DFS, TOFOLQS_;L&&L Sort

- Mid-semester survey which can be accessed
at https://illinois.edu/sb/sec/7058301.

- Midterm in two weeks!

- Review session the Thursday before.

https://urldefense.proofpoint.com/v2/url?u=https-3A__illinois.edu_sb_sec_7058301&d=DQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=7YgztqLqda-FYMDF73iESqWvnwbj9duH1nAiAQdzv50&m=00ud8aLcweTX0GurqvAknj5xnC_qrAX4X-ScK2wbEh4&s=goEGHwSHRjOusvVnuDTWUNjX99isDsLlXfady3pj_iI&e=

CS 374

How to traverse a graph?

TRAVERSE(S):
put s into the bag
while the bag is not empty
take v from the bag
if v is unmarked
mark v
for each edge vw
put w into the bag

stack =LIFO (DFS)
Queue = FIFO (BFS)
Priority Queue = lightest out
Random, etc

CS 374

DFS

DFS(v):
if v is unmarked
mark v
for each edge vw

DFS(w)

stack =LIFO (DFS)

CS 374

DFS(v):

mark v
PrReVisIT(V)

for each edge vw
if w is unmarked
parent(w) « v
DFS(w)

PosTVisIT(V)

check it a node is marked
before recursively exploring it.
DFS(v) called once for each v.

Disconnected graphs?

CS 374

DFSALL(G):

check if a node is marked

PREPROCESS(G) . T
. before recursively exploring it.
for all vertices v DFS(v) called once for each v.
unmark v

for all vertices v
if v is unmarked Disconnected graphs?

DFS(v)

How to label all the vertices in each component with same
label?

CS 374

have found no Connected oomponents yet :

COUNTANDLABEL(G)

PP, P—————
for all vertices v
unmark v

for all vertices v
if v is unmarked
count «— count + 1
LABELCOMPONENT(V, count)

return count

LABELCOMPONENT(V, count):
mark v
comp(v)

for each
if w is unmarke
LABELCOMPONENT(W, count)

| Every time | find a new component increase counter |

CS 374

M have found no connected components yet :

COUNTANDLABEL(G)

PP, P—————
for all vertices v
unmark v

for all vertices v
if v is unmarked
count « count + 1

LABELCOMPONENT(V, count):
mark v
comp(v) — COUNL »enransenmsssssamesms

for each edge vw
if w is unmarked

LABELCOMPONENT(W, count)

LABELCOMPONENT(V, count)

return count

| Every time | fine a new component increase counter | {

Label each vertex in the component with the index of the component |

CS 374

DFS

DFS(v):
mark v
PrReVisIiT(V)

for each edge vw
if w is unmarked
parent(w) « v
DFS(w)

PosTVisIiT(Vv)

Sometimes | want to compute an order of the vertices in a
graph which is consistent with pre or postorder traversal
e.q. DP

CS 374

Preorder/Postorder

PREPOSTLABEL(G):
for all vertices v
unmark v
clock < 0O

for all vertices v
if v is unmarked
clock < LABELCOMPONENT(V, clock)

LABELCOMPONENT(V, clock):
mark v
pre(v) « clock
clock « clock + 1
for each edge vw

if w is unmarked
clock < LABELCOMPONENT(w, clock)

post(v) « clock
clock « clock + 1
return clock

DFS

DFS(v):
mark v
PREVISIT(V)

for each edge vw
if w is unmarked
parent(w) « v

DFS(w)
PosTVisIT(Vv)
PREPROCESS(G): PREVISIT(v): PosTVisiT(v):
lock — 0 pre(v) « clock post(v) « clock
- clock « clock + 1 clock « clock + 1

DFS

ore(v) pre(w) post(w) post(v)

[

[

]]

(v,w) edge : intervals are nested

ore(u) post(u)

[]

Ditferent way of encoding the DFS tree for the recursive

PREPROCESS(G):

clock < 0

algorithm

PREVISIT(V):

pre(v) « clock
clock <« clock + 1

PosTVisiT(v):
post(v) « clock
clock « clock + 1

CS 374

COUNTANDLABEL(G):

count «— 0
for all vertices v LABELCOMPONENT(V, count):
unmark v mark v

comp(v) « count

for each edge vw
if w is unmarked
LABELCOMPONENT(W, count)

for all vertices v
if v is unmarked
count « count + 1
LABELCOMPONENT(V, count)

return count

assumes the graph is undirected
What about directed graphs?
When is a graph connected?

CS 374

DFS

In directed graph vertex u can reach vertex v iff
there is a directed path from uto b

T~

u and v are strongly connected if u can reach v and v can
reach u

W@ directed cycle!

CS 374

DFS for directed graphs

DFSALL(G):
for all vertices v
unmark v

for all vertices v
if v is unmarked

DFS(v)

DFS(v):

mark v
PReVISIT(V)
for each edgé v—w)
if w is unmarked
DES(w)
PosTVisiT(Vv)

CS 374

Think of two extremes

1) There are no directed cycles (DAG)
2) Every two vertices have a directed cycle between them

How do I decide it a graph is a DAG or strongly connected?

CS 374

Is it a DAG?

IsAcycLic(G):

add vertex s

for all vertices v # s
add edge s—v
status(v) « NEw

return IsAcycLicDFS(s)

ISACYCLICDF S(3o

status(v) & ACTIVE

for each edgev—>
if status(w) = ACTIVE
return FALSE .
else if status(w) EW
if ISACYCLICDFS{W) = FALSE
return FALSE

status(v)
return TRUE

a vertex can be
NEW, ACTIVE or DONE

directed cycle it and only if
| reach an ACTIVE vertex
from an ACTIVE vertex

CS 374

Is it a DAG?

IsAcycLicDFS(v):
status(v) <« ACTIVE

for each edge v—w
if status(w) = ACTIVE
return FALSE
else if status(w) = NEw
if IsAcycLiIcDFS(w) = FALSE
return FALSE

status(v) « DONE
return TRUE

a vertex can be
NEW, ACTIVE or DONE

directed cycle it and only if
| reach an ACTIVE vertex
from an ACTIVE vertex

VQ\

CS 374

Is it a DAG?

IsAcycLicDFS(v):
status(v) <« ACTIVE

for each edge v—w
if status(w) = ACTIVE
return FALSE
else if status(w) = NEw
if IsAcycLiIcDFS(w) = FALSE
return FALSE

status(v) « DONE
return TRUE

a vertex can be
NEW, ACTIVE or DONE

directed cycle it and only if
| reach an ACTIVE vertex
from an ACTIVE vertex

VQ\
&

CS 374

Is it a DAG?

IsAcycLicDFS(v):
status(v) <« ACTIVE

for each edge v—w
if status(w) = ACTIVE
return FALSE
else if status(w) = NEw
if IsAcycLiIcDFS(w) = FALSE
return FALSE

status(v) « DONE
return TRUE

a vertex can be
NEW, ACTIVE or DONE

directed cycle it and only if
| reach an ACTIVE vertex
from an ACTIVE vertex

VQ\
&

CS 374

Is it a DAG?

IsAcycLicDFS(v):
status(v) <« ACTIVE

for each edge vow
if status(w) = ACTIVE
return FALSE
else if status(w) = NEw
if IsAcycLiIcDFS(w) = FALSE
return FALSE

status(v) « DONE
return TRUE

a vertex can be
NEW, ACTIVE or DONE

directed cycle it and only if
| reach an ACTIVE vertex
from an ACTIVE vertex

VQ\
&

CS 374

Is it a DAG?

IsAcycLicDFS(v):
status(v) « ACTIVE

for each edge vow
if status(w) = ACTIVE
return FALSE
else if status(w) = NEw
if IsAcycLiIcDFS(w) = FALSE
return FALSE

status(v) « DONE
return TRUE

a vertex can be
NEW, ACTIVE or DONE

directed cycle it and only if
| reach an ACTIVE vertex
from an ACTIVE vertex

A

&

CS 374

Is it a DAG?

IsAcycLic(G):
add vertex s
for all vertices v # s
add edge s—v
status(v) « NEw

return IsAcycLicDFS(s)

IsAcycLicDFES(v):

time O(|V|+|E|)

status(v) <« ACTIVE
for each edge v—w

if status(w) = ACTIVE

return FALSE

else if status(w) =
if IsAcycLicDFS(w) = FALSE

NEwW

return FALSE

status(v) « DONE
return TRUE

Why do | want to decide if graph is

CS 374

Why do | want to find if DAG?

Make:

huge database of files

nodes are files,

edges between files x and y: ifl change file x, 1 need
to recompile file y

Sometimes people create file system that have cycles!
Make has to find those cycles and prevent that.

It also has to execute the compilation commands In
the correct order in order to produce the final
executable.

Just DFS of dependency graph

See DP memoization

Topological Sort ‘

CS 374

CS 374

Topological Sort

ToroLOGICALSORT(G) :
n<—|V|
fori<—1ton

veanysourceinG (

Sli] «v

delete v and all edges leaving v

return S[1..n]

CS 374

Topological Sort

ToroLOGICALSORT(G) :
n<—|V|
fori<—1ton

veanysourceinG (

Sli] «v

delete v and all edges leaving v

return S[1..n]

CS 374

Topological Sort

ToroLOGICALSORT(G) :
n<—|V|
fori<—1ton

veanysourceinG (

Sli] «v

delete v and all edges leaving v

return S[1..n]

CS 374

Topological Sort

ToroLOGICALSORT(G) :
n<—|V|
fori<—1ton

veanysourceinG (

Sli] «v

delete v and all edges leaving v

return S[1..n]

CS 374

Topological Sort

ToroLOGICALSORT(G) :
n<—|V|
fori<—1ton

veanysourceinG (

Sli] «v

delete v and all edges leaving v

return S[1..n]

CS 374

Topological Sort

ToroLOGICALSORT(G) :
n<—|V|
fori<—1ton

veanysourceinG (

Sli] «v

delete v and all edges leaving v

return S[1..n]

CS 374

Topological Sort

ToroLOGICALSORT(G) :
n<—|V|
fori<—1ton

veanysourceinG (

Sli] «v

delete v and all edges leaving v

return S[1..n]

CS 374

Topological Sort

ToroLOGICALSORT(G) :
n<—|V|
fori<—1ton

v « any source in G g

Sli] «v

delete v and all edges leaving v

return S[1..n]

CS 374

Topological Sort

TorPOLOGICALSORT(G) :
n <« |V]|
fori <~ ndownto1l S/
v « any sink in G ‘-»
S[L] «v "
delete v and all edges entering v
return S[1..n]

e How to find sink?

Dependency graph of
software

Running time?

* Naively O(n) for each sink, total O(n2)
* [or source, even worse, cause the adjacency list

* O(n2|E|) naively.

representation doesn’t have pointers tor incoming edges

Topological Sort

TorPOLOGICALSORT(G) :
n <« |V]|
fori <~ ndownto1l S/
v « any sink in G ‘-.
S[L] «v -~
delete v and all edges entering v
return S[1..n]

Dependency graph of
software

Running time?

* Could do it with priority queue of out degrees in O(|V|+|E|).
* Reverse the dag to help delete edges etc...

* |s there another way?

CS 374

CS 374

Topological Sort

e Claim: First vertex DONE in DFS below is sink.

IsAcycLic(G):
add vertex s
for all vertices v # s
add edge s—v
status(v) « NEw

return ISAcycLICcDFS(s)

IsAcycLicDFS(v):

status(v) «— ACTIVE

for each edge v—w
if status(w) = ACTIVE
return FALSE
else if status(w) = NEw
if IsAcycLicDFS(w) = FALSE
return FALSE

status(v) « DONE
return TRUE

CS 374

Topological Sort

* Claim: First vertex DONE in DFS below is sink.
e Proof: :

Assume, towards contradiction that v is DONE first

but there Is w: v — w.

There are 3 cases:
e wis NEW
+ w ACTIVE —

« w DONE

CS 374

Topological Sort

* Claim: First vertex DONE in DFS below is sink.

 Proof:
Assume, towards contradiction that v is DONE first

but there iIs w;: v — w.

There are 3 cases:

« wis NEW > w would be marked active and then
. be DONE first (contradiction)

* WACTIVE ><v IS active still, so there Is a cycle

* w DONE »((contradiction of DAG)

v is DONE first (contradiction)

CS 374

Topological Sort

* Claim: The order by which vertices are DONE in DFS | '
reverse topological order (proot?).

e Can just sort those vertices Iin stack and pop them for
topological order, put them In sorted array.

ToPOLOGICALSORT(G):
add vertex s
for all vertices v # s
add edge s—v
status(v) « NEw

ToroSORTDFS(s)

fori—1toV
S[i] « Popr
return S[1..V]

ToroSORTDFS(v):
status(v) <« ACTIVE

for each edge v—w
if status(w) = NEw
PROCESSBACKWARDDFS(w)
else if status(w) = ACTIVE
fail gracefully

status(v) <« DONE
PusH(Vv)
return TRUE

Topological Sort

 Claim: The order by which vertices are DONE in DFS is a

reverse topologica
* Overkill, all | need
that we respect de

ToPOLOGICALSORT(G):
add vertex s
for all vertices v # s
add edge s—v
status(v) « NEw

ToroSORTDFS(s)

fori—1toV
S[i] « Popr
return S[1..V]

order (proot?).

IS to be able to do some computation so

CS 374

nendenciles

ToroSorRTDFS(v):
status(v) <« ACTIVE

for each edge v—w
if status(w) = NEw
PROCESSBACKWARDDFS(w)
else if status(w) = ACTIVE
fail gracefully

status(v) <« DONE
PusH(Vv)
return TRUE

Topological Sort

PROCESSBACKWARD(G): PROCESSBACKWARDDFS(V):
add vertex s status(v) <« ACTIVE
for all vertices v # s for each edge v—ow
add edge s—v if status(w) = NEw
status(v) « NEw PROCESSBACKWARDDFS(w)
PROCESSBACKWARDDFS(s) else if status(w) = ACTIVE
fail gracefully
status(v) « DONE
PRrROCESS(V)

 The order that | want to do commutation is the order | mark thing
DONE

e | Process while | explore the node in DFS

* Processes every node in the graph in reverse topological order.
¢ Check for DAG in there, unless | know it is DAG.

CS 374

Topological Sort if DAG

PROCESSDAGBACKWARD(G):

add vertex s

for all vertices v # s
add edge s—v
unmark v

PROCESSDAGBACKWARDDFS(s)

PROCESSDAGBACKWARDDFS(v):

mark v
for each edge v—w
if w is unmarked
PROCESSDAGBACKWARDDFS(w)

PrROCESS(V)

Where have we seen
this before?

CS 374

0 if j>n
Fori<) LIS(i,j)=1{ LIS(i,j+1) if A[i] = A[j]
max{LIS(i,j+1), 1+ LIS(j,j+1)} otherwise

n+1

LIS(i,j+1)

LIS(],|+ 1)

DP=DFS ‘

Memoized recursion is DFS

Dynamic Programming uses topological sort

CS 374

CS 374

Longest Path in DAG

Given DAG and | am interested in finding the longest path.

Longest Path in DAG

Given DAG and | am interested in finding the longest path.

LLP(s,t) =length of longest path from s to t

O if s=t
LRGSO = ax sy [1+LLP(VD)] ow

- ee s sink

CS 374

define max) = —oc t is constant throughout

CS 374

Longest Path in DAG

Given DAG and | am interested in finding the longest path.

LLP(s,t) =length of longest path from s to t

0 if s=t

LRGSO = ax sy [1+LLP(VD)] ow
— s sink

what data structure to use?
tha graph! Memoize LLP(s,t) into node s!

CS 374

Longest Path in DAG

Given DAG and | am interested in finding the longest path.

LLP(s,t) =length of longest path from s to t

0 if s=t

LRGSO = ax sy [1+LLP(VD)] ow
— s sink

What order?
Reverse topological sort order!

CS 374

Longest Path in DAG

LONGESTPATH(S, t):
ifs=t
return O

if LLP(s) is undefined
LLP(s) < oo
for each edge s—v
LLP(s) « max{LLP(v), £(s—Vv)+ LONGESTPATH(V, t)}
return LLP(s)

What is reverse topological order?
Just do DFS for reverse topological order!
it Is also the naive recursive algorithm

CS 374

Strong Connectivity

In directed graph vertex u can reach vertex v iff
there Is a directed path fromuto b
reach(u) = set of vertices u can reach

T~

u and v are strongly connected if u can reach v and v can
reach u

OO

CS 374

Strong Connectivity, SCC

e Strong connectivity is an equivalence relation

 Equivalence classes are called strongly connected
components

* |t G has a single strongly connected component: strongly
connected

CS 374

Strong Connectivity, SCC

Strong connectivity is an equivalence relation
Equivalence classes are called strongly connected
components

It G has a single strongly connected component: strongly
connected

When is G a DAG?

Every SCC is a single vertex

CS 374

Strong Connectivity, SCC

ow to compute SCC of vertex u in O(|V|+|E|) time?

DFS(G,u) gives us Reach(u)
DFES(Grev,u) gives us all the stuff that can reach u

Take intersection of both for SCC

CS 374

Strong Connectivity, SCC

How to compute SCC of vertex u in O(|V|+|E|) time?
Compute Reach(u) with DFS

Compute Reach-1(u) ={v: uis in Reach(v)} with DFS on
reverse graph

SCC is the intersection of the two sets.

ow to compute all SCC of a graph?

Naive: O(|V||E|) time.

Can we do better?

CS 374

SCC Graph

For every directed graph G, scc(@G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel

edges

CS 374

SCC Graph

For every directed graph G, scc(@G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel

edges

CS 374

SCC Graph

For every directed graph G, scc(@G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel

edges

CS 374

SCC Graph

For every directed graph G, scc(@G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel

edges

CS 374

SCC Graph

For every directed graph G, scc(@G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel

edges

1
4}
4/ 6
5 scc(G) ALWAYS A DAG!

CS 374

SCC Graph

For every directed graph G, scc(@G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel

edges

* | can topologically sort the SCC.

 There is a sink SCC
e DFS starting from a vertex in C, reaches ™~
only vertices in C and nothing else

CS 374

SCC Graph

Can compute all the SCC:

STRONGCOMPONENTS(G):
count <« O
while G is non-empty
count <« count + 1
v « any vertex in a sink component of G
C «— ONECOMPONENT(V, count)
remove C and incoming edges from G

How to find a vertex in a sink component? (next time)

