
DFS, Topological Sort

Lecture18

1

• Mid-semester survey which can be accessed
at https://illinois.edu/sb/sec/7058301.

• Midterm in two weeks!
• Review session the Thursday before.

https://urldefense.proofpoint.com/v2/url?u=https-3A__illinois.edu_sb_sec_7058301&d=DQMFaQ&c=8hUWFZcy2Z-Za5rBPlktOQ&r=7YgztqLqda-FYMDF73iESqWvnwbj9duH1nAiAQdzv50&m=00ud8aLcweTX0GurqvAknj5xnC_qrAX4X-ScK2wbEh4&s=goEGHwSHRjOusvVnuDTWUNjX99isDsLlXfady3pj_iI&e=

C
S

37
4

How to traverse a graph?

stack =LIFO (DFS)
Queue = FIFO (BFS)

Priority Queue = lightest out
Random, etc

C
S

37
4

DFS

stack =LIFO (DFS)

C
S

37
4

DFS

check if a node is marked
before recursively exploring it.
 DFS(v) called once for each v.

Disconnected graphs?

C
S

37
4

check if a node is marked
before recursively exploring it.
 DFS(v) called once for each v.

Disconnected graphs?

DFS

How to label all the vertices in each component with same
label?

C
S

37
4

DFS
I have found no connected components yet

Every time I find a new component increase counter

DFS!

C
S

37
4

DFS
I have found no connected components yet

Every time I fine a new component increase counter

Label each vertex in the component with the index of the component

C
S

37
4

DFS

Sometimes I want to compute an order of the vertices in a
graph which is consistent with pre or postorder traversal

e.g. DP

C
S

37
4

Preorder/Postorder

C
S

37
4

DFS

C
S

37
4

DFS

post(v)pre(v)

[][]
post(w)pre(w)

[]
post(u)pre(u)

Different way of encoding the DFS tree for the recursive
algorithm

(v,w) edge : intervals are nested

C
S

37
4

DFS

assumes the graph is undirected
What about directed graphs?
When is a graph connected?

C
S

37
4

DFS

In directed graph vertex u can reach vertex v iff
there is a directed path from u to b

u and v are strongly connected if u can reach v and v can
reach u

vu

u v
directed cycle!

C
S

37
4

DFS for directed graphs

C
S

37
4

DFS

Think of two extremes

1) There are no directed cycles (DAG)
2) Every two vertices have a directed cycle between them

How do i decide if a graph is a DAG or strongly connected?

C
S

37
4

Is it a DAG?

s

directed cycle if and only if
I reach an ACTIVE vertex
from an ACTIVE vertex

a vertex can be
NEW, ACTIVE or DONE

C
S

37
4

Is it a DAG?

a vertex can be
NEW, ACTIVE or DONE

directed cycle if and only if
I reach an ACTIVE vertex
from an ACTIVE vertex

v

C
S

37
4

Is it a DAG?

directed cycle if and only if
I reach an ACTIVE vertex
from an ACTIVE vertex

v

a vertex can be
NEW, ACTIVE or DONE

C
S

37
4

Is it a DAG?

directed cycle if and only if
I reach an ACTIVE vertex
from an ACTIVE vertex

v

a vertex can be
NEW, ACTIVE or DONE

C
S

37
4

Is it a DAG?

directed cycle if and only if
I reach an ACTIVE vertex
from an ACTIVE vertex

v

a vertex can be
NEW, ACTIVE or DONE

C
S

37
4

Is it a DAG?

directed cycle if and only if
I reach an ACTIVE vertex
from an ACTIVE vertex

v

a vertex can be
NEW, ACTIVE or DONE

C
S

37
4

Is it a DAG?

s
time O(|V|+|E|)

Why do I want to decide if graph is DAG?

C
S

37
4

Why do I want to find if DAG?
Make:
• huge database of files
• nodes are files,
• edges between files x and y: ifI change file x, i need

to recompile file y
• Sometimes people create file system that have cycles!
• Make has to find those cycles and prevent that.
• It also has to execute the compilation commands in

the correct order in order to produce the final
executable.

• Just DFS of dependency graph
• See DP memoization

C
S

37
4

Topological Sort

1

2

3

4 5

7

6

C
S

37
4

Topological Sort

1

2

3

4 5

7

6

C
S

37
4

Topological Sort

1

2

3

4 5

7

6

C
S

37
4

Topological Sort

1

2

3

4 5

7

6

C
S

37
4

Topological Sort

1

2

3

4 5

7

6

C
S

37
4

Topological Sort

1

2

3

4 5

7

6

C
S

37
4

Topological Sort

1

2

3

4 5

7

6

C
S

37
4

Topological Sort

1

2

3

4 5

7

6

C
S

37
4

Topological Sort

1

2

3

4 5

7

6

C
S

37
4

Topological Sort

i
Running time?

Dependency graph of
software

• How to find sink?
• Naively O(n) for each sink, total O(n2)
• For source, even worse, cause the adjacency list

representation doesn’t have pointers for incoming edges.
• O(n2|E|) naively.

C
S

37
4

Topological Sort

i
Running time?

Dependency graph of
software

• Could do it with priority queue of out degrees in O(|V|+|E|).
• Reverse the dag to help delete edges etc…
• Is there another way?

C
S

37
4

Topological Sort
• Claim: First vertex DONE in DFS below is sink.

s

C
S

37
4

Topological Sort
• Claim: First vertex DONE in DFS below is sink.

s

• Proof:
Assume, towards contradiction that v is DONE first

but there is w: v → w.

There are 3 cases:
• w is NEW
• w ACTIVE
• w DONE

vw

C
S

37
4

• Proof:

Assume, towards contradiction that v is DONE first
but there is w: v → w.

There are 3 cases:
• w is NEW
• w ACTIVE
• w DONE

Topological Sort
• Claim: First vertex DONE in DFS below is sink.

v is DONE first (contradiction)

v is active still, so there is a cycle
(contradiction of DAG)

w would be marked active and then
be DONE first (contradiction)

vw

C
S

37
4

Topological Sort
• Claim: The order by which vertices are DONE in DFS is a

reverse topological order (proof?).

• Can just sort those vertices in stack and pop them for
topological order, put them in sorted array.

C
S

37
4

Topological Sort
• Claim: The order by which vertices are DONE in DFS is a

reverse topological order (proof?).
• Overkill, all I need is to be able to do some computation so

that we respect dependencies

C
S

37
4

Topological Sort

• The order that I want to do commutation is the order I mark things
DONE

• I Process while I explore the node in DFS
• Processes every node in the graph in reverse topological order.
• Check for DAG in there, unless I know it is DAG.

C
S

37
4

Topological Sort if DAG

1

2

3

4 5

7

6

Where have we seen
 this before?

C
S

37
4

For i<j

1 j n+1

0

i

n

LIS(i,j+1)

LIS(j,j+1)

C
S

37
4

Memoized recursion is DFS

Dynamic Programming uses topological sort

DP=DFS

C
S

37
4

Given DAG and I am interested in finding the longest path.

Longest Path in DAG

1

2

3

4 5

7

6

C
S

37
4

Given DAG and I am interested in finding the longest path.

Longest Path in DAG

LLP(s,t) =length of longest path from s to t

LLP(s,t) =
0 if s=t

max s → v {1+LLP(v,t)} o.w

s sink

define max ; = �1

�1

t is constant throughout

C
S

37
4

Given DAG and I am interested in finding the longest path.

Longest Path in DAG

LLP(s,t) =length of longest path from s to t

LLP(s,t) =
0 if s=t

max s → v {1+LLP(v,t)} o.w

s sink�1

what data structure to use?
tha graph! Memoize LLP(s,t) into node s!

C
S

37
4

Given DAG and I am interested in finding the longest path.

Longest Path in DAG

LLP(s,t) =length of longest path from s to t

LLP(s,t) =
0 if s=t

max s → v {1+LLP(v,t)} o.w

s sink�1

What order?
Reverse topological sort order!

C
S

37
4

Longest Path in DAG

What is reverse topological order?
Just do DFS for reverse topological order!

it is also the naive recursive algorithm

C
S

37
4

Strong Connectivity
In directed graph vertex u can reach vertex v iff

there is a directed path from u to b
reach(u) = set of vertices u can reach

u and v are strongly connected if u can reach v and v can
reach u

vu

u v

C
S

37
4

Strong Connectivity, SCC

• Strong connectivity is an equivalence relation
• Equivalence classes are called strongly connected

components
• If G has a single strongly connected component: strongly

connected

1

2

3

4 5

7

6

C
S

37
4

Strong Connectivity, SCC
• Strong connectivity is an equivalence relation
• Equivalence classes are called strongly connected

components
• If G has a single strongly connected component: strongly

connected
• When is G a DAG?
• Every SCC is a single vertex

C
S

37
4

Strong Connectivity, SCC

• How to compute SCC of vertex u in O(|V|+|E|) time?

1

2

3

4 5

7

6

DFS(G,u) gives us Reach(u)

Take intersection of both for SCC
DFS(Grev,u) gives us all the stuff that can reach u

C
S

37
4

Strong Connectivity, SCC
• How to compute SCC of vertex u in O(|V|+|E|) time?
• Compute Reach(u) with DFS
• Compute Reach-1(u) ={v: u is in Reach(v)} with DFS on
 reverse graph
• SCC is the intersection of the two sets.
• How to compute all SCC of a graph?
• Naive: O(|V||E|) time.
• Can we do better?

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

1

2

3

4 5

7

6

scc(G) ALWAYS A DAG!

C
S

37
4

SCC Graph

For every directed graph G, scc(G) is another (meta)graph:
Contract each SCC of G in one vertex and collapse parallel
edges

• I can topologically sort the SCC.
• There is a sink SCC
• DFS starting from a vertex in C, reaches

only vertices in C and nothing else

C
S

37
4

SCC Graph

Can compute all the SCC:

How to find a vertex in a sink component? (next time)

