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Algorithms

• We will see two types of algorithms next 

1. Recursion  (e.g. how to build an NFA from 
RegExp) 

2. Graph Algorithms (later) 
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What is Recursion?

Tower of Hanoi: Move the tower from one peg to 
another without ever putting a larger block on 
top of a smaller one.
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Need to be careful about when we cannot invoke 
the induction ferry: Base Cases

Base Case?
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Hanoi Algorithm
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Sometimes hard to delegate.  

Reduction = Delegation
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• Reg Exp          NFA (thompson) 

• NFA         DFA (subset) 

• DFA          min DFA (Moore) 

3 Steps. Not important how any of those work, 
as long as we are guaranteed they work

Reduction = Delegation
Say we want to build a minimal DFA from a regular 

expression
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Reduction = Delegation

How do you hunt a blue elephant? 

How do you hunt a red elephant? 

How do you hunt a white elephant? 

- With the blue elephant gun

- Hold its trunk until it turns blue, then  
             hunt it with the blue elephant gun

- Embarrass it till it becomes red. Use algorithm for  
            hunting red elephants.



C
S 

37
4

Sometimes hard to delegate.  

Recursion even harder to delegate,you have to 
trust yourself.

Reduction = Delegation
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Recursion is reduction to smaller instances of the 
SAME problem, which are solved by magic (or 
fairies, or inductive hypothesis…)

Recursion = Delegation to yourself
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Sorting
A L G O R I T H M S

Quicksort: 

• choose a pivot element from the array 

• partition the array into three subarrays: one with 
elements smaller than pivot, one the pivot 
itself, one with elements larger than pivot. 

• Recursively quick sort the first and last 
subarray 

• How to choose pivot?
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Sorting
A L G O R I T H M S

Quicksort:

A L G I H

M

R T S O
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A G H I L M O R S T
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Sorting

Quicksort:
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Sorting

Partition (linear time):
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Sorting
A L G O R I T H M S

Mergesort: 

• Divide the input array into two subarrays of 
roughly equal size 

• Recursively merge sort each of the subarrays 

• Merge the two newly sorted subarrays into a 
single sorted array
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Sorting
A L G O R I T H M S

Mergesort:

A L G O R I T H M S
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Sorting
A L G O R I T H M S

Mergesort:

A G L O R H I M S T
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Sorting
A L G O R I T H M S

Mergesort: 

Need to merge the two subarrays.

A G L O R H I M S T
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Sorting
A L G O R I T H M S

• Compare the first elements of the subarrays 

• Write the smallest one in the output array. 

• Recursion, now the problem is smaller

A G L O R

H I M S T

Merge:
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Sorting
A L G O R I T H M S

Merge:

One comparison, one recursive call 

H I M S T

A G L O R
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Sorting
A L G O R I T H M S

Merge:

One comparison, one recursive call 

H I M S T

A

G L O R
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Sorting
A L G O R I T H M S

Merge:

Where can this recursion break?

G L O R

H I M S T

A
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Sorting
A L G O R I T H M S

Merge:

H I M S T
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Sorting
A L G O R I T H M S

Merge:

I M S T

H
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Sorting
A L G O R I T H M S

Merge:

Where can this recursion break?
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Sorting
Merge:

Loop = recursion 

• When writing actual code 
 easier to unfold the recursion 

• When proving correctness  
easier to use induction  
(=recursion)
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Sorting
Mergesort:

Base cases: 
• When size of arrays to merge is 1 
• When size of arrays is less than10 and then brute force 
• It doesn’t matter, no need to optimize
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algorithm!

Proof of Correctness
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• Number of fundamental operations as a 
function of input size n  

• If array is sorted, then O(n), but we don’t care 
about best case! 

• Worst case running time for this class.  

• Maybe different in practice, assumptions

Running time
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• What is the running time T(n) of quicksort? 

• O(n2) time! (If I choose the smallest pivot) 

• T(n)=O(n)+T(n-1) 

         = O(n2) 

Running time of Quicksort
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• What is the running time T(n) of mergesort? 

• O(nlogn) time!  

• T(n)=2T(n/2)+O(n) 

• proof by induction if I know answer 

• recursion tree!         

Running time of Mergesort
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Running time of Mergesort

T(n)

T(n/2) T(n/2)

+O(n)

Complete binary tree 
every leaf is an array of size 1
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Running time of Mergesort

n

T(n)

n/2 n/2

T(n/2) T(n/2)

n/4 n/4 n/4 n/4

T(n/4) T(n/4) T(n/4) T(n/4)

• Leave all the O() till the very end. 
• Goal is to sum up all the quantities in all the nodes.

=non-recursive work
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Running time of Mergesort

n

T(n)

n/2 n/2

T(n/2) T(n/2)

n/4 n/4 n/4 n/4

T(n/4) T(n/4) T(n/4) T(n/4)

• T(n)=2T(n/2)+O(n) 

• Solve the recurrence by summing up work at each 
level

n

n/2+n/2=n

n/4+n/4+n/4+n/4=n
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Running time of Mergesort

n

T(n)

n/2 n/2

T(n/2) T(n/2)

n/4 n/4 n/4 n/4

T(n/4) T(n/4) T(n/4) T(n/4)

• T(n)=2T(n/2)+O(n) 

• Total amount of work at level k= total amount of 
work at level k-1 (induction). 

n

n/2+n/2=n

n/4+n/4+n/4+n/4=n
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Running time of Mergesort

n

T(n)

n/2 n/2

T(n/2) T(n/2)

n/4 n/4 n/4 n/4

T(n/4) T(n/4) T(n/4) T(n/4)

• T(n)=2T(n/2)+O(n) 

• Total amount of work = n x (height of the tree) =n logn

n

n/2+n/2=n

n/4+n/4+n/4+n/4=n
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• Quicksort runs in time O(n log n) in practice. 

• Quicksort runs in time O(n log n) on average if 
the data is randomly permuted 

• Quicksort runs in expected time O(n log n) if 
we randomly permute the data first.      

Running time of Quicksort, 
revisited


