
Turing Machines, contd.

Lecture 9

1

C
S

37
4

Turing Machine

Finite alphabet

Read

Write

Move +1 or -1

Halt condition

Internal state (finite number)

Finite number of
internal states

C
S

37
4

TM for Decision Problems
M = (Q, Σ, Γ, B, δ, qstart,, qaccept, qreject):

Γ is a finite tape alphabet.

 - B or ⌷ is the blank symbol (special symbol)

 - Σ is a finite input alphabet Σ ⊆ Γ\ B

Q is a finite set of states

qstart ∈ Q is the initial state

qaccept, qreject ∈ Q accept/reject states

Or maybe run forever

Transition function: δ : Q × Γ (read) → Q × Γ (write) × { L, R }
3

C
S

37
4

TMs: what we saw and will see

• They are quite tedious to program, but possible!
(it’s the assembly language version)

• They can do anything a computer can do (copy,
shift, add…)

• e.g. RAM

4

C
S

37
4

• Will see that a TM can simulate itself. Write a TM
interpreter in TM!

• Universal TM.

5

TMs: what we saw and will see

C
S

37
4

• Church-Turing Thesis:

 “Any physically realizable model of computation is
equivalent to a TM”

• More of a physical law than a math theorem.

• e.g. Python doesn’t have additional power over TM.

• sounds fancy but it says no more than “a Python
interpreter can compute anything you can compute in
Python”

6

TMs: what we saw and will see

C
S

37
4

• Church-Turing Thesis:

 “Any physically realizable model of computation is
equivalent to a TM”

• There are models of computation not equivalent to
TM, we won’t see them this semester.

7

TMs: what we saw and will see

C
S

37
4

Variants/Extensions

Adding more capabilities to TMs make them easier to
program

But doesn’t change what TMs can do:  
whatever the new variant can do, can be simulated

in the original variant  
(with a lot more steps, sometimes)

8

C
S

37
4

Extension: multiple tracks

9

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M can address any particular track in the cell it is scanning

4 tracks

0

$

a

1

1

b

1

0

b

2

0

0

c

1

a a a

Can simulate multiple tracks with a single track
machine, using extra “stacked” characters:

single new
character

C
S

37
4

Extension: multiple tracks

10

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)

4 tracks

Then in Mʹ δ(q,) = (p, , R)
x

0

y

z

x

0

y

1

for every x, y, z ∈ Γ

“If in state q reading 0 on
second track, then go to state
p, write 1 on fourth track, and
move right”

C
S

37
4

Extension: multiple tracks

11

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)

4 tracks

“If in state q reading 0 on
second track, then go to state
p, write 1 on fourth track, and
move right”

Transition function:

 δ : Q × Γ1 × Γ2 × Γ3 × Γ4 → Q × Γ1 × Γ2 × Γ3 × Γ4× { L, R }

C
S

37
4

Extension: multiple tracks

12

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)

4 tracks

“If in state q reading 0 on
second track, then go to state
p, write 1 on fourth track, and
move right”

Transition function:

 δ : Q × (Γ1 × Γ2 × Γ3 × Γ4)→ Q × (Γ1 × Γ2 × Γ3 × Γ4)× { L, R }

C
S

37
4

Extension: multiple tracks

13

0 1 1 0 1

$.

Sometimes intuitively better with multiple tracks
e.g assume I want to copy this string.

0 1 1 0 1 0

$ $.

0 1 1 0 1 0 1

$ $ $.

0 1 1 0 1 0 1 1

$ $ $ $.

0 1 1 0 1

$ $.

0 1 1 0 1 0

$ $.

0 1 1 0 1 0

$ $ $.

0 1 1 0 1 0 1

$ $ $ $.

0 1 1 0 1 0 1 1

$ $ $ $ $

0 1 1 0 1 0 1 1 0

$ $ $ $ $

0 1 1 0 1 0 1

$ $ $.

0 1 1 0 1 0 1 1

$ $ $ $.

C
S

37
4

Extension: multiple tracks

14

Sometimes intuitively better with multiple tracks
e.g assume I want to copy this string.

0 1 1 0 1 0 1 1 0

$ $ $ $ $

0 1 1 0 1 0 1 1 0 1

$ $ $ $ $

C
S

37
4

Extension: multiple heads

15

Transition function:

 δ : Q × Γ2 → Q × Γ2× {L, R}2

C
S

37
4

Snapshot of simulation (2 heads)

16

$ 0 0 1 1 0 1M

head 1

head 2

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

C
S

37
4

Snapshot of simulation (2 heads)

17

$ 0 0 1 0 0 1M

head 1

head 2

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

C
S

37
4

Snapshot of simulation (2 heads)

18

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 1 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

• Simulate with multiple tracks. Special mark on track 1 and
2 for head positions. Track 0 has input.

• Make sweeps over the entire tape

C
S

37
4

Snapshot of simulation (2 heads)

19

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 1 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

q1,1,0

1) Scan to the right to find the mark on track i, read the
corresponding symbol from track 0 into our internal state, and

then return to the left end of the tape.

C
S

37
4

Snapshot of simulation (2 heads)

20

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 1 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

2) Using M’s transition function, the internal state records M’s
next state, the symbol to be written by each head, and the

direction to move each head.

\q1,1,0

C
S

37
4

Snapshot of simulation (2 heads)

21

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 0 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

q2,0,0

3) Scan to the right to find the mark on track i, write the correct
symbol onto on track 0, move the mark on track i one step left

or right, and then return to the left end of the tape.

C
S

37
4

Snapshot of simulation (2 heads)

22

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 0 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

q2,0,0

3) Scan to the right to find the mark on track i, write the correct
symbol onto on track 0, move the mark on track i one step left

or right, and then return to the left end of the tape.

C
S

37
4

Snapshot of simulation (2 heads)

23

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 0 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

q2,0,0

• Subroutine!
• However, seriously slows down the process

but we don’t care about running time right now

C
S

37
4

Extension: multiple tapes

k-tape TM
k different (2-way infinite) tapes

k different independently controllable heads
input initially on tape 1; tapes 2, 3, ..., k, blank.

Single move:
read symbols under all heads

print (possibly different) symbols under heads
move all heads (possibly in different directions)

go to new state
24

C
S

37
4

Extension: multiple tapes

25

C
S

37
4

Extension: multiple tapes

26

C
S

37
4

Canʹt compute more with k tapes

Theorem: If L is accepted by a k-tape TM M, then L
is accepted by some 1-tape TM Mʹ.

27

Idea: Mʹ uses k tracks to simulate tapes of M

BUT....
M has k heads!

How can Mʹ be in
k places at once?

Mʹ will use 2k tracks to simulate tapes+heads of M

C
S

37
4

Convention for TM

28

Input tape (read only, finite)

Work tape (read/write)

Output tape (write only)

C
S

37
4

Convention for TM

• Output doesn’t clash with input
• Don’t have to clean work tape
• Just remember to copy what I need to output tape

More convenient!

C
S

37
4

Extension: 2-Way Infinite Tape

30

. . 0 1 1 0 1 0 1 0 . .

How to do it with one infinite direction?

start

C
S

37
4

2-Way Infinite Tape: Folding

Simulating it in the original TM variant: 
 

Modify transitions: 
Remember in control if +ve or -ve side of tape  

(contents of 0 cell will be marked).

If positive: R → RR & L → LL 
If negative: R → LL & L → RR 

At 0: R → R & L → RR

At 1?
31

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

0 1 -1 2 -2 3 -3 4 -4 5 -5 6 . . .

C
S

37
4

32

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

0 1 2 3 4 5

2-Way Infinite Tape: multiple tracks

-1 -2 -3 -4 -5

C
S

37
4

33

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

-5 -4 -3 -2 -1 0 1 2 3 4 5

2-Way Infinite Tape: shifting

C
S

37
4

34

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

-5 -4 -3 -2 -1 0 1 2 3 4 5

2-Way Infinite Tape: shifting

When the machine reads write a blank, move right,
write a , move right and proceed as if we had read

a blank.

When the machine reads shift the entire contents of
the tape to the right. Move back to the , move right,
write a blank and proceed as if we had read a blank.

C
S

37
4

35

2-Way Infinite Tape: shifting
-5 -4 -3 -2 -1 0 1 2 3 4 5

When the machine reads shift the entire contents of
the tape to the right. Move back to the , move right,
write a blank and proceed as if we had read a blank.

-5 -4 -3 -2 -1 0 1 2 3 4 5-5 -4 -3 -2 -1 0 1 2 3 4 5

C
S

37
4

Subroutine calls

Mechanism for M1 to “call” M2 on an argument

Goal:

I need to be able to do two things:

• push(q) :push the state in some stack, save it.

• pop(q): pop whatever state is on top of stack and
make it current state.

36

call

return

C
S

37
4

Subroutine calls
Implement the Stack with a new tape

37

0 1 1 0 0 1 1

q r p q r

stack tape

• For push, write a new symbol to stack and move R
• For pop read symbol, write blank, move head L

C
S

37
4

Subroutine calls
• Recursion (e.g. Fibonacci)

• Can take existing TMs and call them as
subroutines.

• Call = jump to start state of the TM subroutine

• Halt = return

38

C
S

37
4

Random Access Memory (RAM)
• By definition can only access memory directly

under the head.

• How to do associative memory?

• Memory is made up from pairs [key,value]

• key ∈ {0,1}*, value ∈ {0,1}*

39

C
S

37
4

Random Access Memory (RAM)
• Would like a subroutine that starts with “key”

written at the beginning of a tape and ends with
“value” written at the beginning of the same tape

40

k e y

v a l u e

for any key a most one value

C
S

37
4

Random Access Memory (RAM)

41

[k e y , v a l u e] [k e y , v a l u e]

k e y

Ram tape

Address tape

v a l u e

Value tape

Σ= {[] , 0 1}

C
S

37
4

Random Access Memory (RAM)
• If I have an RAM also that runs in time T(n), I can

simulate it in one tape, one head,one track TM in
time T(n)2

42

C
S

37
4

Universal Turing Machine
• "Turing machine interpreter written in Turing machine".

• Just as the input to a Python interpreter is a string of
Python source code, the input to our universal Turing
machine U is a string M,w that encodes an arbitrary
Turing machine M and a string w in the input alphabet of
M.

• Given these encodings, U simulates the execution of M on
input w; in particular,

• U accepts M,w if and only if M accepts w.

• U rejects M,w if and only if M rejects w.
43

C
S

37
4

Universal Turing Machine
• How to encode a Turing Machine as a binary

string:

• 01|Γ|01|Σ|01|Q|0[….] where [….] is some
encoding (brute force) of all possible
transitions as pattern of bits.

• Encode the tape as a bit string: (e.g. tape
alphabet of 3 symbols {a,b,c})

0 0 0

44

1 1 1

:tape was bac

