Backtracking

CS 374

Recursion

* \We have seen divide and conqguer:

— split into subproblems of size n/c (some c).
— Analyze running time with recursion trees.
* Different style of recursion: Backtracking

— reduce to subproblems of smaller size n-c (some
C).

— Usually exponential time

— Way of developing correct recursive algorithms,
won't deal with running time often.

CS 374

8-Queens

8-Queens Puzzle @

How long does it take to solve it from scratch”

CS 374

n-Queens Puzzle

Represent by array Q[1...n].
Q[i] = which square in row i has a queen

CS 374

n-Queens Puzzle @

CS 374

Place a queen at the first empty row-try all possible places

n-Queens Puzzle @

CS 374

Place a queen at the first empty row-try all possible places

n-Queens Puzzle @

CS 374

Place a queen at the first empty row-try all possible places

n-Queens Puzzle @

CS 374

Place a queen at the first empty row-try all possible places

n-Queens Puzzle

RECURSIVENQUEENS(Q[1..n],r):
ifr=n+1
print Q
else
forj<—1ton
legal < TRUE
forie—1tor—1
if (Qli]=j)or(Qli]=j+r—i)or(Qli]=j—r+1i)

legal « FALSE

if legal

Qlr]«j
RECURSIVENQUEENS(Q[1..n],r+1)

n-Queens Puzzle

)| -)| -4
W W (¥ W
W W W W
W W (¥ W
W W W W
- - |
Wl (¥
)|)
W - |

CS 374

Subset sum

Given a set X of positive integers and a target
positive integer t, is there a subset of elements in
X that add up to t?

Given X, find A subset of X, so that > A=t"

What is the first element to go into A”

Try them alll

It there is an element equal to t, done

If tis zero, we are done! (why?)

If t negative, no!

CS 374

Subset sum

* (Given a set X of positive integers and a target
positive integer t, is there a subset of
elements in X that add up to t?

e (Given X, find A subset of X, so that > A=t?

 Assume t Is positive and no element bigger
than t.

CS 374

Subset sum

Given a set X of positive integers and a target
positive integer t, is there a subset of
elements in X that add up to t?

Given X, find A subset of X, so that > A=t"”

—xample: X={3,2,4,6,9}, t =7

What element to try first?

Say x= 6. Then is there subset of {3,2,4,9} that
adds to 17 NO

CS 374

Subset sum

Given a set X of positive integers and a target
positive integer t, is there a subset of elements
in X that add up to t?

Given X, find A subset of X, so that >} A=t?
Example: X={3,2,46,9},t =7
What element to try first?

Say x= 6. Then is there subset of {3,2,4,9} that
adds to 17 NO

Two cases: x In A or x not in A.

CS 374

Subset sum
e |fthere is a subset A with > A=t then either

e X in A, call SubsetSum(X-{x},t-x)

* or x not in A call SubsetSum(X-{x},t)

CS 374

Subset sum

SUBSETSUM(X[1..n],T):

if T=0
return TRUE
elseif T<OQorn=0
return FALSE
else

return(SUBSETSUM(X (1..n—1],T) _' SuBseTSUM(X[1..n—1],T —X [n]))

Call the algorithm with i=n
Canonical order to choose elements in the subset

Subset sum @

* Running time?

e T(N)<O(1)+2T(n-1)

* Jower of Hanoli! exponential time 2n

 Brute force!

e NP-Hard!

CS 374

CS 374

NFA acceptance
e Given NFA: N=(Z,0,0,s,A) andw e X"

isO*(s,w)nA=d

* |sthere a walk in N from s to an accepting
state labeled w?

NFA acceptance

* Input = 01001

K

e
OO0

* L ={contains either 00 or 11}

NFA

1
0
’

o

®
s

[] [=]
EEE] (&]

T

One of the states are accepting. There needs to be AT LEAST
one accepting state

0,1

O8G

Cs 374

NFA acceptance

Input = 01001

How do | decide what to do once | read
the first 07

Try both! maybe one of them will work.

Smaller subproblem, when we need to
figure out if the NFA accepts a smaller
INnput.

Need to specify what state the NFA is in
and what string is left to read.

Accept (q,w)

\00,1 ;

(O
]

@,
iy

O

0,1

NFA acceptance

0,1
AcceprTs?(g,w[1..n]): \8 0

ifn=0

return A[q] 11)
for all states r 1 0
if 6[q,w[1],r] and AccepTs?(r,w[2..n]) Q > Q !

return TRUE

return FALSE

 Ali]is 1iffiis an accepting state.
e Olg,w[1],r] =1iff red(g,w[1])
* Every time the recursion branches, there are at most Q states

* Qnupper bound on running time!!!

CS 374

Longest Increasing Subsequence @
(LIS)

* 31415926238279461048

* Subseqguence different than substring.
* |ncreasing = in an order.

e Recursion?

Longest Increasing Subsequence ‘
(LIS)

* 314156926238279461048

* Look at first element. Keep or ditch?

What went wrong?

* LISALT.nl) | didn't use
f n< 1010, brute force INCREASING

cop{ T+ LIS(ALZ.)

ditchi LIS(A[2.

CS 374

CS 374

Longest Increasing Subsequence @

(LIS)

* 31415926238279461048

e LIS(A[T...

n))

e \What Is the correct

If n< 1019, brute force subproblem?

keep: 1+ 7?

ditch: LIS(A[2. ..

n))

e LIS where every number
IS larger than the number p | keep
* Not the same problem anymore!

CS 374

Longest Increasing Subsequence @

(LIS)

* 31415926238279461048

o LIS(A[1...n], p)
If n< 1070, pbrute force
keep:

ditch:

e \What are the new cases?
e Either use A[1] or noit.
* Anything else?

CS 374

Longest Increasing Subsequence @
(LIS)

* 31415926238279461048

o LIS(A[1...n],p)

If n< 1070, brute force

fA[1] < p,
RETURN LIS(A[2...n],p)

else

RETURN MAX: [1+LIS(A[2...n]

CS 374

Longest Increasing Subsequence @
(LIS)

* 31415926238279461048

e LIS(A[1...n],p)

f n< 1070, brute force ° LIS(A[1...n],—0) to find LIS
* Running time”

if A[1] < p, ° 2"

RETURN LIS(A[2...n],p)

else

RETURN MAX: [1+LIS(A[2...n]

