
Backtracking

Lecture12

1

C
S

37
4

• We have seen divide and conquer:

 — split into subproblems of size n/c (some c).

 — Analyze running time with recursion trees.

• Different style of recursion: Backtracking

 — reduce to subproblems of smaller size n-c (some
c).

 — Usually exponential time

 — Way of developing correct recursive algorithms,
won’t deal with running time often.

Recursion

C
S

37
4

8-Queens Puzzle

C
S

37
4

8-Queens Puzzle

How long does it take to solve it from scratch?

C
S

37
4

n-Queens Puzzle

Represent by array Q[1…n].
Q[i] = which square in row i has a queen

C
S

37
4

n-Queens Puzzle

Place a queen at the first empty row-try all possible places

C
S

37
4

n-Queens Puzzle

Place a queen at the first empty row-try all possible places

C
S

37
4

n-Queens Puzzle

Place a queen at the first empty row-try all possible places

C
S

37
4

n-Queens Puzzle

Place a queen at the first empty row-try all possible places

n-Queens Puzzle

n-Queens Puzzle

C
S

37
4

• Given a set X of positive integers and a target
positive integer t, is there a subset of elements in
X that add up to t?

• Given X, find A subset of X, so that ∑A=t?

• What is the first element to go into A?

• Try them all!

• If there is an element equal to t, done

• If t is zero, we are done! (why?)

• If t negative, no!

Subset sum

C
S

37
4

• Given a set X of positive integers and a target
positive integer t, is there a subset of
elements in X that add up to t?

• Given X, find A subset of X, so that ∑A=t?

• Assume t is positive and no element bigger
than t.

Subset sum

C
S

37
4

• Given a set X of positive integers and a target
positive integer t, is there a subset of
elements in X that add up to t?

• Given X, find A subset of X, so that ∑A=t?

• Example: X={3,2,4,6,9}, t = 7

• What element to try first?

• Say x= 6. Then is there subset of {3,2,4,9} that
adds to 1? NO

Subset sum

C
S

37
4

• Given a set X of positive integers and a target
positive integer t, is there a subset of elements
in X that add up to t?

• Given X, find A subset of X, so that ∑A=t?

• Example: X={3,2,4,6,9}, t = 7

• What element to try first?

• Say x= 6. Then is there subset of {3,2,4,9} that
adds to 1? NO

• Two cases: x in A or x not in A.

Subset sum

C
S

37
4

• If there is a subset A with ∑A=t then either

• x in A, call SubsetSum(X-{x},t-x)

• or x not in A call SubsetSum(X-{x},t)

Subset sum

C
S

37
4

Subset sum

Call the algorithm with i=n
Canonical order to choose elements in the subset

C
S

37
4

• Running time?

• T(n) ≤ O(1)+2T(n-1)

• Tower of Hanoi! exponential time 2n

• Brute force!

• NP-Hard!

Subset sum

C
S

37
4

• Given NFA : N= (Σ, Q, δ, s, A) and w ∈ ∑*

 is δ*(s, w) ∩ A ≠ ø

• Is there a walk in N from s to an accepting
state labeled w?

NFA acceptance

• Input = 01001

1

0

1

0

0,1

0,1

• L ={contains either 00 or 11}

NFA acceptance

C
S

37
4

NFA

21

[s]

10011001 1001 1001 1001

[b]

[s]

[s]

1

0

1

0

0,1

0,1

[a]

[b]

[s]

[t]

[a]

[t]

[s]

[a]
[t]

[s]

[b]

C
S

37
4

NFA

22

[s]

[b]

[s]

[s]

1

0

1

0

0,1

0,1

[a]

[b]

[s]

[t]

[a]

[t]

[s]

[a]
[t]

[s]

[b]

One of the states are accepting. There needs to be AT LEAST
one accepting state

• Input = 01001

• How do I decide what to do once I read
the first 0?

• Try both! maybe one of them will work.

• Smaller subproblem, when we need to
figure out if the NFA accepts a smaller
input.

• Need to specify what state the NFA is in
and what string is left to read.

• Accept (q,w)

1

0

1

0

0,1

0,1

NFA acceptance

1

0

1

0

0,1

0,1

NFA acceptance

• A[i] is 1 iff i is an accepting state.

• δ[q,w[1],r] =1 iff r∈δ(q,w[1])

• Every time the recursion branches, there are at most Q states

• Qn upper bound on running time!!!

C
S

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

• Subsequence different than substring.

• Increasing = in an order.

• Recursion?

Longest Increasing Subsequence
(LIS)

C
S

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

• Look at first element. Keep or ditch?

Longest Increasing Subsequence
(LIS)

• LIS(A[1…n])

If n< 1010, brute force

keep: 1+LIS(A[2…n])

ditch: LIS(A[2…n])

What went wrong?
I didn’t use

INCREASING

C
S

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

Longest Increasing Subsequence
(LIS)

• LIS(A[1…n])

If n< 1010, brute force

keep: 1+ ?

ditch: LIS(A[2…n])

• What is the correct
 subproblem?
• LIS where every number
is larger than the number p I keep
• Not the same problem anymore!

C
S

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

Longest Increasing Subsequence
(LIS)

• LIS(A[1…n], p)

If n< 1010, brute force

keep:

ditch:

• What are the new cases?
• Either use A[1] or not.
• Anything else?

C
S

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

Longest Increasing Subsequence
(LIS)

• LIS(A[1…n],p)

If n< 1010, brute force

If A[1] ≤ p,

RETURN LIS(A[2…n],p)

else

RETURN MAX:
LIS(A[2…n],p)

1+LIS(A[2…n],A[1])

C
S

37
4

• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

Longest Increasing Subsequence
(LIS)

• LIS(A[1…n],p)

If n< 1010, brute force

If A[1] ≤ p,

RETURN LIS(A[2…n],p)

else

RETURN MAX:
LIS(A[2…n],p)

1+LIS(A[2…n],A[1])

• LIS(A[1…n],−∞) to find LIS
• Running time?
• 2n

