Recursion

Lecture10

## Algorithms

- We will see two types of algorithms next

1. Recursion (e.g. how to build an NFA from RegExp)
2. Graph Algorithms (later)

## What is Recursion?

Tower of Hanoi: Move the tower from one peg to another without ever putting a larger block on top of a smaller one.

## Tower of Hanoi




## Tower of Hanoi




## Tower of Hanoi



## Tower of Hanoi



## Tower of Hanoi




## Base Case?

Need to be careful about when we cannot invoke the induction ferry: Base Cases


## Hanoi Algorithm

$$
\begin{aligned}
& \hline \frac{\text { HANOI }(n, s r c, d s t, t m p):}{\text { if } n>0} \\
& \text { HANOI }(n-1, s r c, t m p, d s t) \\
& \text { move disk } n \text { from } s r c \text { to } d s t \\
& \text { HANOI }(n-1, t m p, d s t, s r c)
\end{aligned}
$$

## Reduction $=$ Delegation

Sometimes hard to delegate.

## Reduction $=$ Delegation

Say we want to build a minimal DFA from a regular expression

- Reg Exp $\longrightarrow$ NFA (thompson)
- NFA $\longrightarrow$ DFA (subset)
- DFA $\longrightarrow$ min DFA (Moore)

3 Steps. Not important how any of those work, as long as we are guaranteed they work

## Reduction $=$ Delegation

How do you hunt a blue elephant?

- With the blue elephant gun

How do you hunt a red elephant?

- Hold its trunk until it turns blue, then hunt it with the blue elephant gun

How do you hunt a white elephant?
Embarrass it till it becomes red. Use algorithm for hunting red elephants.

## Reduction $=$ Delegation

## Sometimes hard to delegate.

Recursion even harder to delegate, you have to trust yourself.

## Recursion = Delegation to yourself

Recursion is reduction to smaller instances of the SAME problem, which are solved by magic (or fairies, or inductive hypothesis...)

## Sorting

| L G O R I T H M S |
| :---: |

## Quicksort:

- choose a pivot element from the array
- partition the array into three subarrays: one with elements smaller than pivot, one the pivot itself, one with elements larger than pivot.
- Recursively quick sort the first and last subarray
- How to choose pivot?


## Sorting



## Quicksort:

## 区



## Sorting

|  |
| :---: |

## Quicksort:

## $M$



## Sorting



## Quicksort:



## Sorting

## Quicksort:

```
QUICKSORT(A[1..n]):
    if ( }n>1
    Choose a pivot element A[p]
    r\leftarrowPARTITION (A,p)
    QuickSort(A[1..r-1])
    QuickSORT(A[r+1..n])
```


## Sorting

Partition (linear time):

$$
\begin{aligned}
& \hline \text { PARTITION }(A[1 . . n], p): \\
& \operatorname{swap} A[p] \leftrightarrow A[n] \\
& i \leftarrow 0 \\
& j \leftarrow n \\
& \text { while }(i<j) \\
& \quad \text { repeat } i \leftarrow i+1 \text { until }(i \geq j \text { or } A[i] \geq A[n]) \\
& \quad \text { repeat } j \leftarrow j-1 \text { until }(i \geq j \text { or } A[j] \leq A[n]) \\
& \quad \text { if }(i<j) \\
& \quad \operatorname{swap} A[i] \leftrightarrow A[j] \\
& \operatorname{swap} A[i] \leftrightarrow A[n] \\
& \text { return } i
\end{aligned}
$$

## Sorting

| $A L G$ | 0 | $R$ | T |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Mergesort:

- Divide the input array into two subarrays of roughly equal size
- Recursively merge sort each of the subarrays
- Merge the two newly sorted subarrays into a single sorted array


## Sorting



## Mergesort:



## Sorting



## Mergesort:



## Sorting

| $A L G O R$ | I |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Mergesort:



Need to merge the two subarrays.

## Sorting

| $A L G O$ | $R$ | I |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

## Merge:

| $A$ | $G$ | $L$ | $O$ | $R$ |
| :--- | :--- | :--- | :--- | :--- |
|  |   $M$ $S$ $T$ |  |  |  |

- Compare the first elements of the subarrays
- Write the smallest one in the output array.
- Recursion, now the problem is smaller


## Sorting



## Merge:

| $\triangle \mathrm{A}$ G L OR |
| :---: |
| HI M S T |

One comparison, one recursive call

## Sorting



## Merge:



One comparison, one recursive call

## Sorting



## Merge:

|  | $G$ | $L$ | $O$ |
| :--- | :--- | :--- | :--- |



Where can this recursion break?

## Sorting



## Merge:



## Sorting



## Merge:



## Sorting



## Merge:



Where can this recursion break?

## Sorting

## Merge:

```
MERGE(A[1.. \(n], m)\) :
    \(i \leftarrow 1 ; j \leftarrow m+1\)
    for \(k \leftarrow 1\) to \(n\)
        if \(j>n\)
        \(B[k] \leftarrow A[i] ; i \leftarrow i+1\)
        else if \(i>m\)
        \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
        else if \(A[i]<A[j]\)
        \(B[k] \leftarrow A[i] ; i \leftarrow i+1\)
        else
            \(B[k] \leftarrow A[j] ; j \leftarrow j+1\)
    for \(k \leftarrow 1\) to \(n\)
    \(A[k] \leftarrow B[k]\)
```


## Loop = recursion

- When writing actual code easier to unfold the recursion
- When proving correctness easier to use induction (=recursion)


## Sorting

## Mergesort:

```
MERGESORT(A[1..n]):
    if n}>
        m\leftarrow\lfloorn/2\rfloor
        MergeSort(A[1..m])
    MergeSort(A[m+1..n])
    Merge(A[1..n],m)
```

Base cases:

- When size of arrays to merge is 1
- When size of arrays is less than10 and then brute force
- It doesn't matter, no need to optimize


## Proof of Correctness

- We prove Merge is correct by induction on $n-k+1$, which is the total size of the two sorted subarrays $A[i . . m]$ and $A[j . . n]$ that remain to be merged into $B[k . . n]$ when the $k$ th iteration of the main loop begins. There are five cases to consider. Yes, five.
- If $k>n$, the algorithm correctly merges the two empty subarrays by doing absolutely nothing. (This is the base case of the inductive proof.)
- If $i \leq m$ and $j>n$, the subarray $A[j . . n]$ is empty. Because both subarrays are sorted, the smallest element in the union of the two subarrays is $A[i]$. So the assignment $B[k] \leftarrow A[i]$ is correct. The inductive hypothesis implies that the remaining subarrays $A[i+1 . . m]$ and $A[j . . n]$ are correctly merged into $B[k+1 . . n]$.
- Similarly, if $i>m$ and $j \leq n$, the assignment $B[k] \leftarrow A[j]$ is correct, and The Recursion Fairy correctly merges-sorry, I mean the inductive hypothesis implies that the MERGE algorithm correctly merges-the remaining subarrays $A[i . . m]$ and $A[j+1 . . n]$ into $B[k+1 . . n]$.
- If $i \leq m$ and $j \leq n$ and $A[i]<A[j]$, then the smallest remaining element is $A[i]$. So $B[k]$ is assigned correctly, and the Recursion Fairy correctly merges the rest of the subarrays.
- Finally, if $i \leq m$ and $j \leq n$ and $A[i] \geq A[j]$, then the smallest remaining element is $A[j]$. So $B[k]$ is assigned correctly, and the Recursion Fairy correctly does the rest.


## Always make sanity check when you design algorithm!

## Running time

- Number of fundamental operations as a function of input size n
- If array is sorted, then $O(n)$, but we don't care about best case!
- Worst case running time for this class.
- Maybe different in practice, assumptions


## Running time of Quicksort

- What is the running time $T(n)$ of quicksort?
- $O\left(n^{2}\right)$ time! (If I choose the smallest pivot)
- $T(n)=O(n)+T(n-1)$

$$
=O\left(n^{2}\right)
$$

## Running time of Mergesort

- What is the running time $T(n)$ of mergesort?
- O(nlogn) time!
- $T(n)=2 T(n / 2)+O(n)$
- proof by induction if I know answer
- recursion tree!


## Running time of Mergesort



Complete binary tree every leaf is an array of size 1

## Running time of Mergesort



Leave all the $O()$ till the very end.

- Goal is to sum up all the quantities in all the nodes.


## Running time of Mergesort



- $T(n)=2 T(n / 2)+O(n)$
- Solve the recurrence by summing up work at each level


## Running time of Mergesort



- $T(n)=2 T(n / 2)+O(n)$
- Total amount of work at level $\mathrm{k}=$ total amount of work at level k-1 (induction).


## Running time of Mergesort



- $T(n)=2 T(n / 2)+O(n)$
- Total amount of work $=\mathrm{n} \times$ (height of the tree) $=\mathrm{n}$ logn


## Running time of Quicksort, revisited

- Quicksort runs in time $O(n \log n)$ in practice.
- Quicksort runs in time $O(n \log n)$ on average if the data is randomly permuted
- Quicksort runs in expected time $O(n \log n)$ if we randomly permute the data first.

