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• We have seen recursion techniques so far 

• Next few weeks, we will see graph algorithms 

• E.g. Dijkstra…

Two techniques for algorithm 
design 
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• 8 vertices 

• 10 edges 

• 2 components
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• 8 vertices 

• 10 edges 

• 2 components

Graph Representation
Just a representation of 

the graph!
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• A (simple) graph is 

• Non empty finite set V, called vertex set 

• Set E of pairs of vertices, called edges. 

Undirected (u,v)={u,v} 

Directed (u,v) = u → v

Graph Definition
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• 8 vertices 

• 10 edges 

• 2 components

Graph Representation
Just a representation of 

the graph!
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Graph Representation
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• 8 vertices 

• 10 edges 

• 2 components

Planar Graph! independent 
of the representation
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• 8 vertices 

• 10 edges 

• 2 components

Graph Representation

Another representation: 
Intersection graph
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Graph Representation
• 8 vertices 

• 10 edges 

• 2 components

Another representation: 
Intervals
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For i<j

1 j n+1
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Directed dependency graph
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For i<j
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Topological sort
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Recursion Tree (of Mergesort)
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Configuration graph (Tower of 
Hanoi)

Vertices=legal configurations of discs 
Edges = legal move 

undirected, or directed pointing both ways





DFA as graph
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Labeled graph, 
With conditions

lookup table from transition 
 function is data structure
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Labeled graph, 
Without conditions

0,1

How to determine if NFA accepts anything? 
Can s reach an accepting state? 

DFS, reachability
s
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NFA to DFA (subset 
construction)

Some times the graph given 
 is not the right graph!

V= 2Q

E ={A → B | for all u in A there is  

v in B such that u →v}

This is a 16 node graph!
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NFA to DFA (subset 
construction)

Some times the graph given 
 is not the right graph!

V= 2Q

E ={A → B | for all u in A there is  

v in B such that u →v}

This is a 16 node graph!

Incremental subset construction was running BFS in the DFA, 
though we were only explicitly given the NFA graph
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• When I design algorithm on a graph: 

• V =? 

• E=? 

• Problem 

• Algorithm 

• Running time in terms of original input

Graph Boilerplate
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• “Given a graph G(V,E), do …” 

• What does that mean? 

• How to represent a graph ? (string is 
represented by array etc..) 

• Two standard representations

Graph Algorithms
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Adjacency List (= Array of lists)
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Adjacency List (= Array of lists)

Adjacency Lists

1
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…

5

V
5

Why Adjacecny, lists? 
Acces each node in O(1) time 

List edges at each node in O(1) time each 
Insert edge 

Hard: is (u,v) in E?
More efficient data structure? 

Why use linked lists?

O(|V|+|E|) space
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Adjacency matrix 

Adjacency Matrix

V

V

V
1i

j

A(i,j)=1 if (i,j) edge 
0 otherwise

O(1) time to decide if (u,v) edge 
Always O(n2) space!

O(V) time to list all the  
neighbors of a vertex u 

even though there are only constant  
number of edges!

Why use those at all?
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• Traversal in general: e.g. you have a data 
structure with pointers and you want to print 
it out once 

• How to traverse a graph?

How to traverse a graph?
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How to traverse a graph?

O(|V|+|E|) time
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How to traverse a graph?

stack =LIFO (DFS) 
Queue = FIFO (BFS) 

Priority Queue = lightest out 
Random, etc
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Whatever First Search

stack =LIFO (DFS) 
Queue = FIFO (BFS) 

Priority Queue = lightest out 
Random, etc
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Whatever First Search

DFS tree BFS tree

Traverse(s) marks every vertex in a connected graph exactly 
once, and the set of pairs (v, parent(v)) with parent(v) not 

empty, defines a spanning tree of the graph

BFS tree has shortest paths from s!


