Backtracking

Lecture12

Recursion

- We have seen divide and conquer:
- split into subproblems of size n / c (some c).
- Analyze running time with recursion trees.
- Different style of recursion: Backtracking
- reduce to subproblems of smaller size n-c (some c).
- Usually exponential time
- Way of developing correct recursive algorithms, won't deal with running time often.

8-Queens Puzzle

8-Queens Puzzle

O							
		0					
					0		
			0				
					0		
	O						

How long does it take to solve it from scratch?

n-Queens Puzzle

Represent by array Q[1...n].
$Q[i]=$ which square in row i has a queen

n-Queens Puzzle

Place a queen at the first empty row-try all possible places

n-Queens Puzzle

Place a queen at the first empty row-try all possible places

n-Queens Puzzle

Place a queen at the first empty row-try all possible places

n-Queens Puzzle

Place a queen at the first empty row-try all possible places

n-Queens Puzzle

RecursivenQueens(Q[1..n],r):
if $r=n+1$
print Q
else
for $j \leftarrow 1$ to n
legal \leftarrow True
for $i \leftarrow 1$ to $r-1$
if $(Q[i]=j)$ or $(Q[i]=j+r-i)$ or $(Q[i]=j-r+i)$
legal \leftarrow FALSE
if legal

$$
Q[r] \leftarrow j
$$

RecursiveNQueens(Q[1..n],r+1)
n-Queens Puzzle

Subset sum

- Given a set X of positive integers and a target positive integer t, is there a subset of elements in X that add up to t?
- Given X, find A subset of X, so that $\sum A=t$?
- What is the first element to go into A?
- Try them all!
- If there is an element equal to t, done
- If t is zero, we are done! (why?)
- If t negative, no!

Subset sum

- Given a set X of positive integers and a target positive integer t, is there a subset of elements in X that add up to t?
- Given X, find A subset of X, so that $\sum A=t$?
- Assume t is positive and no element bigger than t.

Subset sum

- Given a set X of positive integers and a target positive integer t, is there a subset of elements in X that add up to t?
- Given X, find A subset of X, so that $\sum A=t$?
- Example: $\mathrm{X}=\{3,2,4,6,9\}, \mathrm{t}=7$
- What element to try first?
- Say $x=6$. Then is there subset of $\{3,2,4,9\}$ that adds to 1? NO

Subset sum

- Given a set X of positive integers and a target positive integer t, is there a subset of elements in X that add up to $t ?$
- Given X, find A subset of X, so that $\sum A=t$?
- Example: $X=\{3,2,4,6,9\}, t=7$
- What element to try first?
- Say $x=6$. Then is there subset of $\{3,2,4,9\}$ that adds to 1? NO
- Two cases: x in A or x not in A .

Subset sum

- If there is a subset A with $\sum A=t$ then either
- x in A, call SubsetSum($X-\{x\}, t-x)$
- or x not in A call SubsetSum(X-\{x\},t)

Subset sum

```
SubsetSum \((X[1 . . n], T)\) :
    if \(T=0\)
        return True
    else if \(T<0\) or \(n=0\)
        return False
    else
        return \((\operatorname{SuBSETSUM}(X[1 . . n-1], T) \mathrm{SuBSETSUM}(X[1 . . n-1], T-X[n]))\)
```


Call the algorithm with $\mathrm{i}=\mathrm{n}$

Canonical order to choose elements in the subset

Subset sum

- Running time?
- $T(n) \leq O(1)+2 T(n-1)$
- Tower of Hanoi! exponential time 2^{n}
- Brute force!
- NP-Hard!

NFA acceptance

- Given NFA : $N=(\Sigma, Q, \delta, s, A)$ and $\mathrm{w} \in \Sigma^{\star}$

$$
\text { is } \delta^{*}(S, w) \cap A \neq \varnothing
$$

- Is there a walk in N from s to an accepting state labeled w?

NFA acceptance

- Input = 01001

- $L=\{$ contains either 00 or 11$\}$

NFA

NFA

One of the states are accepting. There needs to be AT LEAST one accepting state

NFA acceptance

- $\operatorname{Input}=01001$
- How do I decide what to do once I read the first 0 ?
- Try both! maybe one of them will work.

- Smaller subproblem, when we need to figure out if the NFA accepts a smaller input.
- Need to specify what state the NFA is in and what string is left to read.
- Accept (q,w)

NFA acceptance

Accepts? $(q, w[1 . . n]):$
if $n=0$ return $A[q]$
for all states r

$$
\text { if } \delta[q, w[1], r] \text { and Accepts? }(r, w[2 . . n])
$$ return True

- $A[i]$ is 1 iff i is an accepting state.
- $\delta[q, w[1], r]=1$ iff $r \in \delta(q, w[1])$
- Every time the recursion branches, there are at most Q states
- Qn upper bound on running time!!!

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- Subsequence different than substring.
- Increasing = in an order.
- Recursion?

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- Look at first element. Keep or ditch?
- LIS(A[1...n])

If $\mathrm{n}<10^{10}$, brute force

What went wrong?
I didn't use INCREASING
keep $1+\operatorname{LIS}(A[2 \ldots n])$
ditch LIS(A[2...n])

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- $\operatorname{LIS}(A[1 \ldots n])$
- What is the correct

If $\mathrm{n}<10^{10}$, brute force subproblem?

- LIS where every number
keep: 1+ ?
is larger than the number pl keep
- Not the same problem anymore!
ditch: LIS(A[2...n])

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- LIS(A[1...n], p)

If $\mathrm{n}<10^{10}$, brute force \cdot What are the new cases?

- Either use A[1] or not.
keep:
ditch:

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- LIS(A[1...n],p)

If $\mathrm{n}<10^{10}$, brute force
If $A[1] \leq p$,
RETURN LIS(A[2...n],p)
else

$$
\begin{gathered}
\operatorname{LIS}(A[2 \ldots n], p) \\
1+\operatorname{LIS}(A[2 \ldots \mathrm{n}], \mathrm{A}[1])
\end{gathered}
$$

Longest Increasing Subsequence (LIS)

- 31415926538279461048
- LIS(A[1...n],p)

If $\mathrm{n}<10^{10}$, brute force $\cdot \operatorname{LIS}(\mathrm{A}[1 \ldots \mathrm{n}],-\infty)$ to find LIS - Running time?

If $\mathrm{A}[1] \leq \mathrm{p}, \quad \cdot 2^{\mathrm{n}}$
RETURN LIS(A[2...n],p)
else

$$
\text { RETURN MAX: } \begin{gathered}
\operatorname{LIS}(A[2 \ldots \mathrm{n}], \mathrm{p}) \\
1+\operatorname{LIS}(A[2 \ldots \mathrm{n}], \mathrm{A}[1])
\end{gathered}
$$

