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Algorithms

* We will see two types of algorithms next

1. Recursion (e.g. how to build an NFA from
RegExp)

2. Graph Algorithms (later)
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What is Recursion?

Tower of Hanoi: Move the tower from one peg to
another without ever putting a larger block on
top of a smaller one.
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Base Case?

Need to be careful about when we cannot invoke
the induction ferry: Base Cases

CS 374
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Hanol Algorithm

HANOI(n, src, dst, tmp):
ifn>0
HANoOI(n — 1, src, tmp, dst)
move disk n from src to dst
HANoOI(n — 1, tmp, dst, src)
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Reduction = Delegation

Sometimes hard to delegate.
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Reduction = Delegation

Say we want to build a minimal DFA from a regular
expression

 Reg Exp =——» NFA (thompson)

« NFA —" DFA (subset)
e DFA =—» min DFA (Moore)

3 Steps. Not important how any of those work,
as long as we are guaranteed they work
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Reduction = Delegation

How do you hunt a blue elephant?
- With the blue elephant gun

How do you hunt a red elephant?

- Ho
hu

d its trunk until it turns b

Nt It with the blue elepha

ue, then

Nt gun

How do you hunt a white elephant?
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Reduction = Delegation

Sometimes hard to delegate.

Recursion even harder to delegate,you have to
trust yourself.
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Recursion = Delegation to yourself g

Recursion is reduction to smaller instances of the
SAME problem, which are solved by magic (or
fairies, or inductive hypothesis...)
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Sorting
ALGORI TG

Quicksort:
* choose a pivot element from the array
* partition the array into three subarrays: one with

elements smaller than pivot, one the pivot
tself, one with elements larger than pivot.

* Recursively quick sort the first and last
subarray

 How to choose pivot?
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Sorting
ALGPORT TG

Quicksort:

AL G H RITIS O
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Sorting
ALGPORT TG

Quicksort:

AGH L OR[S T
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Sorting
ALGPORT TG

Quicksort:

AGH] L MJORSS T
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Sorting

Quicksort:

QUICKSORT(A[1..n]):
if(n>1)
Choose a pivot element A[p ]
r < PARTITION(A, p)
QUICKSORT(A[1..r —1])
QUICKSORT(A[r +1..n])
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Sorting

Partition (linear time):

PARTITION(A[1..n],p):

swap A[p] «—= A[n]

10

jen

while (i < j)
repeati <« i+ 1 until (i > j or A[i] = A[n])
repeat j « j— 1 until (i > j or A[j] <A[n])
if (i <j)

swap Ali] <> A[j]
swap A[i] «— A[n]
return i
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Sorting
ALGORI TG

Mergesort:

* Divide the input array into two subarrays of
roughly equal size

* Recursively merge sort each of the subarrays

 Merge the two newly sorted subarrays into a
single sorted array
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Sorting
ALGPORT TG

Mergesort.

ALIGIOR | THMS
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Sorting
ALGPORT TG

Mergesort.

AGIL OR HI MIs [T
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Sorting
ALGORI TG

Mergesort:

AGIL OR HI MIs [T

Need to merge the two subarrays.
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Sorting
ALGORI TG

Merge:
AIGILLOR
HILMs [T
o Compare the first elements of the subarrays

e Write the smallest one In the output array.

* Recursion, now the problem is smaller
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Sorting
ALGORI TG

Merge:

AGIL OR
HI Ms T

One comparison, one recursive call
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Sorting
ALGORI TG

Merge:

_GILOR
HI Ms T

Al L[]

One comparison, one recursive call
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Sorting
ALGORI TG

Merge:

_GILOR_
HI Ms T

Al L[]

Where can this recursion break?
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Merge:

Sorting
ALGPORT TG




CS 374

Merge:

Sorting
ALGPORT TG




CS 374

Sorting
ALGORI TG

Merge:

[ [ [
[T

Where can this recursion break?
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Merge:

Sorting

MERGE(A[1..n], m):
le—1; jeem+1
fork<—1ton

if j>n
B[k] < Ali];
elseifi > m
Blk] < A[j];
else if A[i] <A[j]
Blk] < Ali];
else
Blk] < A[j];

fork—1ton
Alk] « B[ k]

l—1+1
je—j+1
l—i1+1

je—j+1

Loop = recursion

 When writing actual code
easier to unfold the recursion

 When proving correctness
easler to use induction
(=recursion)
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Sorting

Mergesort:

MERGESORT(A[1..n]):
ifn>1
me«|n/2]
MERGESORT(A[1..m])
MERGESORT(Afm+1..n])
MERGE(A[1..n],m)

Base cases:

 When size of arrays to merge is 1

 When size of arrays is less than10 and then brute force
e |t doesn’'t matter, no need to optimize
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Proof of Correctness

* We prove MERGE is correct by induction on n — k + 1, which is the total size of the two sorted
subarrays A[i..m] and A[j .. n] that remain to be merged into B[ k..n] when the kth iteration of
the main loop begins. There are five cases to consider. Yes, five.

— If k > n, the algorithm correctly merges the two empty subarrays by doing absolutely nothing.
(This is the base case of the inductive proof.)

— If i < m and j > n, the subarray A[j..n] is empty. Because both subarrays are sorted, the
smallest element in the union of the two subarrays is A[i]. So the assignment B[ k] « A[i]
is correct. The inductive hypothesis implies that the remaining subarrays A[i + 1..m] and
A[j..n] are correctly merged into B[k + 1..n].

— Similarly, if i > m and j < n, the assignment B[ k] « A[j] is correct, and The Recursion Fairy
correctly merges—sorry, I mean the inductive hypothesis implies that the MERGE algorithm
correctly merges—the remaining subarrays Ali..m] and A[j + 1..n] into B[k + 1..n].

— Ifi<mand j<nandA[i] <A[j], then the smallest remaining element is A[i]. So B[k] is
assigned correctly, and the Recursion Fairy correctly merges the rest of the subarrays.

— Finally, if i <m and j < n and A[i] > A[j], then the smallest remaining element is A[j]. So
B[ k] is assigned correctly, and the Recursion Fairy correctly does the rest.

Always make sanity check when you design
algorithm!
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Running time

Number of fundamental operations as a
function of input size n

It array Is sorted, then O(n), but we don't care
about best case!

Worst case running time for this class.

Maybe different in practice, assumptions
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Running time of Quicksort

 What is the running time T(n) of quicksort?
 O(n?) time! (It | choose the smallest pivot)
e T(N)=0(n)+T(n-1)

= O(n?)
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Running time of Mergesort

 What is the running time T(n) of mergesort?
* O(nlogn) time!

e T(nN)=2T(Nn/2)+0O(Nn)

e proof by induction if | know answer

e recursion tree!
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Running time of Mergesort

Complete binary tree
every leaf is an array of size 1
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Running time of Mergesort

T(n)

=Non-recursive work

T(n/2) \\

T(n/2)
T(n/4) (n/4) T(n/4 / \ n/4)

- EZR A

. Leave all the O() till the very end.
* (Goal is to sum up all the quantities in all the nodes.



Running time of Mergesort @

| n/2+n/2:n

n/4+n/4+n/4+n/4=n

e T(N)=2T(Nn/2)+0O(Nn)

e Solve the recurrence by summing up work at each
level

CS 374
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Running time of Mergesort

~ n/2+n/2=n

n/4+n/4+n/4+n/4=n

e T(N)=2T(Nn/2)+0O(Nn)

e Jotal amount of work at level k= total amount of
work at level k-1 (induction).
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‘ n/2+n/2:n

n/4+n/4+n/4+n/4=n

e T(n)=2T(n/2)+0O(n)
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» Total amount of work = n x (height of the tree) =n logn
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Running time of Quicksort,
revisited

* Quicksort runs in time O(n log n) in practice.

* Quicksort runs in time O(n log n) on average If
the data Is randomly permuted

* Quicksort runs in expected time O(n log n) if
we randomly permute the data first.



