
Strongly Connected
Components, Dijkstra

Lecture19

1

C
S

37
4

Topological Sort

i j
i<j

C
S

37
4

Strong Connectivity
In directed graph vertex u can reach vertex v iff

there is a directed path from u to b
reach(u) = set of vertices u can reach

u and v are strongly connected if u can reach v and v can
reach u

vu

u v

C
S

37
4

Strong Connectivity, SCC

• Strong connectivity is an equivalence relation
• Equivalence classes are called strongly connected

components
• If G has a single strongly connected component: strongly

connected

1

2

3

4 5

7

6

C
S

37
4

Strong Connectivity, SCC
• Strong connectivity is an equivalence relation
• Equivalence classes are called strongly connected

components
• If G has a single strongly connected component: strongly

connected
• When is G a DAG?
• No two vertices strongly connected
• Every SCC is a single vertex

C
S

37
4

Strong Connectivity, SCC

• How to compute SCC of vertex u in O(|V|+|E|) time?
DFS(G,u) gives us Reach(u)

Take intersection of both for SCC
DFS(Grev,u) gives us all the stuff that can reach u

1

2

3

4 5

7

6
G

C
S

37
4

Strong Connectivity, SCC

• How to compute SCC of vertex u in O(|V|+|E|) time?

1

2

3

4 5

7

6

DFS(G,u) gives us Reach(u)

Take intersection of both for SCC
DFS(Grev,u) gives us all the stuff that can reach u

G

C
S

37
4

Strong Connectivity, SCC

• How to compute SCC of vertex u in O(|V|+|E|) time?

1

2

3

4 5

7

6

DFS(G,u) gives us Reach(u)

Take intersection of both for SCC
DFS(Grev,u) gives us all the stuff that can reach u

Grev

C
S

37
4

Strong Connectivity, SCC

• How to compute SCC of vertex u in O(|V|+|E|) time?

1

2

3

4 5

7

6

DFS(G,u) gives us Reach(u)

Take intersection of both for SCC
DFS(Grev,u) gives us all the stuff that can reach u

C
S

37
4

Strong Connectivity, SCC
• How to compute SCC of vertex u in O(|V|+|E|) time?
• Compute Reach(u) with DFS on G in O(|V|+|E|)
• Compute Reach-1(u) ={v: u is in Reach(v)} with DFS on
 reverse graph Grev in O(|V|+|E|)
• SCC is the intersection of the two sets (mark vertices that

have been visited on the first DFS).
• How to compute all SCC of a graph?
• Naive: O(|V||E|) time (for every vertex compute its

component).
• Can we do better?
• Combine all the DFS into one.

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

scc(G) ALWAYS A DAG!

C
S

37
4

SCC Graph

We want to find all SCC, namely compute scc(G) graph in
linear time

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

• What if I try to do it recursively?
• Find a sink (or source) component of

scc(G), remove it and recurse.

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

Can compute all the SCC:

How to find a vertex in a sink component?

C
S

37
4

SCC Graph

• What if I try to do it recursively?
• Find a sink (or source) component of

scc(G), remove it and recurse.
• Last time for DAGS: first vertex DONE in

DFS is a sink!

1

2

3

4 5

7

6

C
S

37
4

• Claim: Last vertex DONE is in a source component of
scc(G).

Finding SCC

Running time?
Do something for every SCC, will give us something

quadratic on worst case (e.g. DAG)
But the vertices are in the correct order!

C
S

37
4

• Claim: For any edge v → w in G, if finish(v) < finish(w),
then v and w are strongly connected in G.

Finding SCC

C
S

37
4

• SCC in O(|V|+|E| time) (just two DFS one in G and one
in reverse!)

Finding SCC

Single Source Shortest
Paths

23

C
S

37
4

Shortest Paths

• Single source shortest
path (one s, all t)

s

2

3
4

5

1

6

C
S

37
4

Shortest Paths

• Single source shortest
path (one s, all t)

s

2

3
4

5

1

6

s

1

2
3

. . .

C
S

37
4

Shortest Paths

• Single source shortest
path (one s, all t)

• All pairs shortest path (all
s, all t)

s

2

3
4

5

1

6
Input = directed graph (V,E) with lengths w(e) on edges

• all w(e) ≥ 0
• some w(e) < 0
• Dijkstra only (?!) works for singe source shortest paths when

all weights non-negative (not really…)

C
S

37
4

Shortest Paths

Can we allow arbitrary negative weights?
No shortest path!

Negative cycles are bad. Assume they don't exist

3

1

-10

2
3

5

C
S

37
4

Shortest Path Trees

If shortest paths are unique they form a tree
what if they are not unique?

s

u

v

a

b

d

c
sp(s,c)
sp(s,c)

C
S

37
4

Shortest Path Trees

There is a set of shortest paths from s to every vertex that
defines a tree

s

u

v

a

b

d

c

C
S

37
4

Every SSSP algorithm
Maintain at every vertex:

• dist(v) : the length of the tentative shortest path from s to v
or ∞ if there is no such path.

• pred(v): the predecessor of v in the tentative shortest path
from s to v or NULL if there is no such vertex.

• think of storing the dist(v) value on the node.

5 8
2

edge u → v is tense if dist(v) > dist(u)+w(u →v)

C
S

37
4

Every SSSP algorithm

While some edges is tense,
relax it

edge u → v is tense if
dist(v) > dist(u)+w(u →v)

If there are no tense edges
then for every vertex v, dist(v)

is shortest path distance.

C
S

37
4

Every SSSP algorithm

While some edges is tense,
relax it

makes no assumption on negative weights.
Does assume no negative cycle (how?).

C
S

37
4

Every SSSP algorithm

s v
1

3-5

u

While some edges is tense,
relax it

dist(s) = 0
 dist(v) = ∞
 dist(u) = ∞

C
S

37
4

Every SSSP algorithm

s v
1

3-5

u

While some edges is tense,
relax it

dist(s) = 0
 dist(v) = 1
 dist(u) = ∞

C
S

37
4

Every SSSP algorithm

s v
1

3-5

u

While some edges is tense,
relax it

dist(s) = 0
 dist(v) = 1
 dist(u) = 4

C
S

37
4

Every SSSP algorithm

s v
1

3-5

u

While some edges is tense,
relax it

dist(s) = -1
 dist(v) = 1
 dist(u) = 4

C
S

37
4

Every SSSP algorithm

s v
1

3-5

u

While some edges is tense,
relax it

dist(s) = -1
 dist(v) = 0
 dist(u) = 4

C
S

37
4

Every SSSP algorithm

s v
1

3-5

u

While some edges is tense,
relax it

dist(s) = -1
 dist(v) = 0
 dist(u) = 3

runs into infinite loop

Ford (’53)

some edge always
tense!

C
S

37
4

Every SSSP algorithm

Without specifying how to find tense edges, not an
algorithm

weird thing about it: a vertex might be put into bag
multiple times

C
S

37
4

Every SSSP algorithm

What data structure?
queue, stack? (both give correct algo, but maybe exp

time)

C
S

37
4

Every SSSP algorithm

Dijkstra: Priority Queue
increasing order of their shortest path distance.

Every vertex is visited exactly once, and when that
happens the distance is correct

C
S

37
4

assume I have computed a partial shortest path tree

s
4

6
12

5
10

8

Claim: this edge is in the tree

Dijkstra

consider the edges from
partial tree to all red

vertices
what edge to choose in
order to extend the tree?

C
S

37
4

assume I have computed a partial shortest path tree

s
4

6
12

5
10

8 consider the edges from
partial tree to all red

vertices
what edge to choose in
order to extend the tree?

Claim: this edge is in the tree

Dijkstra

C
S

37
4

assume I have computed a partial shortest path tree

s

8

4

6
12

5
10

8

Claim: this edge is in the tree

Dijkstra

C
S

37
4

assume I have computed a partial shortest path tree

s

8

4

6
12

5
10

8

Claim: this edge is in the tree

>8

If no negative weights, Dijkstra is greedy!

Dijkstra

C
S

37
4

Dijkstra

Algorithm:
if all w(e) ≥ 0 then
each node leaves priority queue once
≤ 1 priority queue operation per edge
O(|E|logV)

a.k.a “Closest first search”

if there is w(e) < 0 then
O(2|V|) time

C
S

37
4

Every SSSP algorithm

Difference between Dijkstra and Generic?

