
Graphs

Lecture17

1

C
S

37
4

• We have seen recursion techniques so far

• Next few weeks, we will see graph algorithms

• E.g. Dijkstra…

Two techniques for algorithm
design

C
S

37
4

• We have seen recursion techniques so far

• Next few weeks, we will see graph algorithms

• E.g. Dijkstra

Two techniques of algorithm design

f

g

h

a

b
c

d

e

C
S

37
4

• 8 vertices

• 10 edges

• 2 components

a

b
c

d

e

Graphs

f

g

h

C
S

37
4

• 8 vertices

• 10 edges

• 2 components

Graph Representation
Just a representation of

the graph!

f

g

h

a

b
c

d

e

C
S

37
4

• A (simple) graph is

• Non empty finite set V, called vertex set

• Set E of pairs of vertices, called edges.

Undirected (u,v)={u,v}

Directed (u,v) = u → v

Graph Definition

C
S

37
4

• 8 vertices

• 10 edges

• 2 components

Graph Representation
Just a representation of

the graph!

f

g

h

a

b
c

d

e

C
S

37
4

Graph Representation

f

g

h

a

b
c

d

e

• 8 vertices

• 10 edges

• 2 components

Planar Graph! independent
of the representation

C
S

37
4

• 8 vertices

• 10 edges

• 2 components

Graph Representation

Another representation:
Intersection graph

a

b c

d

e
fg

h

C
S

37
4

Graph Representation
• 8 vertices

• 10 edges

• 2 components

Another representation:
Intervals

a
b
c

d
e

f
g

h

C
S

37
4

For i<j

1 j n+1

0

i

n

LIS(i,j+1)

LIS(j,j+1)

Directed dependency graph

C
S

37
4

For i<j

1 j n+1

0

i

n

LIS[0,1]

Topological sort

C
S

37
4

Recursion Tree (of Mergesort)

n

T(n)

n/2 n/2

T(n/2) T(n/2)

n/4 n/4 n/4 n/4

T(n/4) T(n/4) T(n/4) T(n/4)

C
S

37
4

Configuration graph (Tower of
Hanoi)

Vertices=legal configurations of discs
Edges = legal move

undirected, or directed pointing both ways

DFA as graph

0 1

0

3

1

2

0

1

0

0

1 1

Labeled graph,
With conditions

lookup table from transition
 function is data structure

NFA as graph

0 1

0

3

1

2

0

1

0

1 1

Labeled graph,
Without conditions

0,1

How to determine if NFA accepts anything?
Can s reach an accepting state?

DFS, reachability
s

C
S

37
4

18

1

0

1

0

0,1

0,1

a

b

s

t

NFA to DFA (subset
construction)

Some times the graph given
 is not the right graph!

V= 2Q

E ={A → B | for all u in A there is

v in B such that u →v}

This is a 16 node graph!

C
S

37
4

19

P ε δ’(P,0) δ’(P,1) q’∈ A’

s s as bs No

as as ats bs No

bs bs as bts No

ats ats ats bts Yes

bts bts ats bts Yes

1

0

1

0

0,1

0,1

a

b

s

t

C
S

37
4

20

1

0

1

0

0,1

0,1

a

b

s

t

NFA to DFA (subset
construction)

Some times the graph given
 is not the right graph!

V= 2Q

E ={A → B | for all u in A there is

v in B such that u →v}

This is a 16 node graph!

Incremental subset construction was running BFS in the DFA,
though we were only explicitly given the NFA graph

C
S

37
4

• When I design algorithm on a graph:

• V =?

• E=?

• Problem

• Algorithm

• Running time in terms of original input

Graph Boilerplate

C
S

37
4

• “Given a graph G(V,E), do …”

• What does that mean?

• How to represent a graph ? (string is
represented by array etc..)

• Two standard representations

Graph Algorithms

C
S

37
4

Adjacency List (= Array of lists)

1

2

…

5

V
5

2

undirected graph

Adjacency Lists

C
S

37
4

Adjacency List (= Array of lists)

Adjacency Lists

1

2

…

5

V
5

Why Adjacecny, lists?
Acces each node in O(1) time

List edges at each node in O(1) time each
Insert edge

Hard: is (u,v) in E?
More efficient data structure?

Why use linked lists?

O(|V|+|E|) space

C
S

37
4

Adjacency matrix

Adjacency Matrix

V

V

V
1i

j

A(i,j)=1 if (i,j) edge
0 otherwise

O(1) time to decide if (u,v) edge
Always O(n2) space!

O(V) time to list all the
neighbors of a vertex u

even though there are only constant
number of edges!

Why use those at all?

C
S

37
4

• Traversal in general: e.g. you have a data
structure with pointers and you want to print
it out once

• How to traverse a graph?

How to traverse a graph?

C
S

37
4

How to traverse a graph?

O(|V|+|E|) time

C
S

37
4

How to traverse a graph?

stack =LIFO (DFS)
Queue = FIFO (BFS)

Priority Queue = lightest out
Random, etc

C
S

37
4

Whatever First Search

stack =LIFO (DFS)
Queue = FIFO (BFS)

Priority Queue = lightest out
Random, etc

C
S

37
4

Whatever First Search

DFS tree BFS tree

Traverse(s) marks every vertex in a connected graph exactly
once, and the set of pairs (v, parent(v)) with parent(v) not

empty, defines a spanning tree of the graph

BFS tree has shortest paths from s!

