Graphs

Lecture17

Two techniques for algorithm design

- We have seen recursion techniques so far
- Next few weeks, we will see graph algorithms
- E.g. Dijkstra...

Two techniques of algorithm design

- We have seen recursion techniques so far
- Next few weeks, we will see graph algorithms
- E.g. Dijkstra

e

Graphs

- 8 vertices
- 10 edges
- 2 components
f

e

h

Graph Representation

- 8 vertices
- 10 edges
- 2 components

e

Just a representation of the graph!
f

h

Graph Definition

- A (simple) graph is
- Non empty finite set V , called vertex set
- Set E of pairs of vertices, called edges.
- Undirected $(u, v)=\{u, v\}$
- Directed $(u, v)=u \rightarrow v$

Graph Representation

- 8 vertices
- 10 edges
- 2 components

e

Just a representation of the graph!
f

h

Graph Representation

- 8 vertices
- 10 edges

Planar Graph! independent of the representation

- 2 components
f

h

Graph Representation

- 8 vertices
- 10 edges

Another representation: Intersection graph

- 2 components

Graph Representation

- 8 vertices
- 10 edges

Another representation: Intervals

- 2 components

For $\mathrm{i}<j \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}$

For $i<j \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}$

Recursion Tree (of Mergesort)

Configuration graph (Tower of Hanoi)

Vertices=legal configurations of discs Edges = legal move
undirected, or directed pointing both ways

The configuration graph of the 4-disk Tower of Hanoi.

DFA as graph

Labeled graph, With conditions

q	$\delta[q, 0]$	$\delta[q, 1]$	$A[q]$
0	0	1	TRUE
1	2	3	FALSE
2	4	0	FALSE
3	1	2	FALSE
4	3	4	FALSE

lookup table from transition function is data structure

NFA as graph

Labeled graph, Without conditions

How to determine if NFA accepts anything? Can s reach an accepting state? DFS, reachability

NFA to DFA (subset construction)

Some times the graph given is not the right graph!

$$
V=2 Q
$$

$E=\{A \rightarrow B \mid$ for all u in A there is
v in B such that $u \rightarrow v\}$
This is a 16 node graph!

P	ε	$\delta^{\prime}(P, 0)$	$\delta^{\prime}(P, 1)$	$q^{\prime} \in A^{\prime}$
s	s	as	bs	No
as	as	ats	bs	No
bs	bs	as	bts	No
ats	ats	ats	bts	Yes
bts	bts	ats	bts	Yes

NFA to DFA (subset construction)

Some times the graph given is not the right graph!

$$
V=2 Q
$$

$E=\{A \rightarrow B \mid$ for all u in A there is
v in B such that $u \rightarrow v\}$
This is a 16 node graph!
Incremental subset construction was running BFS in the DFA, though we were only explicitly given the NFA graph

Graph Boilerplate

- When I design algorithm on a graph:
- $V=$?
- $\mathrm{E}=$?
- Problem
- Algorithm
- Running time in terms of original input

Graph Algorithms

- "Given a graph G(V,E), do ..."
- What does that mean?
- How to represent a graph? (string is represented by array etc..)
- Two standard representations

Adjacency Lists

Adjacency List (= Array of lists)

1

2

undirected graph

5

Adjacency Lists

- Adjacency List (= Array of lists)

1
$\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ space

2

Why Adjacecny, lists?
Acces each node in $\mathrm{O}(1)$ time List edges at each node in $O(1)$ time each
5 Insert edge
Hard: is (u, v) in E ?
More efficient data structure? Why use linked lists?

Adjacency Matrix

- Adjacency matrix Why use those at all?
$A(i, j)=1$ if (i, j) edge
0 otherwise

O(1) time to decide if (u,v) edge Always $\mathrm{O}\left(\mathrm{n}^{2}\right)$ space!
$\mathrm{O}(\mathrm{V})$ time to list all the neighbors of a vertex u $\longleftarrow \vee$ even though there are only constant number of edges!

Adjacency	Standard adjacency list matrix	Adjacency list (hash tables) lists)	
Space	$\Theta\left(V^{2}\right)$	$\Theta(V+E)$	$\Theta(V+E)$
Time to test if $u v \in E$	$O(1)$	$O(1+\min \{\operatorname{deg}(u), \operatorname{deg}(v)\})=O(V)$	$O(1)$
Time to test if $u \rightarrow v \in E$	$O(1)$	$O(1+\operatorname{deg}(u))=O(V)$	$O(1)$
Time to list the neighbors of v	$O(V)$	$O(1+\operatorname{deg}(v))$	$O(1+\operatorname{deg}(v))$
Time to list all edges	$\Theta\left(V^{2}\right)$	$\Theta(V+E)$	$\Theta(V+E)$
Time to add edge $u v$	$O(1)$	$O(1)$	$O(1)^{*}$
Time to delete edge $u v$	$O(1)$	$O(\operatorname{deg}(u)+\operatorname{deg}(v))=O(V)$	$O(1)^{*}$

How to traverse a graph?

- Traversal in general: e.g. you have a data structure with pointers and you want to print it out once
- How to traverse a graph?

RECURSIVEDFS(v): if v is unmarked mark v
for each edge $v w$ RecursiveDFS (w)

How to traverse a graph?

RECURSIVEDFS(v):
if v is unmarked mark v
for each edge νw RecursiveDFS (w)
$\mathrm{O}(|\mathrm{V}|+|\mathrm{E}|)$ time
ITERATIVEDFS $(s):$ Push(s)
while the stack is not empty
$v \leftarrow$ POP
if v is unmarked mark v for each edge $v w$ Push(w)

How to traverse a graph?

TraVERSE(s):
put s into the bag
while the bag is not empty
take v from the bag
if v is unmarked mark v for each edge $v w$ put w into the bag
stack $=$ LIFO (DFS)
Queue = FIFO (BFS)
Priority Queue = lightest out
Random, etc

Whatever First Search

Traverse (s) :

put (\varnothing, s) in bag

while the bag is not empty take (p, v) from the bag if v is unmarked mark v

```
                parent (v)\leftarrowp
``` for each edge \(v w\)
stack \(=\) LIFO (DFS)
Queue = FIFO (BFS)
Priority Queue = lightest out
Random, etc

\section*{Whatever First Search}

Traverse(s) marks every vertex in a connected graph exactly once, and the set of pairs (v, parent(v)) with parent(v) not empty, defines a spanning tree of the graph

BFS tree has shortest paths from s!

BFS tree
```

