Strongly Connected Components, Dijksera

Lecture19

Topological Sort

```
TOPOLOGICALSORT(G):
    add vertex s
    for all vertices }v\not=
        add edge s->v
        status(v)}\leftarrow\textrm{NEW
    TOPOSORTDFS(s)
    for i}\leftarrow1\mathrm{ to }
        S[i]}\leftarrow\textrm{POP
    return S[1..V]
```

TOPOSORTDFS (v) :
status $(v) \leftarrow$ Active
for each edge $v \rightarrow w$
if status $(w)=$ New
ProcessBackwardDFS(w)
else if $\operatorname{status}(w)=$ Active
fail gracefully
status $(v) \leftarrow$ Done
Push (v)
return True

i<j

Strong Connectivity

In directed graph vertex u can reach vertex v iff there is a directed path from u to b reach $(u)=$ set of vertices u can reach

u and v are strongly connected if u can reach v and v can reach u

Strong Connectivity, SCC

- Strong connectivity is an equivalence relation
- Equivalence classes are called strongly connected components
- If G has a single strongly connected component: strongly connected

Strong Connectivity, SCC

- Strong connectivity is an equivalence relation
- Equivalence classes are called strongly connected components
- If G has a single strongly connected component: strongly connected
- When is G a DAG?
- No two vertices strongly connected
- Every SCC is a single vertex

Strong Connectivity, SCC

- How to compute SCC of vertex u in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time?

DFS(G,u) gives us Reach(u)
DFS(Grev,u) gives us all the stuff that can reach u Take intersection of both for SCC

Strong Connectivity, SCC

- How to compute SCC of vertex u in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time?

DFS(G,u) gives us Reach(u)
DFS(Grev,u) gives us all the stuff that can reach u Take intersection of both for SCC

Strong Connectivity, SCC

- How to compute SCC of vertex u in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time?

DFS(G,u) gives us Reach(u)
DFS(Grev,u) gives us all the stuff that can reach u Take intersection of both for SCC

Strong Connectivity, SCC

- How to compute SCC of vertex u in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time?

DFS(G,u) gives us Reach(u)
DFS(Grev,u) gives us all the stuff that can reach u Take intersection of both for SCC

Strong Connectivity, SCC

- How to compute SCC of vertex u in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time?
- Compute Reach(u) with DFS on G in $\mathrm{O}(|\mathrm{V}|+|E|)$
- Compute Reach ${ }^{-1}(\mathrm{u})=\{\mathrm{v}$: u is in Reach $(\mathrm{v})\}$ with DFS on reverse graph Grev in $\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$
- SCC is the intersection of the two sets (mark vertices that have been visited on the first DFS).
- How to compute all SCC of a graph?
- Naive: $\mathrm{O}(|\mathrm{V}||\mathrm{E}|)$ time (for every vertex compute its component).
- Can we do better?
- Combine all the DFS into one.

SCC Graph

For every directed graph $G, \operatorname{scc}(G)$ is another (meta)graph: Contract each SCC of G in one vertex and collapse parallel edges

SCC Graph

For every directed graph $G, \operatorname{scc}(G)$ is another (meta)graph: Contract each SCC of G in one vertex and collapse parallel edges

SCC Graph

For every directed graph $G, \operatorname{scc}(G)$ is another (meta)graph: Contract each SCC of G in one vertex and collapse parallel edges

SCC Graph

For every directed graph $G, \operatorname{scc}(G)$ is another (meta)graph: Contract each SCC of G in one vertex and collapse parallel edges

SCC Graph

For every directed graph $G, \operatorname{scc}(G)$ is another (meta)graph: Contract each SCC of G in one vertex and collapse parallel edges

SCC Graph

We want to find all SCC, namely compute $\operatorname{scc}(\mathrm{G})$ graph in linear time

SCC Graph

- What if I try to do it recursively?
- Find a sink (or source) component of $\operatorname{scc}(G)$, remove it and recurse.

SCC Graph

Can compute all the SCC:

```
STRONGCOMPONENTS(G):
    count }\leftarrow
    while G is non-empty
        count }\leftarrow\mathrm{ count + }
        v \leftarrow \text { any vertex in a sink component of } G
        C}\leftarrow\mathrm{ ONEComponEnt( v, count)
        remove C and incoming edges from G
```

How to find a vertex in a sink component?

SCC Graph

- What if I try to do it recursively?
- Find a sink (or source) component of $\operatorname{scc}(G)$, remove it and recurse.
- Last time for DAGS: first vertex DONE in DFS is a sink!

Finding SCC

- Claim: Last vertex DONE is in a source component of $\operatorname{scc}(\mathrm{G})$.

DFSALL(G):

for all vertices v unmark v
clock $\leftarrow 0$
for all vertices v
if v is unmarked clock $\leftarrow \mathrm{DFS}(\nu$, clock $)$

```
DFS(v,clock):
    mark v
    for each edge v->w
        if w is unmarked
                clock}\leftarrow\textrm{DFS}(w,clock
    clock }\leftarrow\mathrm{ clock+1
    finish(v)}\leftarrowcloc
    return clock
```

Running time?
Do something for every SCC, will give us something quadratic on worst case (e.g. DAG)
But the vertices are in the correct order!

Finding SCC

- Claim: For any edge $v \rightarrow \mathrm{w}$ in G , if finish(v) < finish(w), then v and w are strongly connected in G.

Finding SCC

－SCC in $\mathrm{O}(|\mathrm{V}|+|E|$ time）（just two DFS one in G and one in reverse！）

Kosarajusharir (G) ：
《＜Phase 1：Push in finishing order》） unmark all vertices for all vertices v
if v is unmarked clock $\leftarrow \operatorname{RevPushDFS}(v)$
《（Phase 2：DFS in stack order》〉 unmark all vertices
count $\leftarrow 0$
while the stack is non－empty
$v \leftarrow$ Pop
if v is unmarked count \leftarrow count +1 LabelOneDFS（ v ，count）

REvPUSHDFS（ v ）： mark v for each edge $v \rightarrow u$ in $\operatorname{rev}(G)$ if u is unmarked RevPushDFS（ u ） Push（v）

LABELONEDFS（ v ，count）： mark v
label $(v) \leftarrow$ count for each edge $v \rightarrow w$ in G if w is unmarked LabelOneDFS（ w ，count）

Single Source Shortest Paths

Shortest Paths

S

- Single source shortest path (one s, all t)

Shortest Paths

- Single source shortest path (one s, all t)

Shortest Paths

- Single source shortest path (one s, all t)
- All pairs shortest path (all s, all t)

Input $=$ directed graph (V, E) with lengths $\mathrm{w}(\mathrm{e})$ on edges

- all $w(e) \geq 0$
- some w(e) < 0
- Dijkstra only (?!) works for singe source shortest paths when all weights non-negative (not really...)

Shortest Paths

Can we allow arbitrary negative weights?
No shortest path!
Negative cycles are bad. Assume they don't exist

Shortest Path Trees

b

If shortest paths are unique they form a tree what if they are not unique?

Shortest Path Trees

b
u

There is a set of shortest paths from s to every vertex that defines a tree

Every SSSP algorithm

Maintain at every vertex:

- $\operatorname{dist}(\mathrm{v})$: the length of the tentative shortest path from s to v or ∞ if there is no such path.
- pred(v): the predecessor of v in the tentative shortest path from s to v or NULL if there is no such vertex.
- think of storing the dist (v) value on the node.

$$
\text { edge } \mathrm{u} \rightarrow \mathrm{v} \text { is tense if } \operatorname{dist}(\mathrm{v})>\operatorname{dist}(\mathrm{u})+\mathrm{w}(\mathrm{u} \rightarrow \mathrm{v})
$$

$$
\begin{aligned}
& \frac{\operatorname{RELAX}(u \rightarrow v):}{\operatorname{dist}(v) \leftarrow \operatorname{dist}(u)+w(u \rightarrow v)} \\
& \operatorname{pred}(v) \leftarrow u
\end{aligned}
$$

Every SSSP algorithm

InITSSSP(s):
 $\operatorname{dist}(s) \leftarrow 0$
 $\operatorname{pred}(s) \leftarrow$ NuLL
 for all vertices $v \neq s$
 $$
\begin{aligned} & \operatorname{dist}(v) \leftarrow \infty \\ & \operatorname{pred}(v) \leftarrow \text { NULL } \end{aligned}
$$

If there are no tense edges then for every vertex v, dist(v) is shortest path distance.

While some edges is tense, relax it
edge $u \rightarrow v$ is tense if $\operatorname{dist}(\mathrm{v})>\operatorname{dist}(\mathrm{u})+\mathrm{w}(\mathrm{u} \rightarrow \mathrm{v})$

```
Relax(u->v):
    dist}(v)\leftarrow\operatorname{dist}(u)+w(u->v
    pred(v)\leftarrowu
```


Every SSSP algorithm

```
INITSSSP(s):
        dist(s)\leftarrow0
    pred(s)\leftarrowNULL
    for all vertices v\not=s
        dist}(v)\leftarrow
        pred}(v)\leftarrow\mathrm{ Null
```

While some edges is tense, relax it
makes no assumption on negative weights.
Does assume no negative cycle (how?).

Every SSSP algorithm

```
InITSSSP(s):
    \(\operatorname{dist}(s) \leftarrow 0\)
    \(\operatorname{pred}(s) \leftarrow\) NuLL
    for all vertices \(v \neq s\)
            \(\operatorname{dist}(v) \leftarrow \infty\)
        \(\operatorname{pred}(v) \leftarrow\) NuLL
```

While some edges is tense, relax it

$\operatorname{dist}(s)=0$
$\operatorname{dist}(v)=\infty$
$\operatorname{dist}(u)=\infty$

Every SSSP algorithm

```
InITSSSP(s):
    \(\operatorname{dist}(s) \leftarrow 0\)
    \(\operatorname{pred}(s) \leftarrow\) NuLL
    for all vertices \(v \neq s\)
            \(\operatorname{dist}(v) \leftarrow \infty\)
        \(\operatorname{pred}(v) \leftarrow\) NuLL
```

While some edges is tense, relax it

$\operatorname{dist}(s)=0$ $\operatorname{dist}(v)=1$
$\operatorname{dist}(u)=\infty$

Every SSSP algorithm

```
InITSSSP(s):
    \(\operatorname{dist}(s) \leftarrow 0\)
    \(\operatorname{pred}(s) \leftarrow\) NuLL
    for all vertices \(v \neq s\)
            \(\operatorname{dist}(v) \leftarrow \infty\)
        \(\operatorname{pred}(v) \leftarrow\) NuLL
```

While some edges is tense, relax it

$\operatorname{dist}(s)=0$ $\operatorname{dist}(\mathrm{v})=1$
$\operatorname{dist}(\mathrm{u})=4$

Every SSSP algorithm

```
InITSSSP(s):
    \(\operatorname{dist}(s) \leftarrow 0\)
    \(\operatorname{pred}(s) \leftarrow\) NuLL
    for all vertices \(v \neq s\)
            \(\operatorname{dist}(v) \leftarrow \infty\)
        \(\operatorname{pred}(v) \leftarrow\) NuLL
```

While some edges is tense,
relax it

$\operatorname{dist}(s)=-1$
$\operatorname{dist}(\mathrm{v})=1$
$\operatorname{dist}(\mathrm{u})=4$

Every SSSP algorithm

```
InITSSSP(s):
    \(\operatorname{dist}(s) \leftarrow 0\)
    \(\operatorname{pred}(s) \leftarrow\) NuLL
    for all vertices \(v \neq s\)
            \(\operatorname{dist}(v) \leftarrow \infty\)
        \(\operatorname{pred}(v) \leftarrow\) NuLL
```

While some edges is tense,
relax it

$\operatorname{dist}(s)=-1$
$\operatorname{dist}(\mathrm{v})=0$
$\operatorname{dist}(\mathrm{u})=4$

Every SSSP algorithm

InITSSSP(s): $\operatorname{dist}(s) \leftarrow 0$ $\operatorname{pred}(s) \leftarrow$ NuLL for all vertices $v \neq s$ $\operatorname{dist}(v) \leftarrow \infty$ $\operatorname{pred}(v) \leftarrow$ NuLL
 Ford ('53)

While some edges is tense, relax it

$\operatorname{dist}(\mathrm{s})=-1$
$\operatorname{dist}(\mathrm{v})=0$
$\operatorname{dist}(\mathrm{u})=3$
some edge always tense!

Every SSSP algorithm

InITSSSP(s): $\operatorname{dist}(s) \leftarrow 0$ $\operatorname{pred}(s) \leftarrow$ NULL for all vertices $v \neq s$

$$
\begin{aligned}
& \operatorname{dist}(v) \leftarrow \infty \\
& \operatorname{pred}(v) \leftarrow \mathrm{NULL}
\end{aligned}
$$

GENERICSSSP(s):
InitSSSP(s)
put s in the bag
while the bag is not empty take u from the bag for all edges $u \rightarrow v$
if $u \rightarrow v$ is tense Relax $(u \rightarrow v)$ put v in the bag

Without specifying how to find tense edges, not an algorithm
weird thing about it: a vertex might be put into bag multiple times

Every SSSP algorithm

InITSSSP(s):
$\operatorname{dist}(s) \leftarrow 0$
$\operatorname{pred}(s) \leftarrow$ NuLL
for all vertices $v \neq s$

$$
\begin{aligned}
& \operatorname{dist}(v) \leftarrow \infty \\
& \operatorname{pred}(v) \leftarrow \text { NULL }
\end{aligned}
$$

GENERICSSSP(s):
InitSSSP(s)
put s in the bag
while the bag is not empty take u from the bag for all edges $u \rightarrow v$
if $u \rightarrow v$ is tense Relax $(u \rightarrow v)$ put v in the bag

What data structure?
queue, stack? (both give correct algo, but maybe exp time)

Every SSSP algorithm

InITSSSP(s):
$\operatorname{dist}(s) \leftarrow 0$
$\operatorname{pred}(s) \leftarrow$ NuLL
for all vertices $v \neq s$

$$
\begin{aligned}
& \operatorname{dist}(v) \leftarrow \infty \\
& \operatorname{pred}(v) \leftarrow \mathrm{NULL}
\end{aligned}
$$

GENERICSSSP(s):
InitSSSP(s)
put s in the bag
while the bag is not empty take u from the bag for all edges $u \rightarrow v$
if $u \rightarrow v$ is tense Relax $(u \rightarrow v)$ put v in the bag

Dijkstra: Priority Queue
increasing order of their shortest path distance.
Every vertex is visited exactly once, and when that happens the distance is correct

Dijkstra

assume I have computed a partial shortest path tree 8
consider the edges from partial tree to all red vertices what edge to choose in order to extend the tree?

Claim: this edge is in the tree

Dijkstra

assume I have computed a partial shortest path tree

Dijkstra

assume I have computed a partial shortest path tree 8

Dijkstra

assume I have computed a partial shortest path tree

Claim: this edge is in the tree
If no negative weights, Dijkstra is greedy!

Dijkstra

a.k.a "Closest first search"

Algorithm:
if all $w(e) \geq 0$ then
each node leaves priority queue once
≤ 1 priority queue operation per edge
O(|E|logV)
if there is $w(e)<0$ then
$\mathrm{O}\left(2^{\mid \mathrm{VI})}\right.$) time

Every SSSP algorithm

INITSSSP(s): $\operatorname{dist}(s) \leftarrow 0$ $\operatorname{pred}(s) \leftarrow$ NuLL for all vertices $v \neq s$

$$
\begin{aligned}
& \operatorname{dist}(v) \leftarrow \infty \\
& \operatorname{pred}(v) \leftarrow \mathrm{NULL}
\end{aligned}
$$

GENERICSSSP(s):
InitSSSP(s)
put s in the bag
while the bag is not empty take u from the bag for all edges $u \rightarrow v$
if $u \rightarrow v$ is tense Relax $(u \rightarrow v)$ put v in the bag

Difference between Dijkstra and Generic?

