
Turing Machines, contd.

Lecture 9
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Turing Machine

Finite alphabet 

Read 

Write 

Move +1 or -1 

Halt condition 

Internal state (finite number) 

Finite number of 
internal states
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TM for Decision Problems
M = (Q, Σ, Γ, B, δ, qstart,, qaccept, qreject): 

Γ is a finite tape alphabet. 

             - B  or ⌷ is the blank symbol (special symbol) 

     - Σ is a finite input alphabet Σ ⊆ Γ\ B

Q is a finite set of states 

qstart ∈ Q is the initial state 

qaccept, qreject ∈ Q accept/reject states 

Or maybe run forever 

Transition function: δ : Q × Γ (read) → Q × Γ (write) × { L, R }
3
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TMs: what we saw and will see

• They are quite tedious to program, but possible! 
(it’s the assembly language version) 

• They can do anything a computer can do (copy, 
shift, add…) 

• e.g. RAM
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• Will see that a TM can simulate itself. Write a TM 
interpreter in TM! 

• Universal TM.

5

TMs: what we saw and will see
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• Church-Turing Thesis:  

 “Any physically realizable model of computation is 
equivalent to a TM” 

• More of a physical law than a math theorem. 

• e.g. Python doesn’t have additional power over TM.  

• sounds fancy but it says no more than “a Python 
interpreter can compute anything you can compute in 
Python”

6

TMs: what we saw and will see
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• Church-Turing Thesis:  

 “Any physically realizable model of computation is 
equivalent to a TM” 

• There are models of computation not equivalent to 
TM, we won’t see them this semester.

7

TMs: what we saw and will see
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Variants/Extensions

Adding more capabilities to TMs make them easier to 
program 

But doesn’t change what TMs can do:  
whatever the new variant can do, can be simulated 

in the original variant  
(with a lot more steps, sometimes)
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Extension: multiple tracks

9

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M can address any particular track in the cell it is scanning

4 tracks

0

$

a

1

1

b

1

0

b

2

0

0

c

1

a a a

Can simulate multiple tracks with a single track 
machine, using extra “stacked” characters:

single new
character
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Extension: multiple tracks

10

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)   

4 tracks

Then in  Mʹ  δ(q,     ) = (p,      , R) 
x

0

y

z

x

0

y

1

for every x, y, z ∈ Γ

“If in state q reading 0 on 
second track, then go to state 
p, write 1 on fourth track, and 
move right”
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Extension: multiple tracks

11

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)   

4 tracks

“If in state q reading 0 on 
second track, then go to state 
p, write 1 on fourth track, and 
move right”

Transition function: 

 δ : Q × Γ1 × Γ2 × Γ3 × Γ4 → Q × Γ1 × Γ2 × Γ3 × Γ4× { L, R }
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Extension: multiple tracks

12

0 1 1 0

$ 1 0 0 1

a b b c a a a

2

infinite tape à

M: δ(q, -,0,-,-) = (p, -,-,-,1, R)   

4 tracks

“If in state q reading 0 on 
second track, then go to state 
p, write 1 on fourth track, and 
move right”

Transition function: 

 δ : Q × (Γ1 × Γ2 × Γ3 × Γ4)→ Q × (Γ1 × Γ2 × Γ3 × Γ4)× { L, R }
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Extension: multiple tracks

13

0 1 1 0 1

$ .

Sometimes intuitively better with multiple tracks 
e.g assume I want to copy this string.

0 1 1 0 1 0

$ $ .

0 1 1 0 1 0 1

$ $ $ .

0 1 1 0 1 0 1 1

$ $ $ $ .

0 1 1 0 1

$ $ .

0 1 1 0 1 0

$ $ .

0 1 1 0 1 0

$ $ $ .

0 1 1 0 1 0 1

$ $ $ $ .

0 1 1 0 1 0 1 1

$ $ $ $ $

0 1 1 0 1 0 1 1 0

$ $ $ $ $

0 1 1 0 1 0 1

$ $ $ .

0 1 1 0 1 0 1 1

$ $ $ $ .
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Extension: multiple tracks

14

Sometimes intuitively better with multiple tracks 
e.g assume I want to copy this string.

0 1 1 0 1 0 1 1 0

$ $ $ $ $

0 1 1 0 1 0 1 1 0 1

$ $ $ $ $
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Extension: multiple heads

15

Transition function: 

 δ : Q × Γ2 → Q × Γ2× {L, R}2
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Snapshot of simulation  (2 heads)

16

$ 0 0 1 1 0 1M

head 1

head 2

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)
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Snapshot of simulation  (2 heads)

17

$ 0 0 1 0 0 1M

head 1

head 2

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)
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Snapshot of simulation  (2 heads)

18

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 1 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

• Simulate with multiple tracks. Special mark on track 1 and 
2 for head positions. Track 0 has input. 

• Make sweeps over the entire tape
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Snapshot of simulation  (2 heads)

19

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 1 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

q1,1,0

1) Scan to the right to find the mark on track i, read the 
corresponding symbol from track 0 into our internal state, and 

then return to the left end of the tape.
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Snapshot of simulation  (2 heads)

20

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 1 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

2) Using M’s transition function, the internal state records M’s 
next state, the symbol to be written by each head, and the 

direction to move each head.

\q1,1,0
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Snapshot of simulation  (2 heads)

21

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 0 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

q2,0,0

3) Scan to the right to find the mark on track i, write the correct 
symbol onto on track 0, move the mark on track i one step left 

or right, and then return to the left end of the tape.
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Snapshot of simulation  (2 heads)

22

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 0 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

q2,0,0

3) Scan to the right to find the mark on track i, write the correct 
symbol onto on track 0, move the mark on track i one step left 

or right, and then return to the left end of the tape.
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Snapshot of simulation  (2 heads)

23

$ 0 0 1 0 0 1M

head 1

head 2

$ 0 0 1 0 0 1
$ ✓

$ ✓
Mʹ

head

q1Single 
move: 
δ(q1,1,0)  
 = (q2,0,0,R,L)

q2,0,0

• Subroutine! 
• However, seriously slows down the process 

but we don’t care about running time right now
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Extension: multiple tapes

k-tape TM 
k different (2-way infinite) tapes 

k different independently controllable heads 
input initially on tape 1;  tapes 2, 3, ..., k, blank. 

Single move: 
read symbols under all heads 

print (possibly different) symbols under heads 
move all heads (possibly in different directions) 

go to new state
24
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Extension: multiple tapes

25
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Extension: multiple tapes

26
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Canʹt compute more with k tapes 

Theorem:  If L is accepted by a k-tape TM M, then L 
is accepted by some 1-tape TM Mʹ.

27

Idea:  Mʹ uses k tracks to simulate tapes of M

BUT....
M has k heads!

How can Mʹ be in 
k places at once?

Mʹ will use 2k tracks to simulate tapes+heads of M
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Convention for TM

28

Input tape (read only, finite)

Work tape (read/write)

Output tape (write only)
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Convention for TM

• Output doesn’t clash with input 
• Don’t have to clean work tape 
• Just remember to copy what I need to output tape

More convenient!
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Extension: 2-Way Infinite Tape

30

. . 0 1 1 0 1 0 1 0 . .

How to do it with one infinite direction?

start
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2-Way Infinite Tape: Folding

Simulating it in the original TM variant: 
 

Modify transitions: 
Remember in control if +ve or -ve side of tape  

(contents of 0 cell will be marked). 

If positive: R → RR & L → LL 
If negative: R → LL & L → RR 

At 0: R → R & L → RR 

At 1?
31

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

0 1 -1 2 -2 3 -3 4 -4 5 -5 6 . . .
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32

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

0 1 2 3 4 5

2-Way Infinite Tape: multiple tracks

-1 -2 -3 -4 -5
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. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

-5 -4 -3 -2 -1 0 1 2 3 4 5

2-Way Infinite Tape: shifting
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34

. . -5 -4 -3 -2 -1 0 1 2 3 4 5 . .

-5 -4 -3 -2 -1 0 1 2 3 4 5

2-Way Infinite Tape: shifting

When the machine reads      write a blank, move right, 
write a     , move right and proceed as if we had read 

a blank.

When the machine reads      shift the entire contents of 
the tape to the right. Move back to the     , move right, 
write a blank and proceed as if we had read a blank.
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2-Way Infinite Tape: shifting
-5 -4 -3 -2 -1 0 1 2 3 4 5

When the machine reads      shift the entire contents of 
the tape to the right. Move back to the     , move right, 
write a blank and proceed as if we had read a blank.

-5 -4 -3 -2 -1 0 1 2 3 4 5-5 -4 -3 -2 -1 0 1 2 3 4 5
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Subroutine calls

Mechanism for M1 to “call” M2 on an argument 

Goal:  

I need to be able to do two things: 

• push(q) :push the state in some stack, save it. 

• pop(q): pop whatever state is on top of stack and 
make it current state.

36

call

return
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Subroutine calls
Implement the Stack with a new tape

37

0 1 1 0 0 1 1

q r p q r

stack tape

• For push, write a new symbol to stack and move R 
• For pop read symbol, write blank, move head L
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Subroutine calls
• Recursion (e.g. Fibonacci) 

• Can take existing TMs and call them as 
subroutines. 

• Call = jump to start state of the TM subroutine 

• Halt = return

38
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Random Access Memory (RAM)
• By definition can only access memory directly 

under the head. 

• How to do associative memory? 

• Memory is made up from pairs [key,value] 

• key ∈ {0,1}*, value ∈ {0,1}*

39
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Random Access Memory (RAM)
•    Would like a subroutine that starts with “key” 

written at the beginning of a tape and ends with 
“value” written at the beginning of the same tape

40

k e y

v a l u e

for any key a most one value
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Random Access Memory (RAM)

41

[ k e y , v a l u e ] [ k e y , v a l u e ]

k e y

Ram tape

Address tape

v a l u e

Value tape

Σ= {[ ] , 0 1}
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Random Access Memory (RAM)
• If I have an RAM also that runs in time T(n), I can 

simulate it in one tape, one head,one track TM in 
time T(n)2

42



C
S 

37
4

Universal Turing Machine 
• "Turing machine interpreter written in Turing machine".  

•  Just as the input to a Python interpreter is a string of 
Python source code, the input to our universal Turing 
machine U is a string M,w  that encodes an arbitrary 
Turing machine M and a string w in the input alphabet of 
M.  

• Given these encodings, U simulates the execution of M on 
input w; in particular, 

•  U accepts M,w  if and only if M accepts w.  

•  U rejects M,w  if and only if M rejects w.
43
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Universal Turing Machine 
• How to encode a Turing Machine as a binary 

string: 

• 01|Γ|01|Σ|01|Q|0[….] where [….] is some 
encoding (brute force) of all possible 
transitions as pattern of bits. 

• Encode the tape as a bit string: (e.g. tape 
alphabet of 3 symbols {a,b,c}) 

0              0               0         

44

1 1 1

:tape was bac


