
Dynamic Programming

Lecture13

1

C
S

37
4

• Fibonacci Numbers (circa 13 th century)

0 if n=0
1 if n=1

Fn-1+Fn-2 o/w
• Fn=

Given n, how long does it take to compute Fn?

Fibonacci

C
S

37
4

• Translates line by line to code:
Fibonacci

We will move from mathematical function format to
recursive program a lot!

C
S

37
4

• Translates line by line to code:
Fibonacci

Running time? (backtracking recurrence)
T(n)=T(n-1)+T(n-2)+O(1)

=𝚯(Fn) = 𝚯(1.618n) = 𝚯(((√5+1)/2)n)

C
S

37
4

Running time via Rec Tree

.

.

.

.

.

.

.

.

.

.

.

.

0 1 0 1 0 1
Leaves are always 0 or 1.

How many 1’s? How many 0s?
There are Fn 1s and Fn-1 0s

Fn+1 leaves total!

+

Fn

+ +

Fn-2Fn-1

+ + + +
Fn-2 Fn-3 Fn-3 Fn-4

C
S

37
4

Running time via Rec Tree

How many intermediate nodes does a
full binary tree with m leaves have?

+

+ +

Fn-2

+ + + +
.
.
.

.

.

.

.

.

.

.

.

.

0 1 0 1 0 1

Fn

Fn-1

Fn-2 Fn-3 Fn-3 Fn-4

C
S

37
4

Running time via Rec Tree

2Fn+1 -1 nodes (additions)

+

+ +

Fn-2

+ + + +
.
.
.

.

.

.

.

.

.

.

.

.

0 1 0 1 0 1

Fn

Fn-1

Fn-2 Fn-3 Fn-3 Fn-4

C
S

37
4

Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0

C
S

37
4

Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0

Keep an array to remember the previous values!

1 0

1
1

1 0

12

C
S

37
4

Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0

F
0 1 2 3 4 5 …
0 1 1 2

1 0

1
1

1 0

12

C
S

37
4

Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0

F
0 1 2 3 4 5 …
0 1 1 2 3

1 0

1
1

1 0

12

look up array for F2

3
2

C
S

37
4

Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F0

F
0 1 2 3 4 5 …
0 1 1 2 3 5

1 0

1
1

1 0

12

look up array for F3

3
2

C
S

37
4

Running time via Rec Tree
F5

F4 F3

F3 F2 F2 F1

F2 F1 F1 F0 F1 F0

F1 F01 0

1
1

1 0

12

look up array for F3

3
2

Memoization= when I look at the table to see the values I
computed before

Given any recursive backtracking algorithm,
you can add memoization and will save time, provided the

subproblems repeat

How many times did I have to call the recursive function?
exponential!

How many different values did I have to compute?
O(n)!

Memoization decreases running time : performs only O(n)
additions, exponential improvement

Memoized algorithm fills in the table from left to right.
Why not just do that?

Memoized algorithm fills in the table from left to right.
Why not just do that?

We get an iterative algorithm

• Clear that the number of additions it does it O(n).
• In practice this is faster than memoized algo, cause we don’t

use stack/ look up the table etc.

• Structure mirrors the recurrence
• Only subtle thing is that we want to fill in the array in

increasing order.

order

• This is Dynamic Programing Algorithm!
• Dynamic Programming= pretend to do Memoization but do it

on purpose

• Memoization: accidentally use something efficient
• Backwards induction =Dynamic Programming

order

• Dynamic programming is about smart recursion.
• Not about filling out tables!
• How do I solve the problem, how do I not repeat work, then

how to fill up my data structure.

Dynamic Programming

Dynamic Programming

• I only need to keep my last two elements of the array.
• Even more efficient algorithm

• How can I speed up my algorithm?

• How can I speed up my algorithm?

Dynamic Programming

• I only need to keep my last two elements of the array.
• Even more efficient algorithm
• Where is the recursion?

Dynamic Programming

• I only need to keep my last two elements of the array.
• Even more efficient algorithm
• Where is the recursion?
• Saves space, sometimes important

• How can I speed up my algorithm?

Dynamic Programming

• Is this the fastest Algorithm for Fibonacci?

• How can I speed up my algorithm?

Dynamic Programming

• How can I speed up my algorithm?

This matrix vector multiplication does
exactly the same thing as one iteration of the loop!

What to do to compute the nth Fibonacci number?

Dynamic Programming

• How can I speed up my algorithm?

Compute the nth power of the matrix.

• With repeated squaring, O(logn) multiplications
• Compute Fn in O(logn) arithmetic operations
• Double exponential speedup!

Dynamic Programming

• How can I speed up my algorithm?

Compute the nth power of the matrix.

• But how many bits is the nth Fibonacci number?
• O(n)!
• Can’t perform arbitrary precision arithmetic in constant time

C
S

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

Longest Increasing Subsequence
(LIS)

C
S

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

Longest Increasing Subsequence
(LIS)

• LIS(A[1…n],p) = length of LIS of A[1…n] where
everything is bigger than p

C
S

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

Longest Increasing Subsequence
(LIS)

• LIS(A[1…n],p)=

0 if n=0

LIS(A[2…n],p) if A[1]≤p

MAX { LIS(A[2…n],p)
 1+LIS(A[2…n],A[1])}

C
S

37
4

Longest Increasing Subsequence
(LIS)

• LIS(A[1…n],p)=

0 if n=0

LIS(A[2…n],p) if A[1]≤p

MAX { LIS(A[2…n],p)
 1+LIS(A[2…n],A[1])}

• The argument p is always either −∞ or and element of the
array A

• Add A[0]=−∞
• We can identify any recursive subproblem with two array

indices.
• LIS(i,j) = length or LIS of A[j…n] with all elements larger than

A[i]

C
S

37
4

Longest Increasing Subsequence
(LIS)

• LIS(i,j) = length or LIS of A[j…n] with all elements larger than
A[i]

• We want to compute LIS(0,1)
• Memoize? what data structure to use?
• Two dimensional Array LIS[0…n,1…n+1]

For i<j

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

C
S

37
4

For i<j

1 2 3 4 n+1

0

1

2

3

n

i

j

Figure out an order to fill out the table
that works!

C
S

37
4

For i<j

1 j n+1

0

i

n

LIS(i,j+1)

LIS(j,j+1)

C
S

37
4

For i<j

1 j n+1

0

i

n

LIS(i,j+1)

LIS(j,j+1)

Purple squares must be
filled before pink

C
S

37
4

For i<j

1 j n+1

0

i

n

LIS[0,1]

C
S

37
4

Longest Increasing Subsequence
(LIS)

doesn’t matter what
order I fill the columns in

C
S

37
4

Longest Increasing Subsequence
(LIS)

• Running time?
• O(n2)
• Two nested for loops
• How man values are there in the recurrence?

C
S

37
4

Longest Increasing Subsequence
(LIS)

• As general rule of thumb:
• # variables on the left =space O(n2) array for i,j taking

n values each
• # variables on the right =time O(n2)

For i<j

C
S

37
4

Dynamic Programming
General Recipe for DP

• Step 1: Find Backtracking Recursive
algorithm (e.g. for LIS we leveraged the
recursive def. Either empty or there is
something that comes first) (6 pts)

• Step 2: Identify the subproblems (e.g. indices
i,j for LIS), need english description

• Step 3: Analyze time and space

• Step 4: Choose a memoization data structure
(e.g. two dim array)

• Step 5: Find evaluation order (draw picture!!!)

C
S

37
4

Dynamic Programming

General Recipe for DP

• Step 3: Analyze time and space

• Step 6: write iterative pseudocode

