Kecursion

CS 374

Algorithms

* We will see two types of algorithms next

1. Recursion (e.g. how to build an NFA from
RegExp)

2. Graph Algorithms (later)

CS 374

What is Recursion?

Tower of Hanoi: Move the tower from one peg to
another without ever putting a larger block on
top of a smaller one.

Tower of Hanoil @

CS 374

Tower of Hanoil @

CS 374

Tower of Hanoil @

CS 374

Tower of Hanoil @

CS 374

Tower of Hanoil @

CS 374

Base Case?

Need to be careful about when we cannot invoke
the induction ferry: Base Cases

CS 374

CS 374

Hanol Algorithm

HANOI(n, src, dst, tmp):
ifn>0
HANoOI(n — 1, src, tmp, dst)
move disk n from src to dst
HANoOI(n — 1, tmp, dst, src)

CS 374

Reduction = Delegation

Sometimes hard to delegate.

CS 374

Reduction = Delegation

Say we want to build a minimal DFA from a regular
expression

 Reg Exp =——» NFA (thompson)

« NFA —" DFA (subset)
e DFA =—» min DFA (Moore)

3 Steps. Not important how any of those work,
as long as we are guaranteed they work

CS 374

Reduction = Delegation

How do you hunt a blue elephant?
- With the blue elephant gun

How do you hunt a red elephant?

- Ho
hu

d its trunk until it turns b

Nt It with the blue elepha

ue, then

Nt gun

How do you hunt a white elephant?

CS 374

Reduction = Delegation

Sometimes hard to delegate.

Recursion even harder to delegate,you have to
trust yourself.

CS 374

Recursion = Delegation to yourself g

Recursion is reduction to smaller instances of the
SAME problem, which are solved by magic (or
fairies, or inductive hypothesis...)

CS 374

Sorting
ALGORI TG

Quicksort:
* choose a pivot element from the array
* partition the array into three subarrays: one with

elements smaller than pivot, one the pivot
tself, one with elements larger than pivot.

* Recursively quick sort the first and last
subarray

 How to choose pivot?

CS 374

Sorting
ALGPORT TG

Quicksort:

AL G H RITIS O

CS 374

Sorting
ALGPORT TG

Quicksort:

AGH L OR[S T

CS 374

Sorting
ALGPORT TG

Quicksort:

AGH] L MJORSS T

CS 374

Sorting

Quicksort:

QUICKSORT(A[1..n]):
if(n>1)
Choose a pivot element A[p]
r < PARTITION(A, p)
QUICKSORT(A[1..r —1])
QUICKSORT(A[r +1..n])

CS 374

Sorting

Partition (linear time):

PARTITION(A[1..n],p):

swap A[p] «—= A[n]

10

jen

while (i < j)
repeati <« i+ 1 until (i > j or A[i] = A[n])
repeat j « j— 1 until (i > j or A[j] <A[n])
if (i <j)

swap Ali] <> A[j]
swap A[i] «— A[n]
return i

CS 374

Sorting
ALGORI TG

Mergesort:

* Divide the input array into two subarrays of
roughly equal size

* Recursively merge sort each of the subarrays

 Merge the two newly sorted subarrays into a
single sorted array

CS 374

Sorting
ALGPORT TG

Mergesort.

ALIGIOR | THMS

CS 374

Sorting
ALGPORT TG

Mergesort.

AGIL OR HI MIs [T

CS 374

Sorting
ALGORI TG

Mergesort:

AGIL OR HI MIs [T

Need to merge the two subarrays.

CS 374

Sorting
ALGORI TG

Merge:
AIGILLOR
HILMs [T
o Compare the first elements of the subarrays

e Write the smallest one In the output array.

* Recursion, now the problem is smaller

CS 374

Sorting
ALGORI TG

Merge:

AGIL OR
HI Ms T

One comparison, one recursive call

CS 374

Sorting
ALGORI TG

Merge:

_GILOR
HI Ms T

Al L[]

One comparison, one recursive call

CS 374

Sorting
ALGORI TG

Merge:

GILOR
HI Ms T

Al L[]

Where can this recursion break?

CS 374

Merge:

Sorting
ALGPORT TG

CS 374

Merge:

Sorting
ALGPORT TG

CS 374

Sorting
ALGORI TG

Merge:

[[[
[T

Where can this recursion break?

Cs 3

Merge:

Sorting

MERGE(A[1..n], m):
le—1; jeem+1
fork<—1ton

if j>n
B[k] < Ali];
elseifi > m
Blk] < A[j];
else if A[i] <A[j]
Blk] < Ali];
else
Blk] < A[j];

fork—1ton
Alk] « B[k]

l—1+1
je—j+1
l—i1+1

je—j+1

Loop = recursion

 When writing actual code
easier to unfold the recursion

 When proving correctness
easler to use induction
(=recursion)

CS 374

Sorting

Mergesort:

MERGESORT(A[1..n]):
ifn>1
me«|n/2]
MERGESORT(A[1..m])
MERGESORT(Afm+1..n])
MERGE(A[1..n],m)

Base cases:

 When size of arrays to merge is 1

 When size of arrays is less than10 and then brute force
e |t doesn’'t matter, no need to optimize

CS 374

Proof of Correctness

* We prove MERGE is correct by induction on n — k + 1, which is the total size of the two sorted
subarrays A[i..m] and A[j .. n] that remain to be merged into B[k..n] when the kth iteration of
the main loop begins. There are five cases to consider. Yes, five.

— If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely nothing.
(This is the base case of the inductive proof.)

— If i < m and j > n, the subarray A[j..n] is empty. Because both subarrays are sorted, the
smallest element in the union of the two subarrays is A[i]. So the assignment B[k] « A[i]
is correct. The inductive hypothesis implies that the remaining subarrays A[i + 1..m] and
A[j..n] are correctly merged into B[k + 1..n].

— Similarly, if i > m and j < n, the assignment B[k] « A[j] is correct, and The Recursion Fairy
correctly merges—sorry, I mean the inductive hypothesis implies that the MERGE algorithm
correctly merges—the remaining subarrays Ali..m] and A[j + 1..n] into B[k + 1..n].

— Ifi<mand j<nandA[i] <A[j], then the smallest remaining element is A[i]. So B[k] is
assigned correctly, and the Recursion Fairy correctly merges the rest of the subarrays.

— Finally, if i <m and j < n and A[i] > A[j], then the smallest remaining element is A[j]. So
B[k] is assigned correctly, and the Recursion Fairy correctly does the rest.

Always make sanity check when you design
algorithm!

CS 374

Running time

Number of fundamental operations as a
function of input size n

It array Is sorted, then O(n), but we don't care
about best case!

Worst case running time for this class.

Maybe different in practice, assumptions

CS 374

Running time of Quicksort

 What is the running time T(n) of quicksort?
 O(n?) time! (It | choose the smallest pivot)
e T(N)=0(n)+T(n-1)

= O(n?)

CS 374

Running time of Mergesort

 What is the running time T(n) of mergesort?
* O(nlogn) time!

e T(nN)=2T(Nn/2)+0O(Nn)

e proof by induction if | know answer

e recursion tree!

CS 374

Running time of Mergesort

Complete binary tree
every leaf is an array of size 1

CS 374

Running time of Mergesort

T(n)

=Non-recursive work

T(n/2) \\

T(n/2)
T(n/4) (n/4) T(n/4 / \ n/4)

- EZR A

. Leave all the O() till the very end.
* (Goal is to sum up all the quantities in all the nodes.

Running time of Mergesort @

| n/2+n/2:n

n/4+n/4+n/4+n/4=n

e T(N)=2T(Nn/2)+0O(Nn)

e Solve the recurrence by summing up work at each
level

CS 374

CS 374

Running time of Mergesort

~ n/2+n/2=n

n/4+n/4+n/4+n/4=n

e T(N)=2T(Nn/2)+0O(Nn)

e Jotal amount of work at level k= total amount of
work at level k-1 (induction).

Running time of Mergesort @

‘ n/2+n/2:n

n/4+n/4+n/4+n/4=n

e T(n)=2T(n/2)+0O(n)

CS 374

» Total amount of work = n x (height of the tree) =n logn

CS 374

Running time of Quicksort,
revisited

* Quicksort runs in time O(n log n) in practice.

* Quicksort runs in time O(n log n) on average If
the data Is randomly permuted

* Quicksort runs in expected time O(n log n) if
we randomly permute the data first.

