex Cover

what is G'? same graph as G
 Output is different

