Graphs

Lecture17

1

Two techniques for algorithm design

- We have seen recursion techniques so far
- Next few weeks, we will see graph algorithms
- E.g. Dijkstra...

374

Two techniques of algorithm design

- We have seen recursion techniques so far
- Next few weeks, we will see graph algorithms

5S 374

Graphs

- 8 vertices
- 10 edges
- 2 components

- 8 vertices
- 10 edges
- 2 components

Just a representation of the graph!

Graph Definition

- A (simple) graph is
 - Non empty finite set V, called vertex set
 - Set E of pairs of vertices, called edges.
 - Undirected (u,v)={u,v}
 - Directed $(u,v) = u \rightarrow v$

- 8 vertices
- 10 edges
- 2 components

Just a representation of the graph!

- 8 vertices
- 10 edges
- 2 components

Planar Graph! independent of the representation

f

<u>5</u>S 374

- 8 vertices
- 10 edges
- 2 components

Another representation: Intersection graph

CS 374

- 8 vertices
- 10 edges
- 2 components

Another representation: Intervals

CS 374

Recursion Tree (of Mergesort)

Vertices=legal configurations of discs Edges = legal move undirected, or directed pointing both ways

The configuration graph of the 4-disk Tower of Hanoi.

DFA as graph

Labeled graph, With conditions

q	δ[q, <mark>0</mark>]	$\delta[q, 1]$	A[q]
0	0	1	TRUE
1	2	3	FALSE
2	4	0	FALSE
3	1	2	FALSE
4	3	4	FALSE

lookup table from transition function is data structure

NFA as graph

S

Labeled graph, Without conditions

How to determine if NFA accepts anything? Can s reach an accepting state? DFS, reachability

NFA to DFA (subset construction)

Some times the graph given is not the right graph!

$$V=2Q$$

 $E = \{A \rightarrow B \mid \text{for all } u \text{ in } A \text{ there is} \}$

v in B such that $u \rightarrow v$ This is a 16 node graph!

0,1

S

b

1

0

1

a

0

0,1

Р	Е	δ'(P,0)	$\delta'(P,1)$	$q' \in A'$
S	S	as	bs	No
as	as	ats	bs	No
bs	bs	as	bts	No
ats	ats	ats	bts	Yes
bts	bts	ats	bts	Yes

CS 374

NFA to DFA (subset construction)

 $E = \{A \rightarrow B \mid \text{for all } u \text{ in } A \text{ there is} \}$

v in B such that $u \rightarrow v$

This is a 16 node graph!

Incremental subset construction was running BFS in the DFA, though we were only explicitly given the NFA graph

374

0,1

S

b

1

0

a

0

0,1

Graph Boilerplate

- When I design algorithm on a graph:
- V =?
- E=?
- Problem
- Algorithm
- Running time in terms of original input

Graph Algorithms

- "Given a graph G(V,E), do ..."
- What does that mean?
- How to represent a graph ? (string is represented by array etc..)
- Two standard representations

Adjacency Lists

Adjacency List (= Array of lists)

S 374

 \bigvee

Adjacency Lists Adjacency List (= Array of lists) O(|V|+|E|) space 5 2 Why Adjacecny, lists? Acces each node in O(1) time List edges at each node in O(1) time each Insert edge 5 Hard: is (u,v) in E? More efficient data structure? Why use linked lists?

Adjacency Matrix

Adjacency matrix

374

Why use those at all?

A(i,j)=1 if (i,j) edge 0 otherwise

O(1) time to decide if (u,v) edge Always O(n²) space!

O(V) time to list all the neighbors of a vertex u even though there are only constant number of edges!

	Adjacency matrix	Standard adjacency list (linked lists)	Adjacency list (hash tables)
Space	$\Theta(V^2)$	$\Theta(V+E)$	$\Theta(V+E)$
Time to test if $uv \in E$	<i>O</i> (1)	$O(1 + \min\{\deg(u), \deg(v)\}) = O(V)$	<i>O</i> (1)
Time to test if $u \rightarrow v \in E$	<i>O</i> (1)	$O(1 + \deg(u)) = O(V)$	<i>O</i> (1)
Time to list the neighbors of v	O(V)	$O(1 + \deg(v))$	$O(1 + \deg(v))$
Time to list all edges	$\Theta(V^2)$	$\Theta(V+E)$	$\Theta(V+E)$
Time to add edge uv	<i>O</i> (1)	O(1)	<i>O</i> (1)*
Time to delete edge uv	<i>O</i> (1)	$O(\deg(u) + \deg(v)) = O(V)$	<i>O</i> (1)*

How to traverse a graph?

- Traversal in general: e.g. you have a data structure with pointers and you want to print it out once
- How to traverse a graph?

RECURSIVEDFS(v): if v is unmarked mark v for each edge vw RECURSIVEDFS(w)

How to traverse a graph?

RECURSIVEDFS(v): if v is unmarked mark v for each edge vw RECURSIVEDFS(w)

O(|V|+|E|) time

 $\frac{\text{ITERATIVEDFS}(s):}{\text{PUSH}(s)}$ while the stack is not empty $v \leftarrow \text{POP}$ if v is unmarked
mark vfor each edge vw PUSH(w)

How to traverse a graph?

<u>TRAVERSE(s):</u> put s into the bag while the bag is not empty take v from the bag if v is unmarked

mark *v* for each edge *vw*

put *w* into the bag

stack =LIFO (DFS) Queue = FIFO (BFS) Priority Queue = lightest out Random, etc

Whatever First Search

TRAVERSE(s): put (\emptyset, s) in bag while the bag is not empty take (p, v) from the bag (*) if v is unmarked mark v $parent(v) \leftarrow p$ for each edge vw (†) put (v, w) into the bag $\star\star$

stack =LIFO (DFS) Queue = FIFO (BFS) Priority Queue = lightest out Random, etc

Whatever First Search

Traverse(s) marks every vertex in a connected graph exactly once, and the set of pairs (v, parent(v)) with parent(v) not empty, defines a spanning tree of the graph

BFS tree has shortest paths from s!

