
Recursion

Lecture10

1

C
S

37
4

Algorithms

• We will see two types of algorithms next

1. Recursion (e.g. how to build an NFA from
RegExp)

2. Graph Algorithms (later)

C
S

37
4

What is Recursion?

Tower of Hanoi: Move the tower from one peg to
another without ever putting a larger block on
top of a smaller one.

C
S

37
4

Tower of Hanoi

C
S

37
4

Tower of Hanoi

C
S

37
4

Tower of Hanoi

C
S

37
4

Tower of Hanoi

C
S

37
4

Tower of Hanoi

C
S

37
4

Need to be careful about when we cannot invoke
the induction ferry: Base Cases

Base Case?

C
S

37
4

Hanoi Algorithm

C
S

37
4

Sometimes hard to delegate.

Reduction = Delegation

C
S

37
4

• Reg Exp NFA (thompson)

• NFA DFA (subset)

• DFA min DFA (Moore)

3 Steps. Not important how any of those work,
as long as we are guaranteed they work

Reduction = Delegation
Say we want to build a minimal DFA from a regular

expression

C
S

37
4

Reduction = Delegation

How do you hunt a blue elephant?

How do you hunt a red elephant?

How do you hunt a white elephant?

- With the blue elephant gun

- Hold its trunk until it turns blue, then
 hunt it with the blue elephant gun

- Embarrass it till it becomes red. Use algorithm for
 hunting red elephants.

C
S

37
4

Sometimes hard to delegate.

Recursion even harder to delegate,you have to
trust yourself.

Reduction = Delegation

C
S

37
4

Recursion is reduction to smaller instances of the
SAME problem, which are solved by magic (or
fairies, or inductive hypothesis…)

Recursion = Delegation to yourself

C
S

37
4

Sorting
A L G O R I T H M S

Quicksort:

• choose a pivot element from the array

• partition the array into three subarrays: one with
elements smaller than pivot, one the pivot
itself, one with elements larger than pivot.

• Recursively quick sort the first and last
subarray

• How to choose pivot?

C
S

37
4

Sorting
A L G O R I T H M S

Quicksort:

A L G I H

M

R T S O

C
S

37
4

Sorting
A L G O R I T H M S

Quicksort:

A G H I L

M

O R S T

C
S

37
4

Sorting
A L G O R I T H M S

Quicksort:

A G H I L M O R S T

C
S

37
4

Sorting

Quicksort:

C
S

37
4

Sorting

Partition (linear time):

C
S

37
4

Sorting
A L G O R I T H M S

Mergesort:

• Divide the input array into two subarrays of
roughly equal size

• Recursively merge sort each of the subarrays

• Merge the two newly sorted subarrays into a
single sorted array

C
S

37
4

Sorting
A L G O R I T H M S

Mergesort:

A L G O R I T H M S

C
S

37
4

Sorting
A L G O R I T H M S

Mergesort:

A G L O R H I M S T

C
S

37
4

Sorting
A L G O R I T H M S

Mergesort:

Need to merge the two subarrays.

A G L O R H I M S T

C
S

37
4

Sorting
A L G O R I T H M S

• Compare the first elements of the subarrays

• Write the smallest one in the output array.

• Recursion, now the problem is smaller

A G L O R

H I M S T

Merge:

C
S

37
4

Sorting
A L G O R I T H M S

Merge:

One comparison, one recursive call

H I M S T

A G L O R

C
S

37
4

Sorting
A L G O R I T H M S

Merge:

One comparison, one recursive call

H I M S T

A

G L O R

C
S

37
4

Sorting
A L G O R I T H M S

Merge:

Where can this recursion break?

G L O R

H I M S T

A

C
S

37
4

Sorting
A L G O R I T H M S

Merge:

H I M S T

C
S

37
4

Sorting
A L G O R I T H M S

Merge:

I M S T

H

C
S

37
4

Sorting
A L G O R I T H M S

Merge:

Where can this recursion break?

C
S

37
4

Sorting
Merge:

Loop = recursion

• When writing actual code
 easier to unfold the recursion

• When proving correctness
easier to use induction
(=recursion)

C
S

37
4

Sorting
Mergesort:

Base cases:
• When size of arrays to merge is 1
• When size of arrays is less than10 and then brute force
• It doesn’t matter, no need to optimize

C
S

37
4 Always make sanity check when you design

algorithm!

Proof of Correctness

C
S

37
4

• Number of fundamental operations as a
function of input size n

• If array is sorted, then O(n), but we don’t care
about best case!

• Worst case running time for this class.

• Maybe different in practice, assumptions

Running time

C
S

37
4

• What is the running time T(n) of quicksort?

• O(n2) time! (If I choose the smallest pivot)

• T(n)=O(n)+T(n-1)

 = O(n2)

Running time of Quicksort

C
S

37
4

• What is the running time T(n) of mergesort?

• O(nlogn) time!

• T(n)=2T(n/2)+O(n)

• proof by induction if I know answer

• recursion tree!

Running time of Mergesort

C
S

37
4

Running time of Mergesort

T(n)

T(n/2) T(n/2)

+O(n)

Complete binary tree
every leaf is an array of size 1

C
S

37
4

Running time of Mergesort

n

T(n)

n/2 n/2

T(n/2) T(n/2)

n/4 n/4 n/4 n/4

T(n/4) T(n/4) T(n/4) T(n/4)

• Leave all the O() till the very end.
• Goal is to sum up all the quantities in all the nodes.

=non-recursive work

C
S

37
4

Running time of Mergesort

n

T(n)

n/2 n/2

T(n/2) T(n/2)

n/4 n/4 n/4 n/4

T(n/4) T(n/4) T(n/4) T(n/4)

• T(n)=2T(n/2)+O(n)

• Solve the recurrence by summing up work at each
level

n

n/2+n/2=n

n/4+n/4+n/4+n/4=n

C
S

37
4

Running time of Mergesort

n

T(n)

n/2 n/2

T(n/2) T(n/2)

n/4 n/4 n/4 n/4

T(n/4) T(n/4) T(n/4) T(n/4)

• T(n)=2T(n/2)+O(n)

• Total amount of work at level k= total amount of
work at level k-1 (induction).

n

n/2+n/2=n

n/4+n/4+n/4+n/4=n

C
S

37
4

Running time of Mergesort

n

T(n)

n/2 n/2

T(n/2) T(n/2)

n/4 n/4 n/4 n/4

T(n/4) T(n/4) T(n/4) T(n/4)

• T(n)=2T(n/2)+O(n)

• Total amount of work = n x (height of the tree) =n logn

n

n/2+n/2=n

n/4+n/4+n/4+n/4=n

C
S

37
4

• Quicksort runs in time O(n log n) in practice.

• Quicksort runs in time O(n log n) on average if
the data is randomly permuted

• Quicksort runs in expected time O(n log n) if
we randomly permute the data first.

Running time of Quicksort,
revisited

