
Backtracking 
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• We have seen divide and conquer:  

    — split into subproblems of size n/c (some c).  

    — Analyze running time with recursion trees. 

• Different style of recursion: Backtracking 

    — reduce to subproblems of smaller size n-c (some 
c).  

    — Usually exponential time 

    — Way of developing correct recursive algorithms, 
won’t deal with running time often.

Recursion
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8-Queens Puzzle
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8-Queens Puzzle

How  long does it take to solve it from scratch? 
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n-Queens Puzzle

Represent by array Q[1…n]. 
Q[i] = which square in row i has a queen
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n-Queens Puzzle

Place a queen at the first empty row-try all possible places
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n-Queens Puzzle

Place a queen at the first empty row-try all possible places
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• Given a set X of positive integers and a target 
positive integer t, is there a subset of elements in 
X that add up to t? 

• Given X, find A subset of X, so that ∑A=t? 

• What is the first element to go into A? 

• Try them all! 

• If there is an element equal to t, done 

• If t is zero, we are done! (why?) 

• If t negative, no!

Subset sum
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• Given a set X of positive integers and a target 
positive integer t, is there a subset of 
elements in X that add up to t? 

• Given X, find A subset of X, so that ∑A=t? 

• Assume t is positive and no element bigger 
than t.

Subset sum
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• Given a set X of positive integers and a target 
positive integer t, is there a subset of 
elements in X that add up to t? 

• Given X, find A subset of X, so that ∑A=t? 

• Example: X={3,2,4,6,9}, t = 7 

• What element to try first? 

• Say x= 6. Then is there subset of {3,2,4,9} that 
adds to 1? NO

Subset sum
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• Given a set X of positive integers and a target 
positive integer t, is there a subset of elements 
in X that add up to t? 

• Given X, find A subset of X, so that ∑A=t? 

• Example: X={3,2,4,6,9}, t = 7 

• What element to try first? 

• Say x= 6. Then is there subset of {3,2,4,9} that 
adds to 1? NO 

• Two cases: x in A or x not in A.

Subset sum
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• If there is a subset A with ∑A=t then either 

• x in A, call SubsetSum(X-{x},t-x) 

• or x not in A call SubsetSum(X-{x},t)

Subset sum
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Subset sum

Call the algorithm with i=n 
Canonical order to choose elements in the subset
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• Running time?  

• T(n) ≤ O(1)+2T(n-1) 

• Tower of Hanoi! exponential time 2n 

• Brute force! 

• NP-Hard!

Subset sum



C
S 

37
4

• Given NFA : N= (Σ, Q, δ, s, A)  and w ∈ ∑* 

        is δ*(s, w) ∩ A ≠ ø   

• Is there a walk in N from s to an accepting 
state labeled w?

NFA acceptance



• Input = 01001

1

0

1

0

0,1

0,1

• L ={contains either 00 or 11}

NFA acceptance
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NFA
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NFA
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One of the states are accepting. There needs to be AT LEAST 
one accepting state



• Input = 01001 

• How do I decide what to do once I read 
the first 0? 

• Try both! maybe one of them will work. 

• Smaller subproblem, when we need to 
figure out if the NFA accepts a smaller 
input. 

• Need to specify what state the NFA is in 
and what string is left to read. 

• Accept (q,w)

1
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0

0,1

0,1

NFA acceptance



1

0

1

0

0,1

0,1

NFA acceptance

• A[i] is 1 iff i is an accepting state. 

• δ[q,w[1],r] =1 iff r∈δ(q,w[1]) 

• Every time the recursion branches, there are at most Q states  

• Qn upper bound on running time!!!
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8  

• Subsequence different than substring. 

• Increasing = in an order. 

• Recursion?

Longest Increasing Subsequence 
(LIS)
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8  

• Look at first element. Keep or ditch?

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n]) 

If n< 1010, brute force 

keep: 1+LIS(A[2…n]) 

ditch: LIS(A[2…n])

What went wrong? 
I didn’t use 

INCREASING 
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8 

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n]) 

If n< 1010, brute force 

keep: 1+    ? 

ditch: LIS(A[2…n])

• What is the correct 
 subproblem? 
• LIS where every number  
is larger than the number p I keep 
• Not the same problem anymore!
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n], p) 

If n< 1010, brute force 

keep: 

ditch:

• What are the new cases?  
• Either use A[1] or not. 
• Anything else?
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8 

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n],p) 

If n< 1010, brute force 

If A[1] ≤ p, 

RETURN LIS(A[2…n],p) 

else 

RETURN MAX:
LIS(A[2…n],p) 

1+LIS(A[2…n],A[1])
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• 3 1 4 1 5 9 2 6 5 3 8 2 7 9 4 6 1 0 4 8 

Longest Increasing Subsequence 
(LIS)

• LIS(A[1…n],p) 

If n< 1010, brute force 

If A[1] ≤ p, 

RETURN LIS(A[2…n],p) 

else 

RETURN MAX:
LIS(A[2…n],p) 

1+LIS(A[2…n],A[1])

• LIS(A[1…n],−∞) to find LIS 
• Running time?  
• 2n 


