Dynamic Programming

Lecture13

Fibonacci

- Fibonacci Numbers (circa 13 th century)

$$
\text { - } F_{n}=\begin{gathered}
0 \text { if } n=0 \\
1 \text { if } n=1 \\
F_{n-1}+F_{n-2} o / w
\end{gathered}
$$

Given n, how long does it take to compute F_{n} ?

Fibonacci

- Translates line by line to code:

RecFibo(n):
if $(n<2)$
return n
else
return $\operatorname{RecFibo}(n-1)+\operatorname{RecFibo}(n-2)$

We will move from mathematical function format to recursive program a lot!

Fibonacci

- Translates line by line to code:

RecFibo(n):
if $(n<2)$
return n
else return $\operatorname{RecFibo}(n-1)+\operatorname{RecFibo}(n-2)$

Running time? (backtracking recurrence)

$$
\begin{gathered}
T(n)=T(n-1)+T(n-2)+O(1) \\
=\boldsymbol{\Theta}\left(F_{n}\right)=\boldsymbol{\Theta}(1.618 n)=\boldsymbol{\Theta}\left(((\sqrt{ } 5+1) / 2)^{n}\right)
\end{gathered}
$$

Running time via Rec Tree

Leaves are always 0 or 1 . How many 1's? How many Os?

There are $F_{n} 1 s$ and $F_{n-1} 0 s$ F_{n+1} leaves total!

Running time via Rec Tree

How many intermediate nodes does a full binary tree with m leaves have?

Running time via Rec Tree

$$
2 \mathrm{~F}_{\mathrm{n}+1}-1 \text { nodes (additions) }
$$

Running time via Rec Tree

Running time via Rec Tree

Keep an array to remember the previous values!

Running time via Rec Tree

Memoization= when I look at the table to see the values I computed before

```
MemFibo( \(n\) ):
    if \((n<2)\)
    return \(n\)
    else
if \(F[n]\) is undefined
        \(F[n] \leftarrow \operatorname{MemFibo}(n-1)+\operatorname{MemFibo}(n-2)\)
return \(F[n]\)
```

Given any recursive backtracking algorithm, you can add memoization and will save time, provided the subproblems repeat

MemFibo(n):

if $(n<2)$
return n
else
if $F[n]$ is undefined

$$
F[n] \leftarrow \operatorname{MEMFibo}(n-1)+\operatorname{MEmFibo}(n-2)
$$

return $F[n]$
How many times did I have to call the recursive function? exponential!
How many different values did I have to compute?

$$
O(n)!
$$

Memoization decreases running time : performs only $\mathrm{O}(\mathrm{n})$ additions, exponential improvement

MemFibo(n):

if $(n<2)$
return n
else
if $F[n]$ is undefined $F[n] \leftarrow \operatorname{MEmFibo}(n-1)+\operatorname{MEmFibo}(n-2)$
return $F[n]$
Memoized algorithm fills in the table from left to right. Why not just do that?

ITERFibo(n):
 $F[0] \leftarrow 0$
 $F[1] \leftarrow 1$
 for $i \leftarrow 2$ to n
 $F[i] \leftarrow F[i-1]+F[i-2]$
 return $F[n]$

Memoized algorithm fills in the table from left to right. Why not just do that?

We get an iterative algorithm

ITERFibo(n):
 $F[0] \leftarrow 0$
 $F[1] \leftarrow 1$
 for $i \leftarrow 2$ to n
 $F[i] \leftarrow F[i-1]+F[i-2]$
 return $F[n]$

- Clear that the number of additions it does it $\mathrm{O}(\mathrm{n})$.
- In practice this is faster than memoized algo, cause we don't use stack/ look up the table etc.

```
ITERFibo( \(n\) ):
    \(F[0] \leftarrow 0\)
    \(F[1] \leftarrow 1\)
    for \(i \leftarrow 2\) to \(n\)
        \(F[i] \leftarrow F[i-1]+F[i-2]\)
return \(F[n]\)
```

- Structure mirrors the recurrence
- Only subtle thing is that we want to fill in the array in increasing order.

```
ITERFibo( \(n\) ):
    \(F[0] \leftarrow 0\)
    \(F[1] \leftarrow 1\)
for \(i \leftarrow 2\) to \(n\)
        \(F[i] \leftarrow F[i-1]+F[i-2]\)
return \(F[n]\)
```

- This is Dynamic Programing Algorithm!
- Dynamic Programming= pretend to do Memoization but do it on purpose
- Memoization: accidentally use something efficient Backwards induction =Dynamic Programming

Dynamic Programming

- Dynamic programming is about smart recursion.
- Not about filling out tables!
- How do I solve the problem, how do I not repeat work, then how to fill up my data structure.

Dynamic Programming

- How can I speed up my algorithm?

$$
\begin{aligned}
& \hline \text { ITERFIBO }(n): \\
& \hline F[0] \leftarrow 0 \\
& F[1] \leftarrow 1 \\
& \text { for } i \leftarrow 2 \text { to } n \\
& \quad F[i] \leftarrow F[i-1]+F[i-2] \\
& \quad \text { return } F[n] \\
& \hline
\end{aligned}
$$

- I only need to keep my last two elements of the array.
- Even more efficient algorithm

Dynamic Programming

- How can I speed up my algorithm?

```
ITERFIBO2(n):
    prev }\leftarrow
    curr }\leftarrow
    for }i\leftarrow1\mathrm{ to }
        next \leftarrow curr + prev
        prev }\leftarrow\mathrm{ curr
        curr }\leftarrow\mathrm{ next
    return curr
```

- I only need to keep my last two elements of the array.
- Even more efficient algorithm
- Where is the recursion?

Dynamic Programming

- How can I speed up my algorithm?

```
ITERFIBO2(n):
    prev }\leftarrow
    curr }\leftarrow
    for }i\leftarrow1\mathrm{ to }
        next \leftarrow curr + prev
        prev }\leftarrow\mathrm{ curr
        curr }\leftarrow\mathrm{ next
    return curr
```

- I only need to keep my last two elements of the array.
- Even more efficient algorithm
-Where is the recursion?
- Saves space, sometimes important

Dynamic Programming

- How can I speed up my algorithm?

```
ITERFIBO2(n):
    prev}\leftarrow
    curr }\leftarrow
    for }i\leftarrow1\mathrm{ to }
        next \leftarrow curr + prev
        prev \leftarrowcurr
        curr }\leftarrow\mathrm{ next
    return curr
```

- Is this the fastest Algorithm for Fibonacci?

Dynamic Programming

- How can I speed up my algorithm?

```
ITERFIBO2(n):
    prev }\leftarrow
    curr }\leftarrow
    for }i\leftarrow1\mathrm{ to }
        next \leftarrowcurr + prev
        prev }\leftarrow\mathrm{ curr
        curr }\leftarrow\mathrm{ next
    return curr
```

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
x+y
\end{array}\right]
$$

This matrix vector multiplication does exactly the same thing as one iteration of the loop!

What to do to compute the nth Fibonacci number?

Dynamic Programming

- How can I speed up my algorithm?

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
F_{n-1} \\
F_{n}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
x+y
\end{array}\right]
$$

Compute the nth power of the matrix.

- With repeated squaring, O(logn) multiplications
- Compute F_{n} in O(logn) arithmetic operations

Double exponential speedup!

Dynamic Programming

- How can I speed up my algorithm?

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]^{n}\left[\begin{array}{l}
1 \\
0
\end{array}\right]=\left[\begin{array}{c}
F_{n-1} \\
F_{n}
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
y \\
x+y
\end{array}\right]
$$

Compute the nth power of the matrix.
But how many bits is the nth Fibonacci number? $O(n)!$
Can't perform arbitrary precision arithmetic in constant time

Longest Increasing Subsequence (LIS)

- 31415926538279461048

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- LIS(A[1...n],p) = length of LIS of $A[1 \ldots n]$ where everything is bigger than p

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- LIS(A[1..n],p) $=4\left[\begin{array}{l}0 \text { if } n=0 \\ \operatorname{LIS}(A[2 \ldots n], p) \text { if } A[1] \leq p \\ \operatorname{MAX}\left\{\begin{array}{l}\text { LIS(A[2 } 2 \ldots n], p) \\ 1+\operatorname{LIS}(A[2 \ldots n], A[1])\}\end{array}\right.\end{array}\right.$

Longest Increasing Subsequence (LIS)

- $\operatorname{LIS}(A[1 \ldots n], p)=4\left[\begin{array}{l}0 \text { if } n=0 \\ \operatorname{LIS}(A[2 \ldots n], p) \text { if } A[1] \leq p \\ \operatorname{MAX}\{\operatorname{LIS}(A[2 \ldots n], p) \\ 1+\operatorname{LIS}(A[2 \ldots n], A[1])\}\end{array}\right.$
- The argument p is always either $-\infty$ or and element of the array A
- Add $A[0]=-\infty$
- We can identify any recursive subproblem with two array indices.
- LIS $(\mathrm{i}, \mathrm{j})=$ length or LIS of $\mathrm{A}[\mathrm{j} . . \mathrm{n}]$ with all elements larger tha $A[i]$

Longest Increasing Subsequence (LIS)

$$
\begin{aligned}
& \text { For } i<j \\
& \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\
\operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\
\max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}
\end{aligned}
$$

- LIS(i, j) = length or LIS of $\mathrm{A}[\mathrm{j} . . \mathrm{n}]$ with all elements larger tha A[i]
- We want to compute LIS(0,1)
- Memoize? what data structure to use?
- Two dimensional Array LIS[0...n,1...n+1]

For $\mathrm{i}<\mathrm{j} \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}$

For $\mathrm{i}<\mathrm{j} \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}$

For $\mathrm{i}<\mathrm{j} \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1) & \text { otherwise }\end{cases}$

For $i<j \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1) & \text { otherwise }\end{cases}$

For $\mathrm{i}<\mathrm{j} \quad \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\ \operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\ \max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1) & \text { otherwise }\end{cases}$

Longest Increasing Subsequence (LIS)

doesn't matter what order I fill the columns in

```
LIS(A[1..n]):
    A[0]\leftarrow-\infty <<Add a sentinel\rangle\rangle
    for }i\leftarrow0\mathrm{ to }
        LIS[i,n+1]}\leftarrow
    for }j\leftarrown\mathrm{ downto 1
        for i}\leftarrow0\mathrm{ to }j-
            if }A[i]\geqA[j
                        LIS[i,j]\leftarrowLIS[i,j+1]
        else
            LIS[i,j]\leftarrow\operatorname{max}{LIS[i,j+1],1+LIS[j,j+1]}
    return LIS[0,1]
```


Longest Increasing Subsequence (LIS)

- Running time?
- O(n²)
- Two nested for loops
- How man values are there in the recurrence?

```
LIS(A[1..n]):
    A[0]\leftarrow-\infty <<Add a sentinel\rangle\rangle
    for }i\leftarrow0\mathrm{ to }
        LIS[i,n+1]}\leftarrow
    for j}\leftarrown\mathrm{ downto 1
        for }i\leftarrow0\mathrm{ to }j-
        if }A[i]\geqA[j
                        LIS[i,j]\leftarrowLIS[i,j+1]
        else
                        LIS[i,j]\leftarrow\operatorname{max}{LIS[i,j+1],1+LIS[j,j+1]}
    return LIS[0,1]
```


Longest Increasing Subsequence (LIS)

$$
\begin{aligned}
& \text { For } i<j \\
& \operatorname{LIS}(i, j)= \begin{cases}0 & \text { if } j>n \\
\operatorname{LIS}(i, j+1) & \text { if } A[i] \geq A[j] \\
\max \{\operatorname{LIS}(i, j+1), 1+\operatorname{LIS}(j, j+1)\} & \text { otherwise }\end{cases}
\end{aligned}
$$

- As general rule of thumb:
- \# variables on the left =space $O\left(n^{2}\right)$ array for i, j taking n values each
- \# variables on the right =time $O\left(n^{2}\right)$

Dynamic Programming General Recipe for DP

- Step 1: Find Backtracking Recursive algorithm (e.g. for LIS we leveraged the recursive def. Either empty or there is something that comes first) (6 pts)
- Step 2: Identify the subproblems (e.g. indices i,j for LIS), need english description
- Step 3: Analyze time and space
- Step 4: Choose a memoization data structure (e.g. two dim array)
- Step 5: Find evaluation order (draw picture!!!)

Dynamic Programming

General Recipe for DP

- Step 3: Analyze time and space
- Step 6: write iterative pseudocode

