Gragl«s

Two techniques for algorithm @
design

* \We have seen recursion technigues so far

* Next few weeks, we will see graph algorithms

 E.g. Dijkstra...

CS 374

CS 374

Two techniques of algorithm desig

* \WWe have seen recursion technigues so far

* Next few weeks, we will see graph algorithms

* £.g. Dijkstra f

. 9

Graphs @

e 8 vertices
10 edges

¢ 2 components f

Cs 374
@D

CS 374

Graph Representation

* gvertices Just a representation of
* 10 edges he graph
* 2 components f

b 9

CS 374

Graph Definition

* A (simple) graph is

 Non empty finite set V, called vertex set

e Set E of pairs of vertices, called edges.
> Undirected (u,v)={u,v}

- Directed (u,v) =u —v

CS 374

Graph Representation

* gvertices Just a representation of
* 10 edges he graph
* 2 components f

b 9

CS 374

Graph Representation

e 8 vertices
Planar Graph! independent

* 10 edges of the representation

e 2 components | ;

& g
C
d
e h

CS 374

Graph Representation

e 8 vertices

Another representation:
* 10 edges Intersection graph

e 2 components

CS 374

O & O T 9

Graph Representation

e 8 vertices

Another representation:
* 10 edges Intervals

e 2 components

CS 374

0 if j>n
Fori<) LIS(i,j)=1{ LIS(i,j+1) if A[i] = A[j]
max{LIS(i,j+1), 1+ LIS(j,j+1)} otherwise

n+1

LIS(i,j+1)

Directed dependency graph

LIS(],|+ 1)

CS 374

For i<]

0 if j>n
LIS(i,j)= < LIS(i,j+1) if A[i] >A[j]
max{LIS(i,j+1), 1+ LIS(j,j+1)} otherwise

ol

n | ISIO 1]

Topological sort

)

»

Recursion Tree (of Mergesort)

[ZARS®,

Configuration graph (Tower of

Hanoi)

CS 374

Vertices=legal configurations of discs
Edges = legal move
undirected, or directed pointing both ways

The configuration graph of the 4-disk Tower of Hanoi..

DFA as grapnh

Labeled graph,
With conditions

q | 6[g,0] : 6[q,1] | Alq]
0 0 : 1 TRUE
ol . R
ST O
o o R
Y -

lookup table from transition
function is data structure

NFA as grapn

Labeled graph,
Q @ Without conditions
N’ 0 e
©< 0
How to determine it NFA accepts anything”?
Can s reach an accepting state”

W DES, reachability

1

L

Cs 374

18

(=

1

NFA to DFA (subset
construction)

Some times the graph given

O

@ IS not the right graph!

| -2

|
O

0,1
Q = ={A —= B | foralluin Athereis

v In B such that u —=v}

This is a 16 node graph!

NFA to DFA (subset

construction)
\Q ! Some times the graph given

@ ’@ IS not the right graph!

| -2

] .
@ Q - ={A —= B |foralluin Athereis

v in B such that u —=v}

(=

This is a 16 node graph!

Cs 374

Incremental subset construction was running BFS in the DFA,
though we were only explicitly given the NFA graph

20

CS 374

Graph Boilerplate

When | design algorithm on a graph:

V =7

—="

Problem
Algorithm

Running time in terms of original input

CS 374

Graph Algorithms
‘Given a graph G(V,E), do ...”

What does that mean?

How to represent a graph ? (string is
represented by array etc..)

Two standard representations

CS 374

Adjacency Lists
- Adjacency List (= Array of lists)

undirected graph

CS 374

Adjacency Lists
Adjacency List (= Array of lists)

O(|V|+|E|) space

>

) |

> 5

Why Adjacecny, lists”
Acces each node in O(1) time
List edges at each node in O(1) time each
Insert edge

rd:is (u,v) In E?
ient data structure?

Ha
More effic

Why L

se |linked lists”

>

CS 374

Adjacency Matrix

- Adjacency matrix Why use those at all?
J

A(l,))=11f (i,])) edge
O otherwise

O(1) time to decide if (u,v) edge

Always O(n?2) space!

O(V) time to list all the

neighbors of a vertex u
Y, _even though there are only constant

number of edges!

Adjacency Standard adjacency list Adjacency list
matrix (linked lists) . (hash tables)
Space o(v?) O(V +E) . ©O(V+E)
B R O(l) O(1+rmn{deg(u)deg(v)}) O(V)O(l)
Time to test if u—»v € E o(1) O(1 +deg(u))=0(V) 0(1)
Time to list the neighbors of v o(V) O(1 +deg(v)) O(1 +deg(v))
Time to list all edges O(V?) ©(V +E) ©(V+E)
Time to add edge uv o(1) 0(1) 0(1)*
Time to delete edge uv 0(1) O(deg(u) + deg(v)) = 0O(V) O(1)*

CS 374

How to traverse a graph?

* [raversal in general: e.g. you have a data
structure with pointers and you want to print

It out once

 How to traverse a graph?

RECURSIVEDFS(v):
if v is unmarked
mark v
for each edge vw
RECURSIVEDFS(w)

CS 374

How to traverse a graph?

RECURSIVEDFS(v):
if v is unmarked
mark v
for each edge vw
RECURSIVEDFS(w)
ITERATIVEDFS(s):
O(|V|+|E|) time PusH(s)
while the stack is not empty
Vv < PoP
if v is unmarked

mark v
for each edge vw
PusH(w)

CS 374

How to traverse a graph?

TRAVERSE(S):
put s into the bag
while the bag is not empty
take v from the bag
if v is unmarked
mark v
for each edge vw
put w into the bag

stack =LIFO (DFS)
Queue = FIFO (BFS)
Priority Queue = lightest out
Random, etc

CS 374

Whatever First Search

TRAVERSE(S):
put (,s) in bag
while the bag is not empty
take (p,v) from the bag
if v is unmarked
mark v
parent(v) < p
for each edge vw
put (v, w) into the bag

(1)
(%)

stack =LIFO (DFS)
Queue = FIFO (BFS)
Priority Queue = lightest out
Random, etc

Whatever First Search

Traverse(s) marks every vertex in a connected graph exactly
once, and the set of pairs (v, parent(v)) with parent(v) not
empty, defines a spanning tree of the graph

BFS tree has shortest paths from s!

DFES tree BFS tree

0 N¢ 7
N

