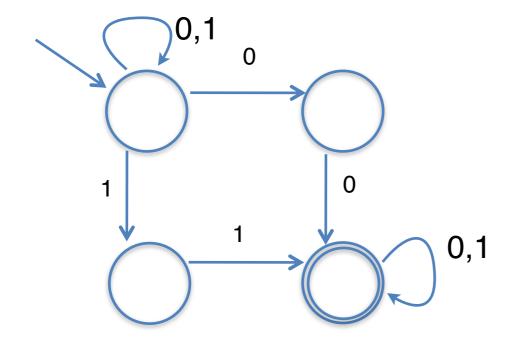
NFA/DFA, Relation to Regular Languages

Lecture 6

NFA recap

• Last lecture, we saw these objects called NFAs...



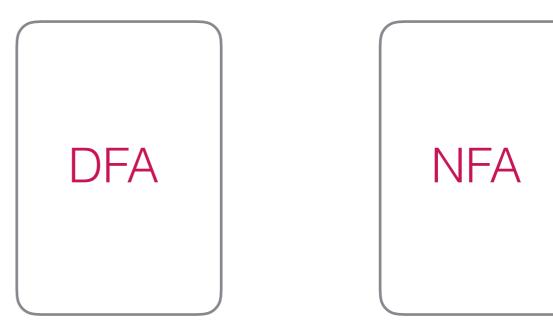
- Like DFA, but with a weird transition function: choices!
- DFA is a special case of NFA (how?)

374

NFA recap

• Last lecture, we saw these objects called NFAs...

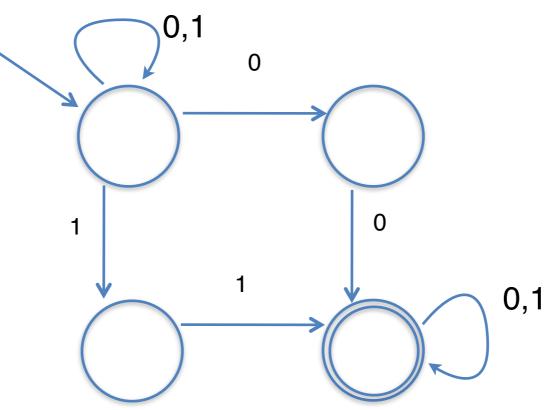
3 models for (Regular) Languages:



NFA recap

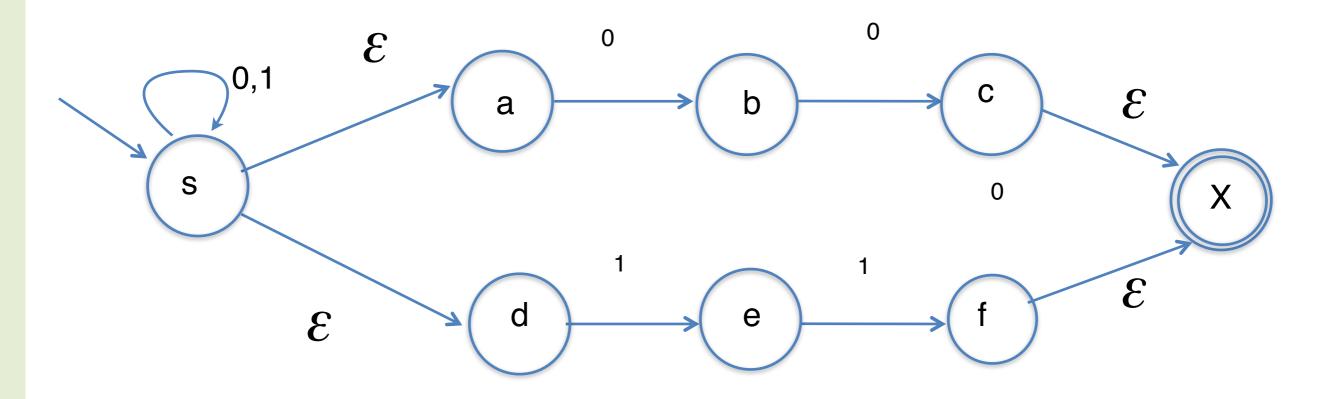
Kleene's Theorem

I want to be able to change my state without consuming input



374

 I want to be able to change my state without consuming input



On input 10001?

 $N = (\Sigma, Q, \delta, s, A)$

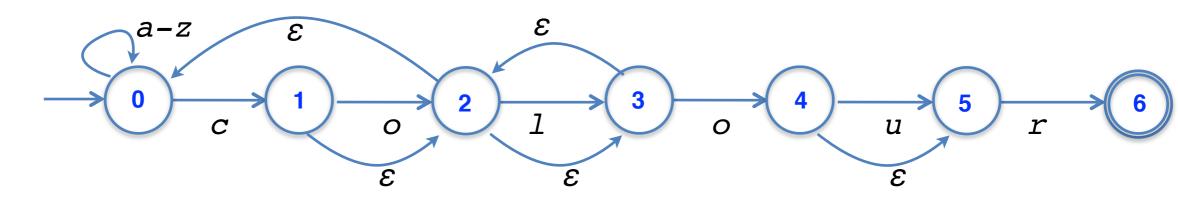
 Σ : alphabet Q: state space s: start state A: set of accepting states

 $\delta: Q \times \{\Sigma \cup \varepsilon\} \to \mathcal{P}(Q)$

We say $q \xrightarrow{W}_{N} p$ if $\exists a_1, ..., a_t \in \Sigma \cup \{\varepsilon\}$ and $q_1, ..., q_{t+1} \in Q$, such that $w = a_1...a_t$, $q_1 = q$, $q_{t+1} = p$, and $\forall i \in [1, t], q_{i+1} \in \delta(q_i, a_i)$

 $L(N) = \{ w \mid s \stackrel{W}{\leadsto}_N p \text{ for some } p \in A \}$

e.g., $\delta(1,o) = \{2\}, \delta(1,x) = \emptyset, \delta(1,\varepsilon) = \{2\}.$



<u>S</u> 374

We define the ϵ -reach of a state p:

• p itself

374

8

• any state q such that $r \stackrel{\mathcal{E}}{\rightsquigarrow}_N q$ for some r in the \mathfrak{E} -reach of p

Means that there is a sequence of ϵ -transitions from p to q

e.g.,
$$\delta(1,o) = \{2\}, \delta(1,x) = \emptyset, \delta(1,\varepsilon) = \{2\}.$$

 $e.g., \delta(1,o) = \{2\}, \delta(1,x) = \emptyset, \delta(1,\varepsilon) = \{2\}.$
 $e.e.g., \delta(1,o) = \{2\}, \delta(1,x) = \emptyset, \delta(1,\varepsilon) = \{2\}.$
 $e.e.ech(\{1\}) = \{1, 2, 3, 0\}$
 $e.e.ech(\{1\}) = \{1, 3, 3, 0\}$
 $e.e.$

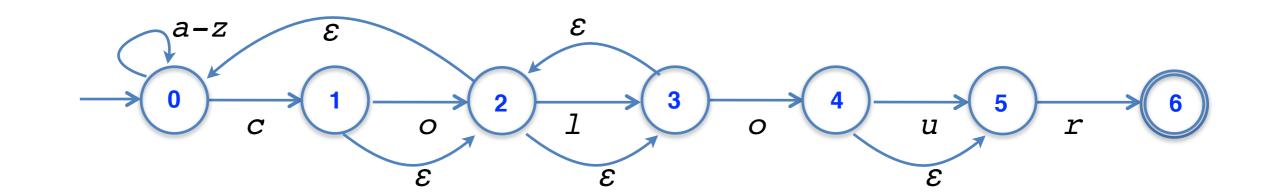
Get rid of nothing

Can modify any NFA *N*, to get an NFA N_{new} without ε -moves $N_{\text{new}} = (\Sigma, Q_{\text{new}}, \delta_{\text{new}}, s_{\text{new}}, A_{\text{new}})$

 $Q_{\text{new}} = Q$

 $s_{\text{new}} = s$

 $A_{\text{new}} = \{q | \textbf{\epsilon-reach}(q) \text{ includes a state in A} \} \{p | q \stackrel{a}{\rightsquigarrow}_{N} p \}$ $\delta_{\text{new}}(q, a) = \bigcup_{p \in \varepsilon - \text{reach}(q)} \delta(p, a)$ $e.g.: \delta_{\text{new}}(1, 0) = \{0, 2, 3, 4, 5\}$



374

Get rid of nothing

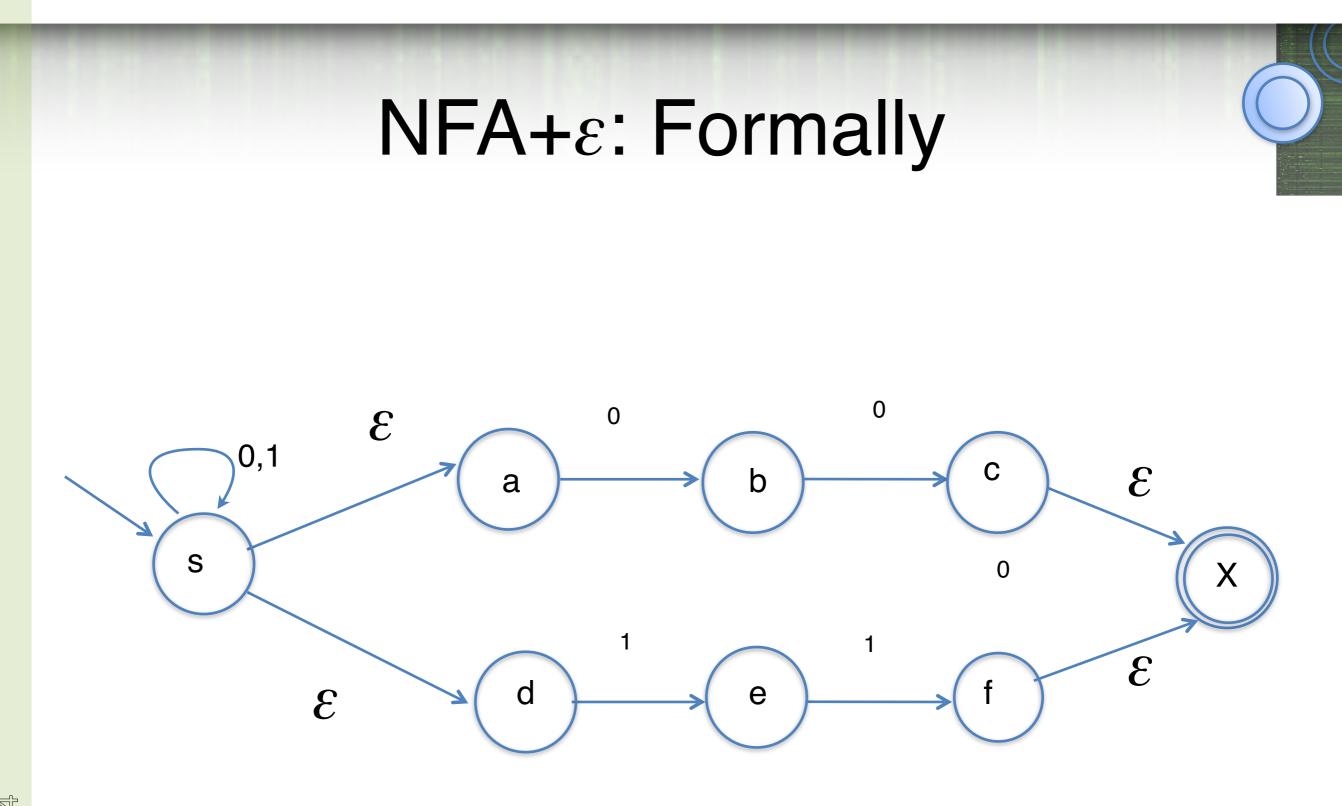
Can modify any NFA *N*, to get an NFA N_{new} without ε -moves $N_{\text{new}} = (\Sigma, Q_{\text{new}}, \delta_{\text{new}}, s_{\text{new}}, A_{\text{new}})$

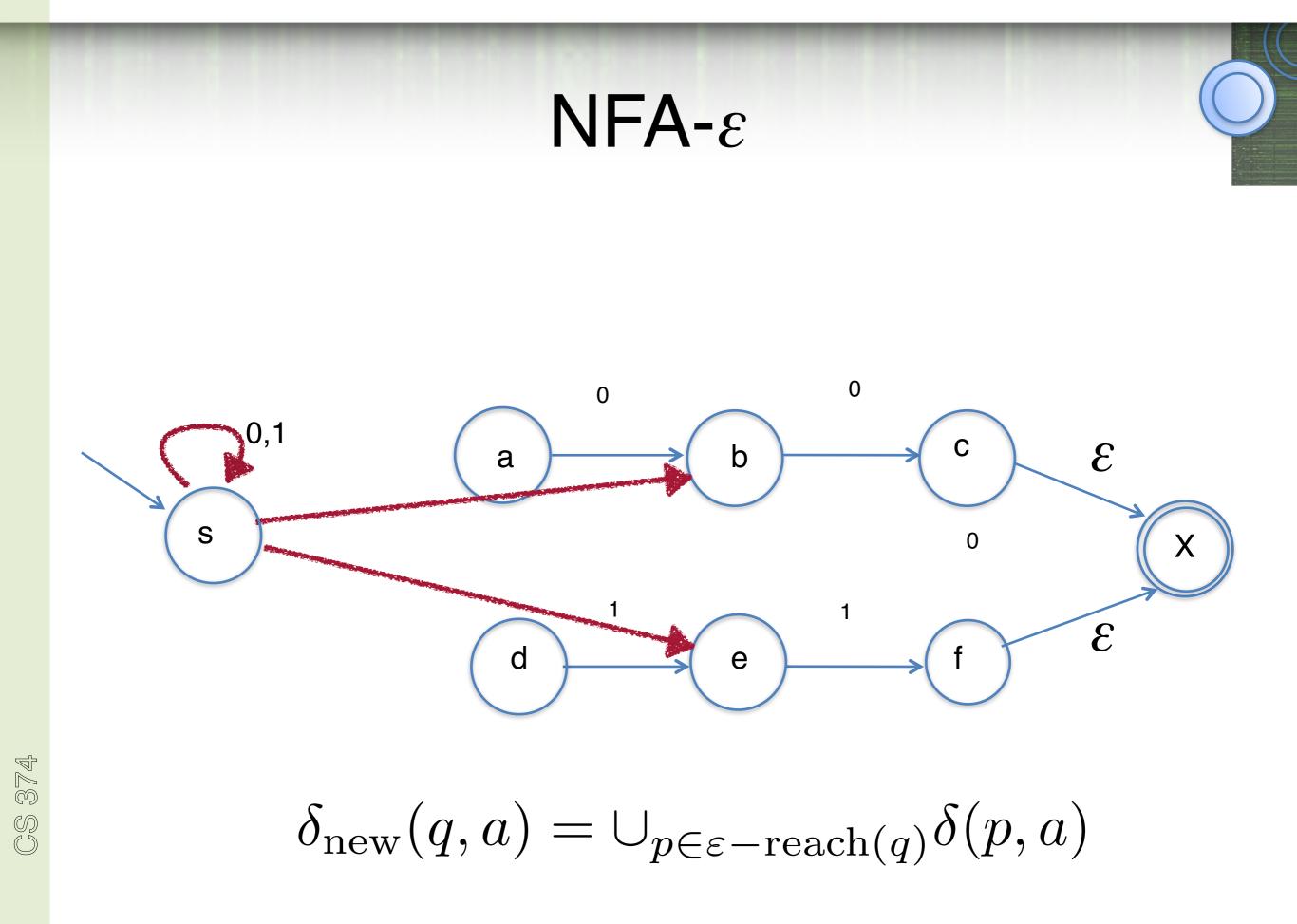
 $Q_{\text{new}} = Q$

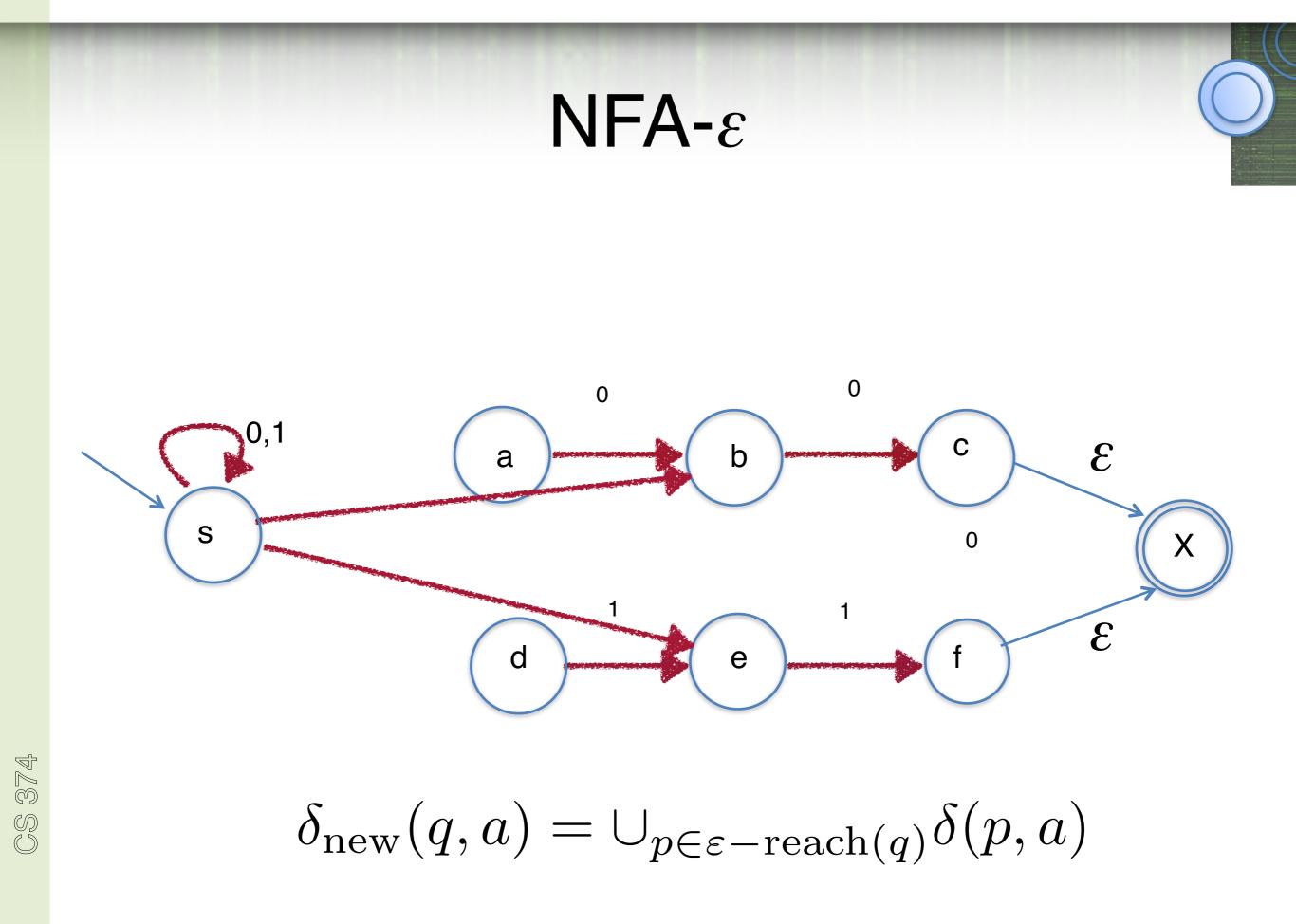
 $s_{\text{new}} = s$

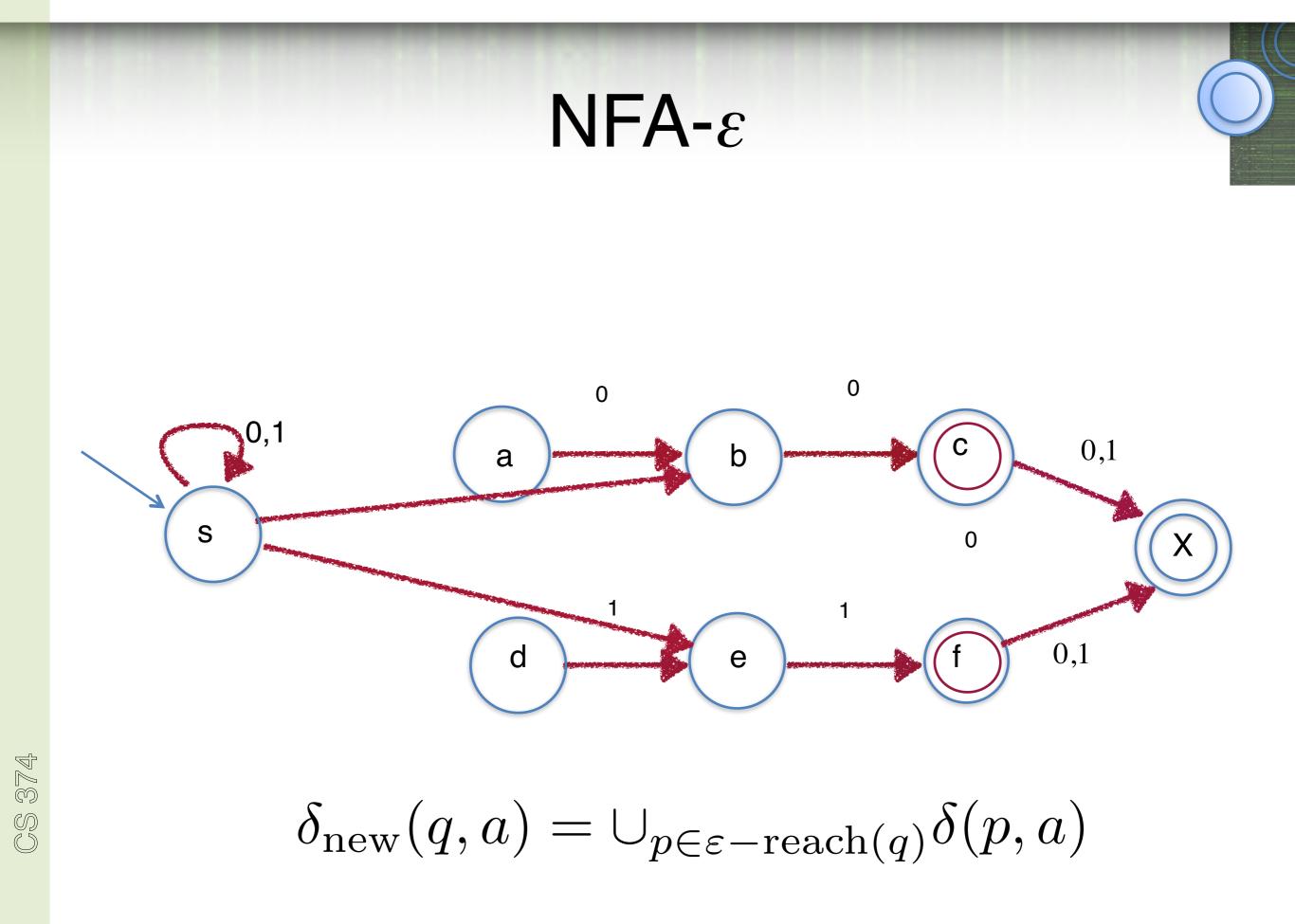
 $A_{\text{new}} = \{q | \textbf{\varepsilon-reach}(q) \text{ includes a state in A} \} \{p | q \stackrel{a}{\rightsquigarrow}_{N} p \}$ $\delta_{\text{new}}(q, a) = \bigcup_{p \in \varepsilon - \text{reach}(q)} \delta(p, a)$

Theorem: $L(N) = L(N_{new})$





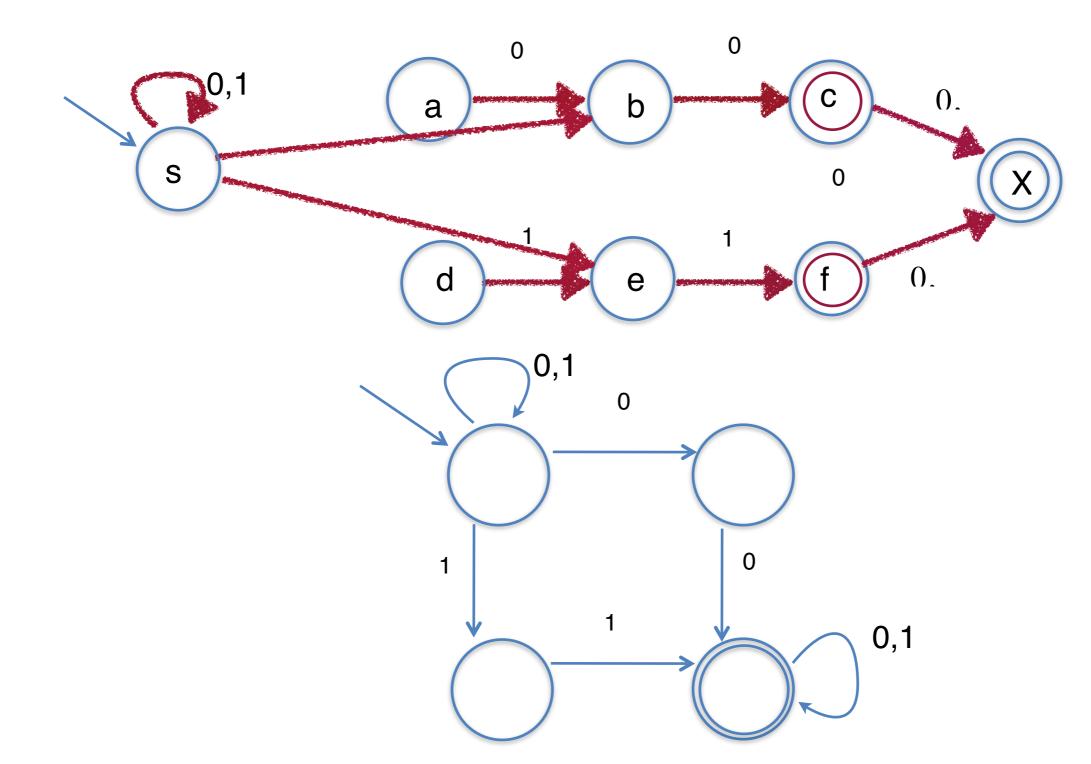


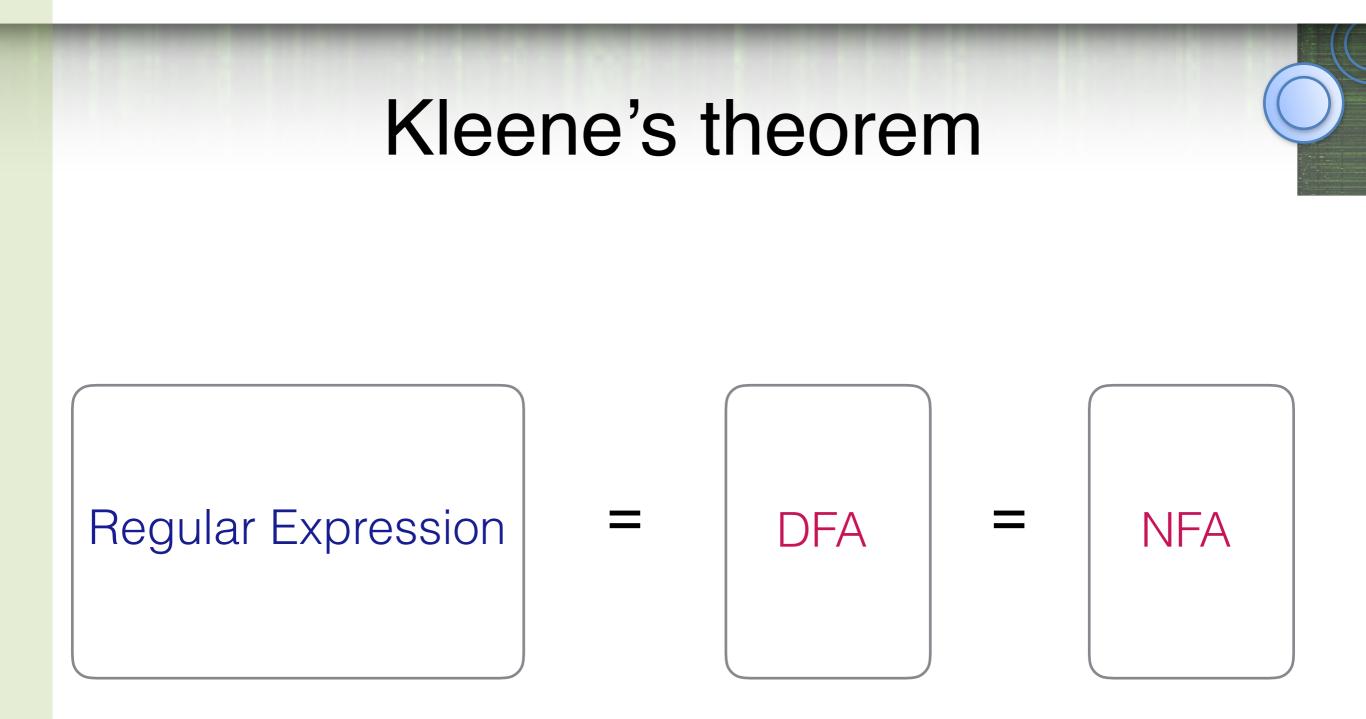


NFA-*ɛ*

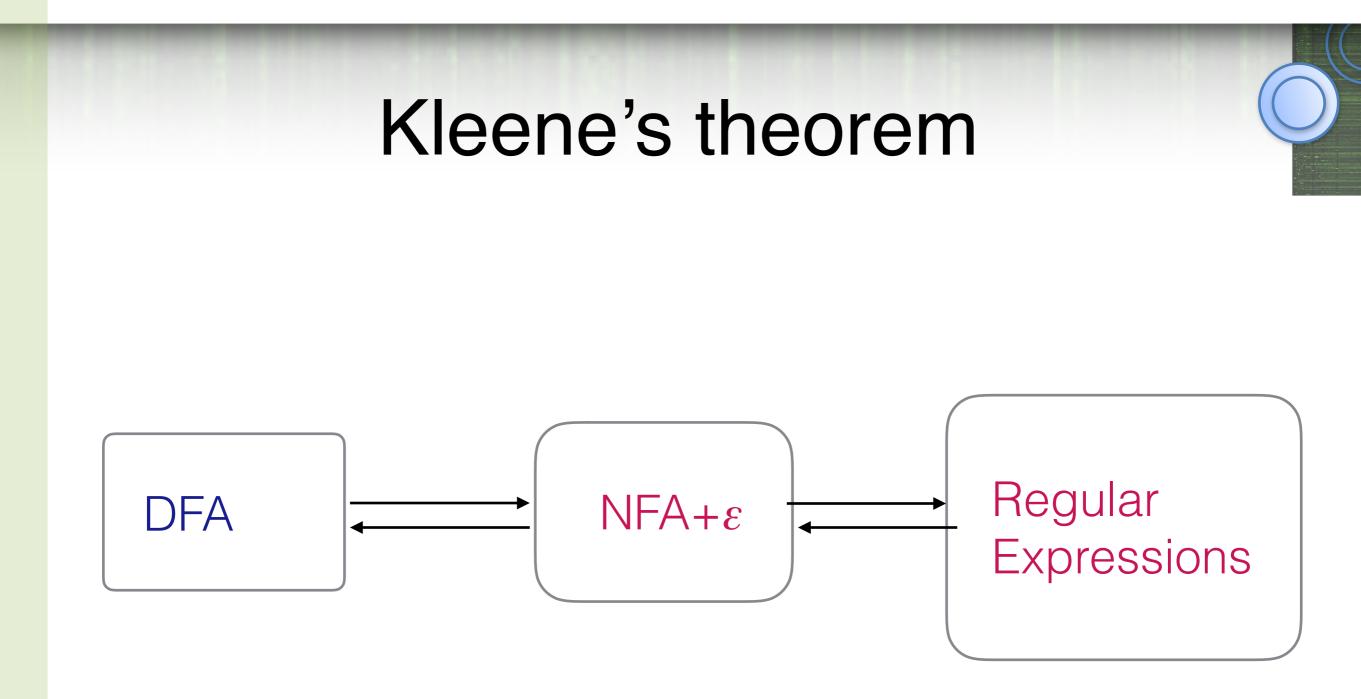
• Same NFA!

CS 374

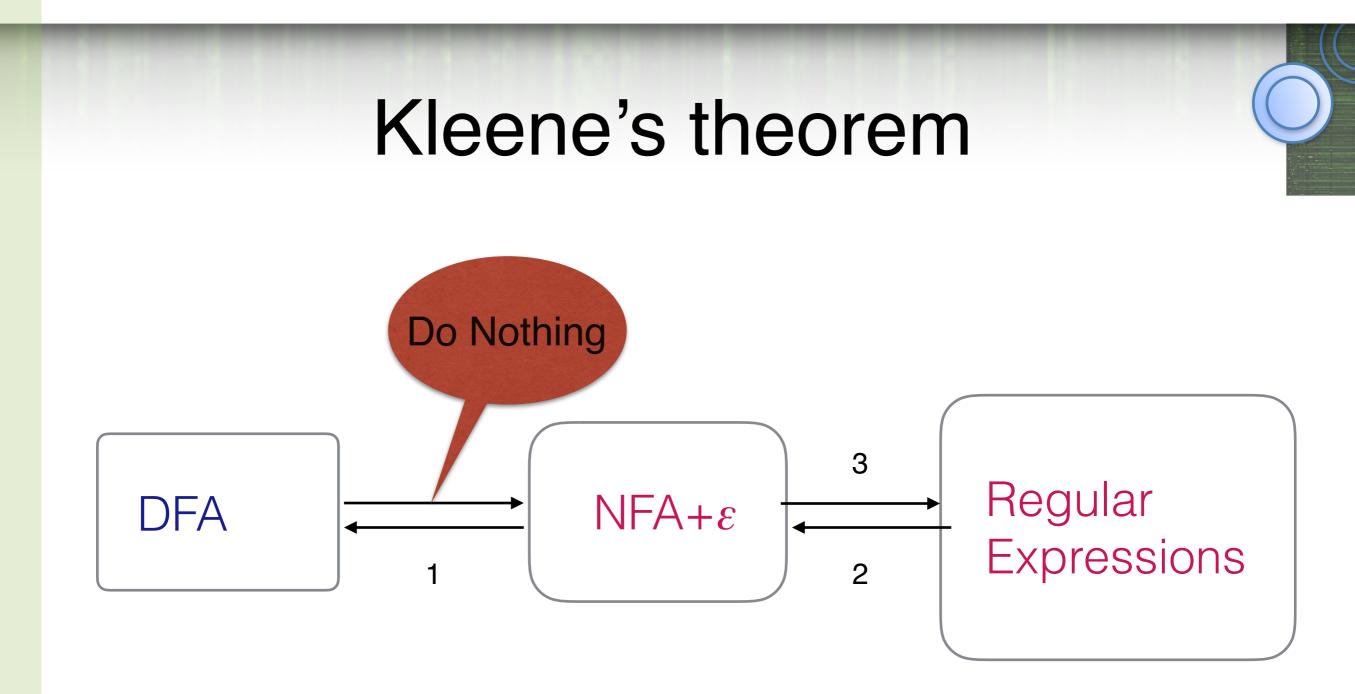


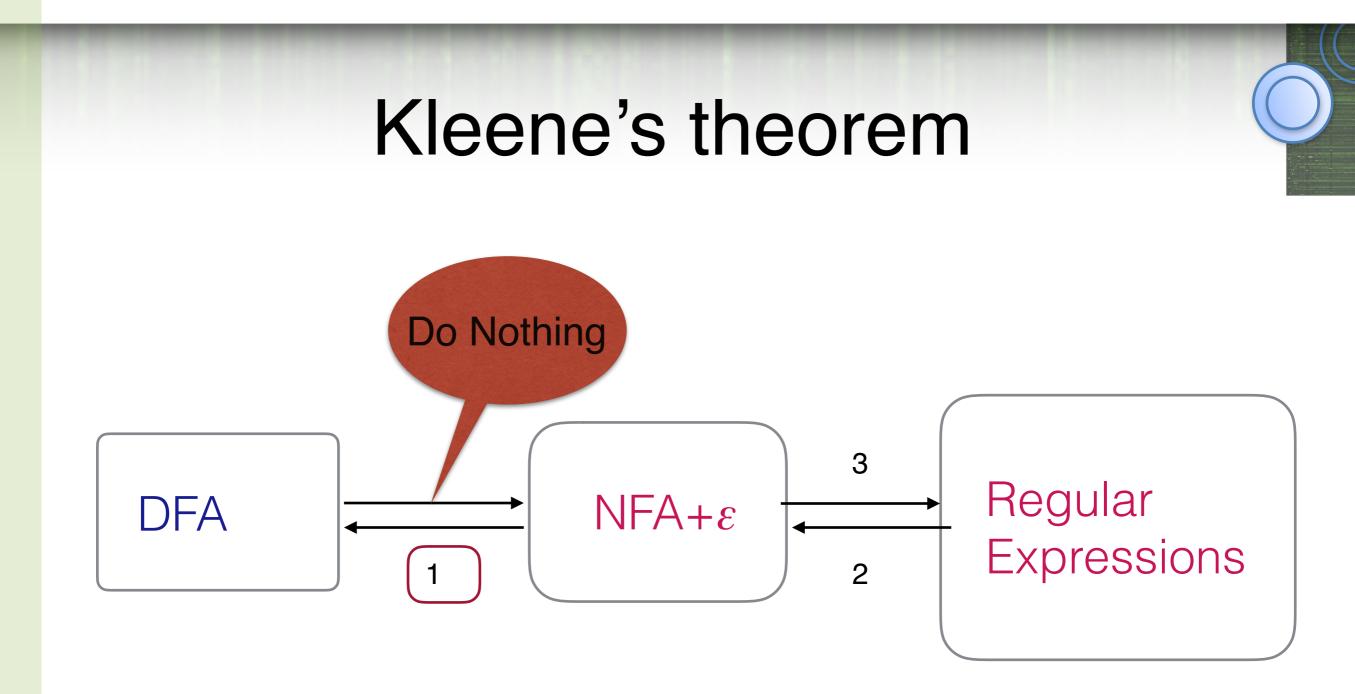


Theorem: A language L can be described by a regular expression if and only if L is the language accepted by a DFA.



<u>CS 374</u>

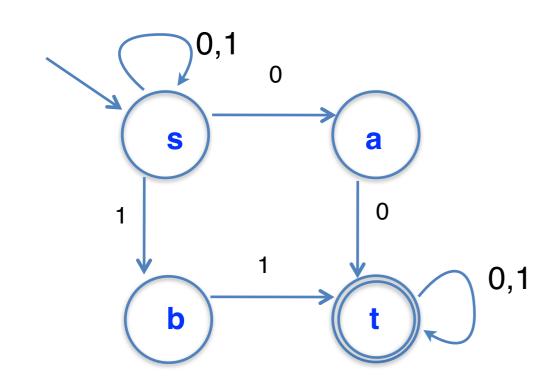




DFA from NFA (aka the subset construction) NFA: $N = (\Sigma, Q, \delta, s, A)$

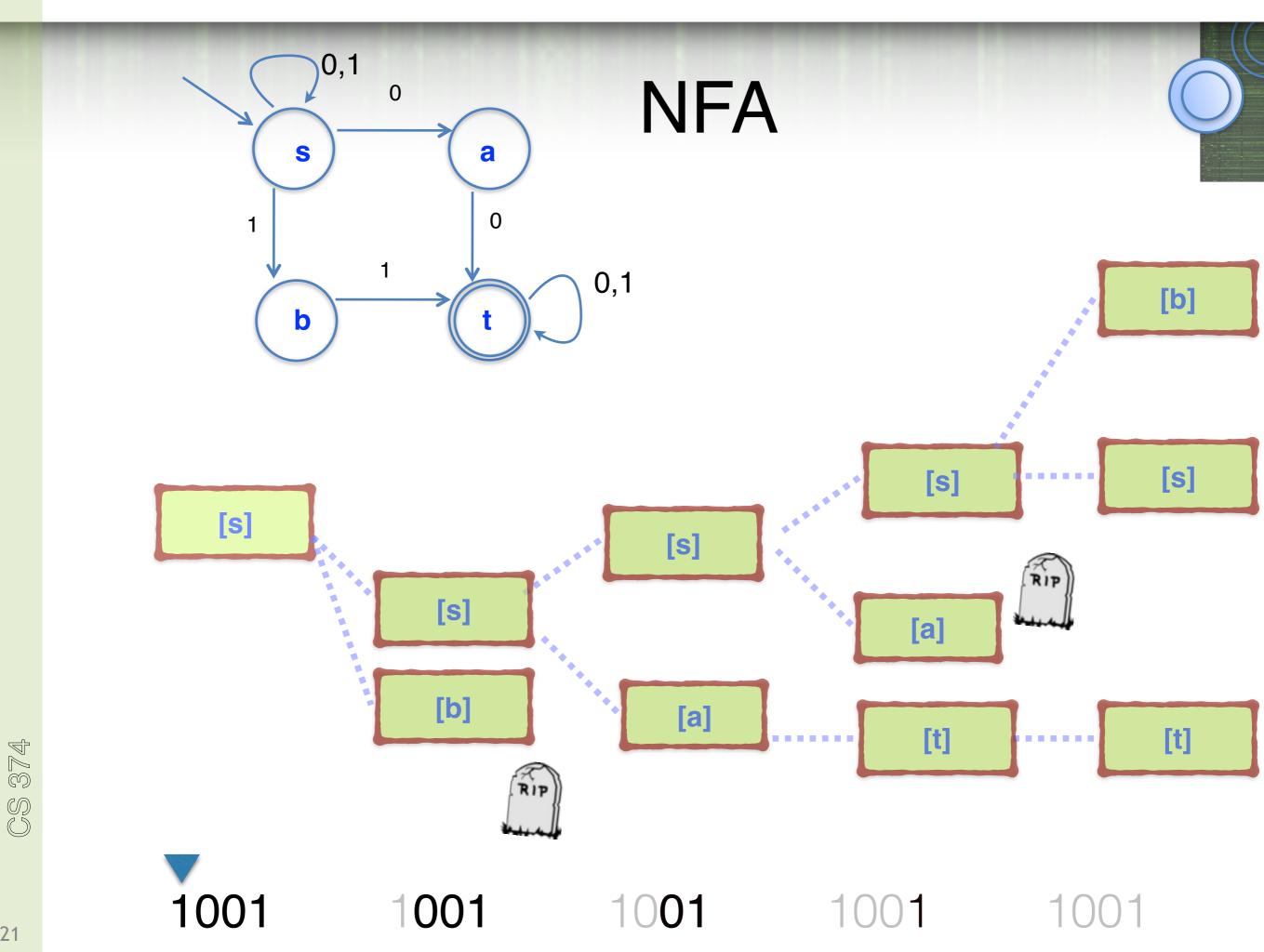
 $\delta: Q \times \Sigma \to \mathcal{P}(Q)$

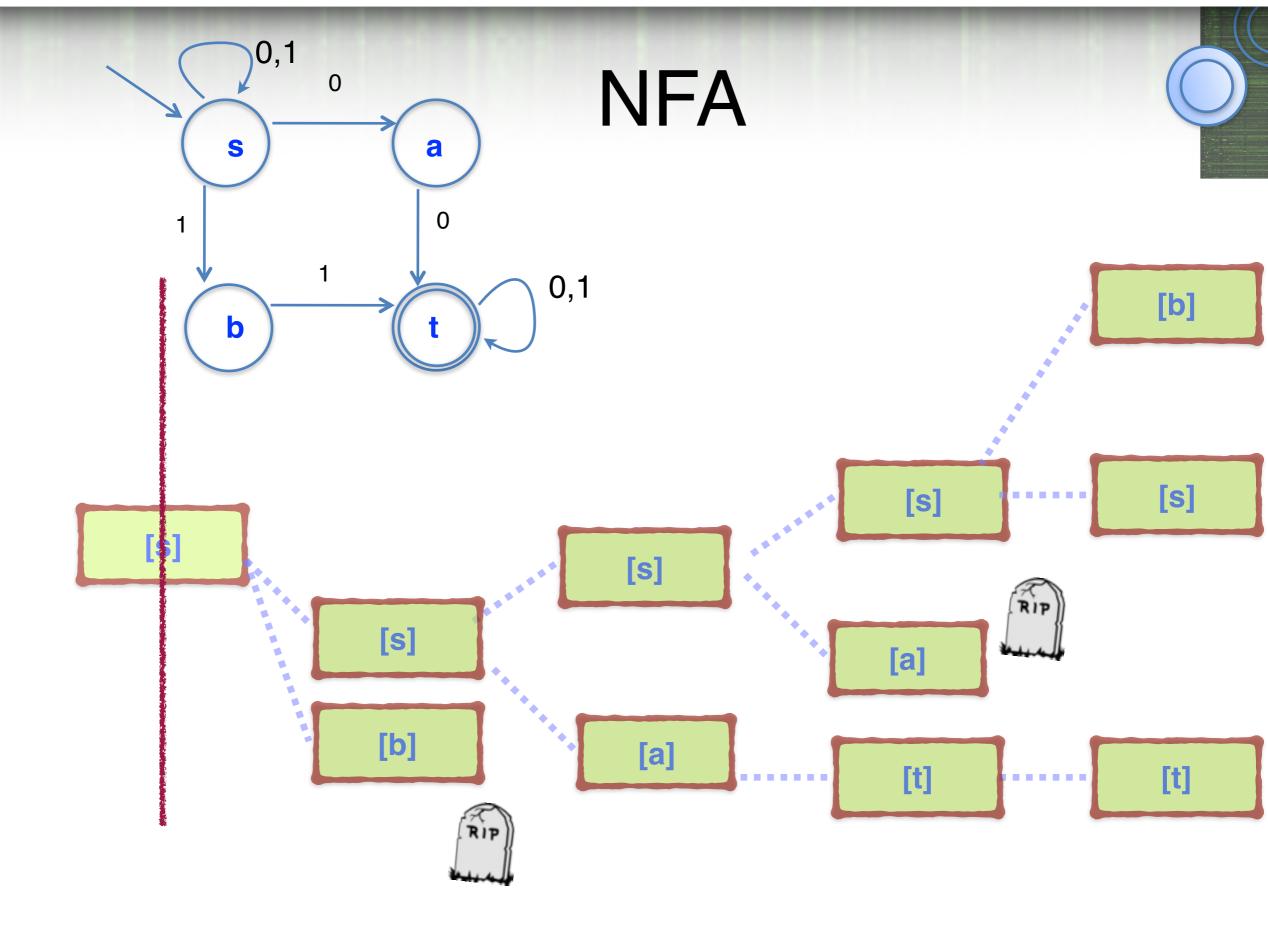
assume no ε -moves



20

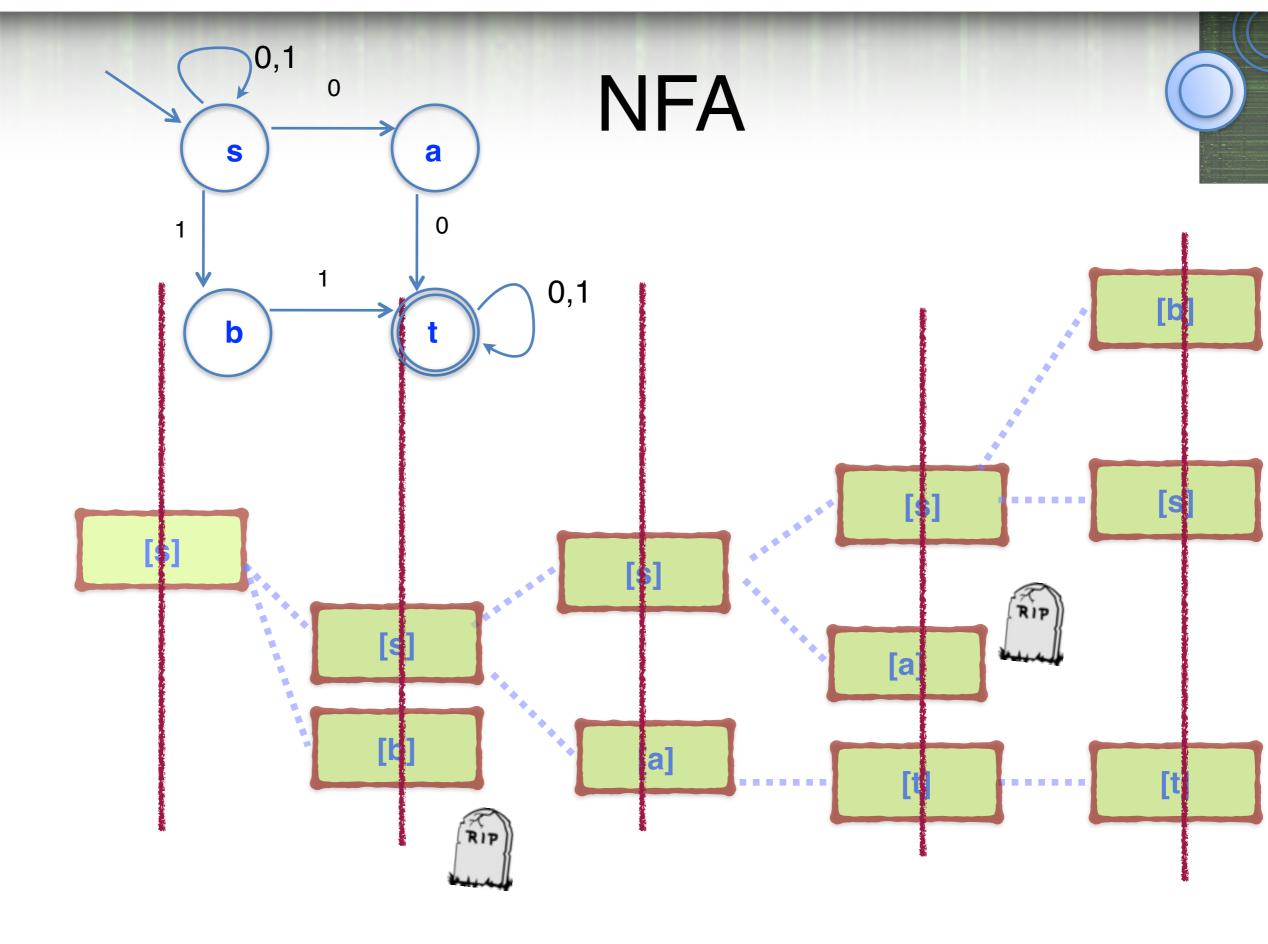
374





1001 1001 1001 1001

CS 374



1001 1001 1001 1001

CS 374

NFA:
$$N = (\Sigma, Q, \delta, s, A)$$
DFA: $M_N = (\Sigma, Q', \delta', s', A')$ $\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)$ $Q' = 2^Q = \mathcal{P}(Q)$ assume no
 ε -movesDeterministic state is now a set of
(non-deterministic) states

 $A' = \{ all subsets P of Q s.t. P \cap A \neq \emptyset \}$

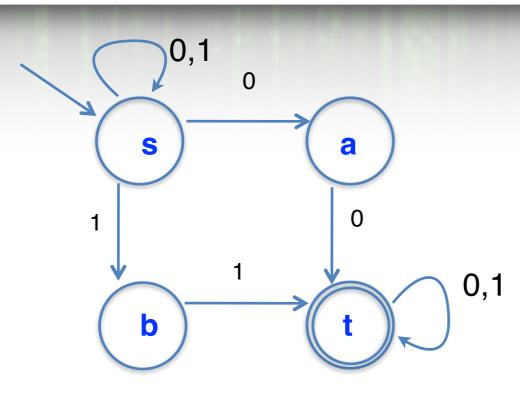
Theorem : $L(N) = L(M_N)$

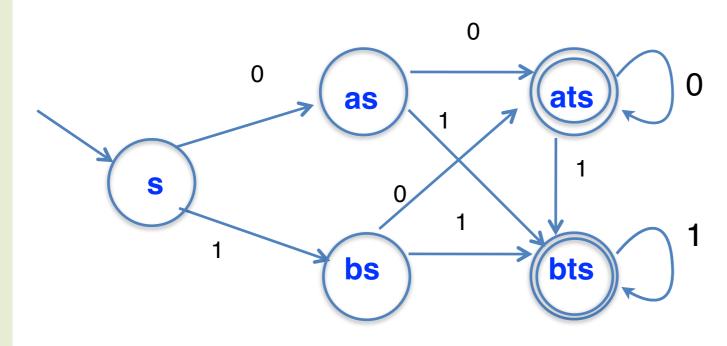
 $\delta': \mathcal{P}(Q) \times \Sigma \to \mathcal{P}(Q)$ $\delta'(P, a) = \bigcup_{q \in P} \delta(q, a)$

NFA to DFA

- There are too many states in this DFA, more than necessary.
- Construct the DFA incrementally instead, by performing BFS on the DFA graph.
- Prepare a table as follows

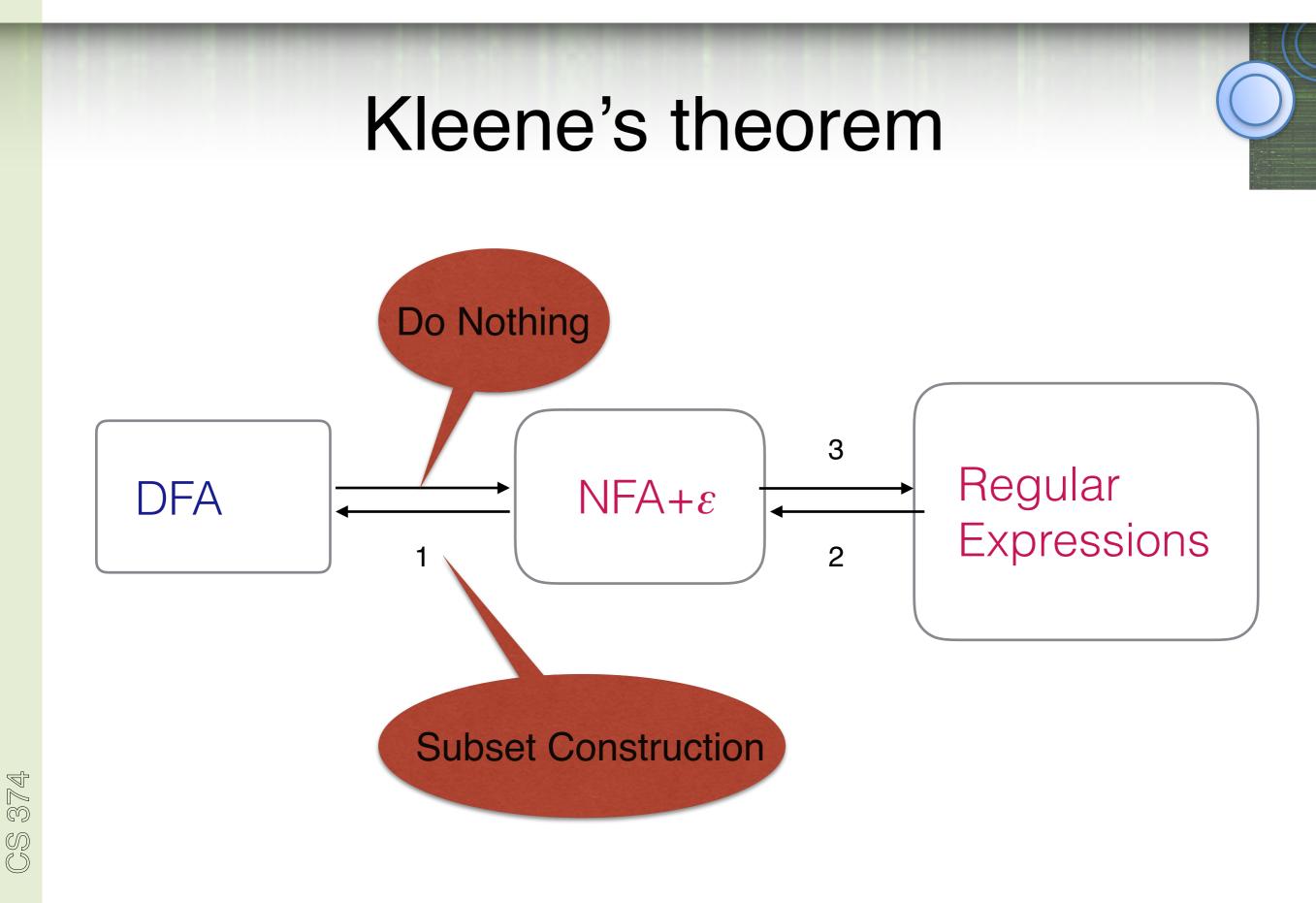
Р	3	δ'(P ,0)	$\delta'(P,1)$	$q' \in A'$
S	S	as	bs	No
as	as	ats	bs	No
bs	bs	as	bts	No
ats	ats	ats	bts	Yes
bts	bts	ats	bts	Yes

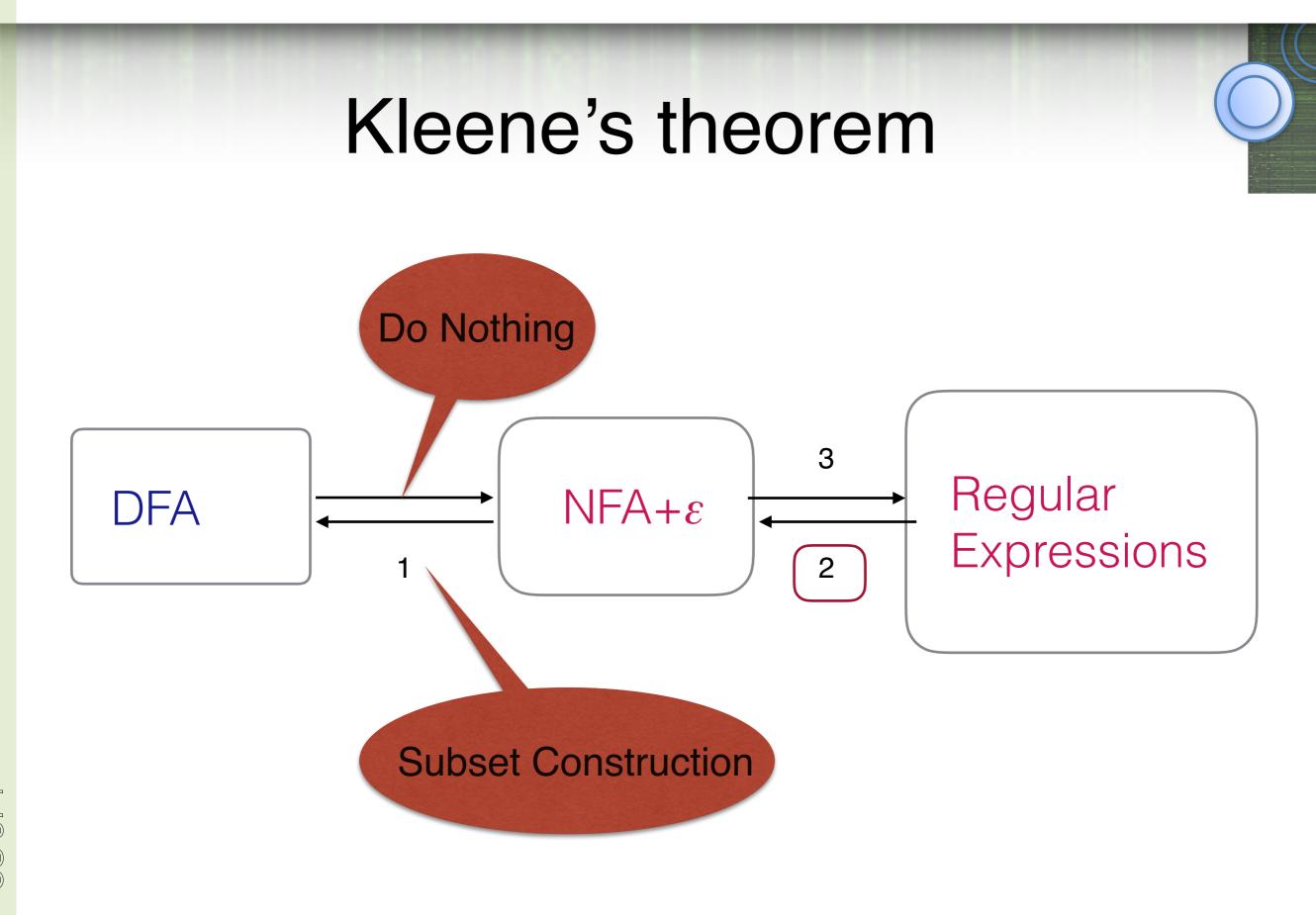




Р	Е	δ'(P,0)	$\delta'(P,1)$	$q' \in A'$
S	S	as	bs	No
as	as	ats	bs	No
bs	bs	as	bts	No
ats	ats	ats	bts	Yes
bts	bts	ats	bts	Yes

CS 374



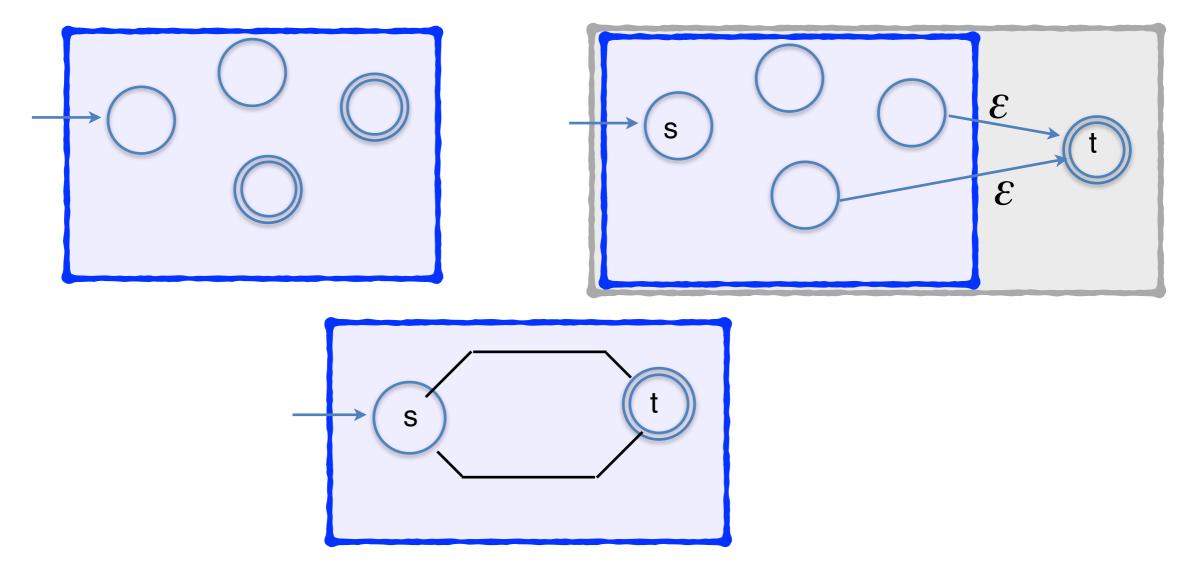


CS 374

Theorem (Thompsons Algorithm): Every regular language is accepted by an NFA.

We will show how to get from regular expressions to NFA+ ε , but in a particular way. One accepting state only!

Single Final State Form



Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Atomic expressions (Base cases)		
Ø	$L(\emptyset) = \emptyset$	
w for $w \in \Sigma^*$	$L(w) = \{w\}$	

Inductively defined expressions

$(r_1 + r_2)$	$L(r_1+r_2) = L(r_1) \cup L(r_2)$
(r_1r_2)	$L(r_1r_2) = L(r_1)L(r_2)$
(r^*)	$L(r^*) = L(r)^*$

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 1: L=Ø

What is a NFA for L?

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 1: L=Ø

What is a NFA for L?

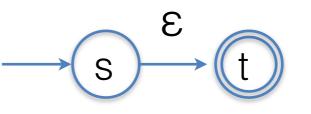
CS 374

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 2: $L=\{\epsilon\}$

What is a NFA for L?



CS 374

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

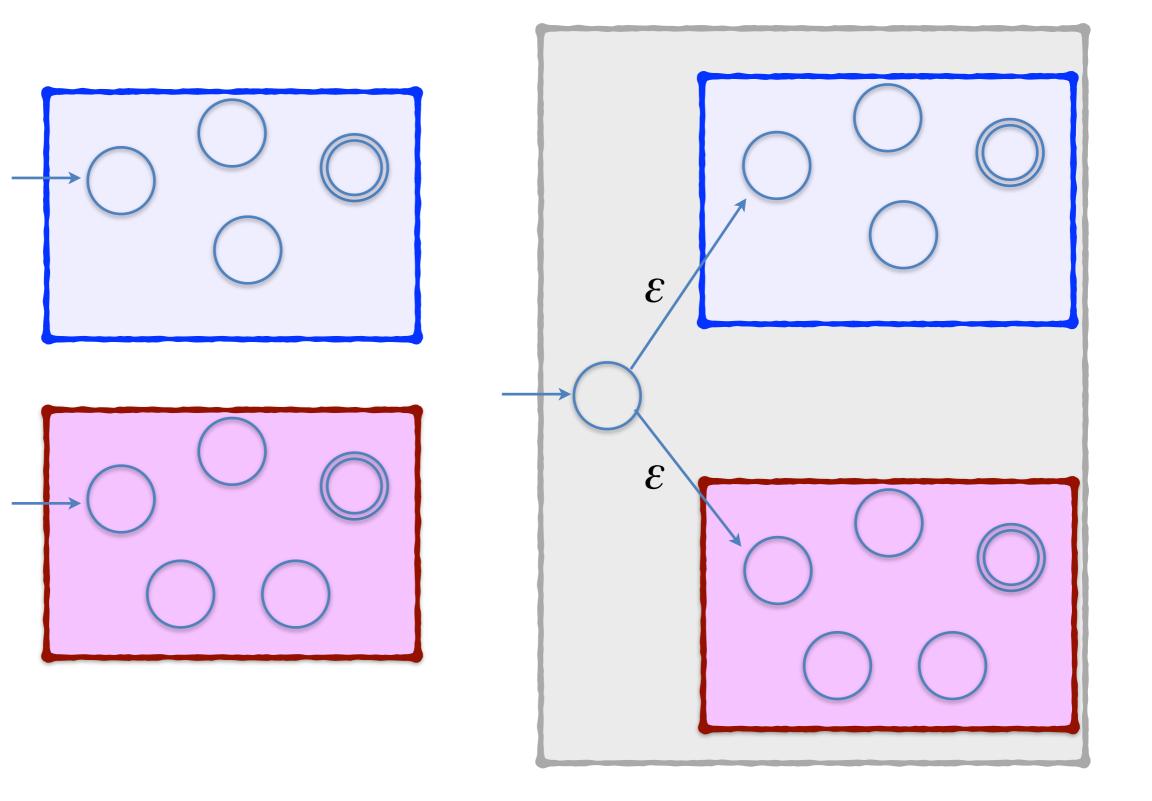
Base Case 3: L={a}, some string in Σ^* (e.g. HW2)

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 1: $L=A \cup B$

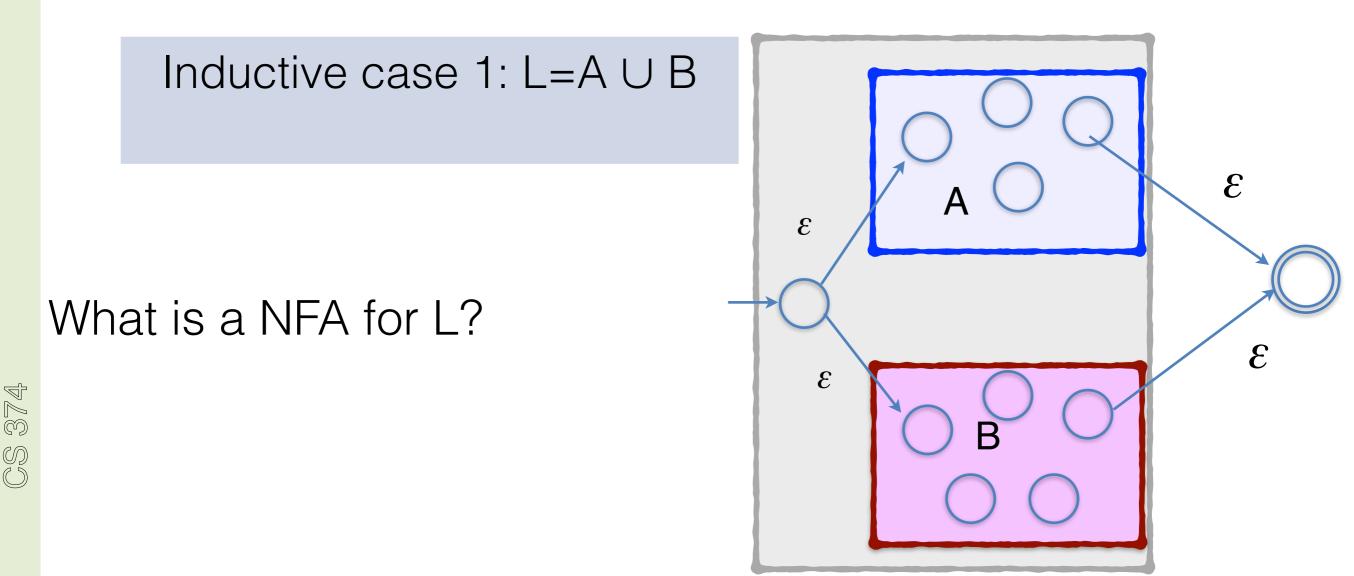
What is a NFA for L?



CS 374

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.



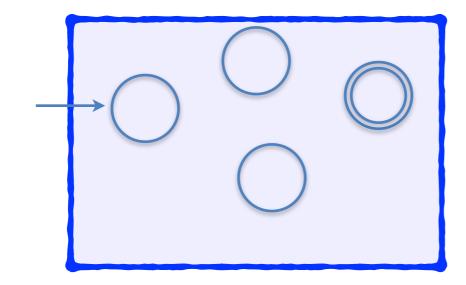
Theorem : Every regular language is accepted by an NFA.

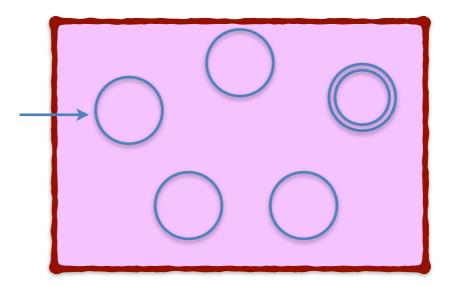
Proof: Recall definition or Regular Language.

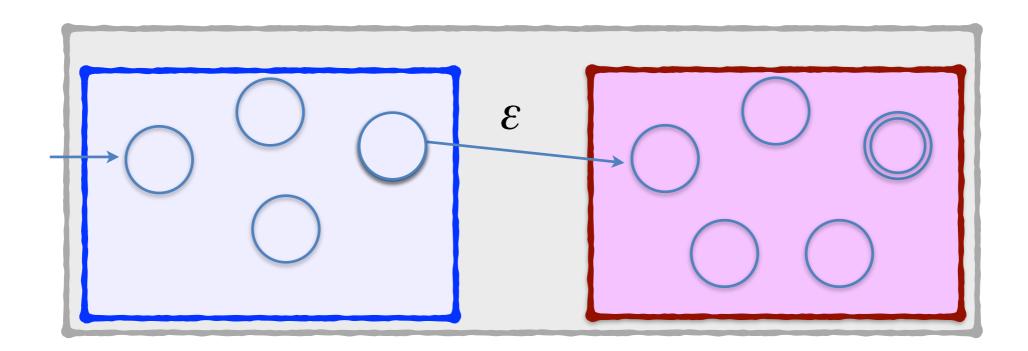
Inductive case 2: L=AB

What is a NFA for L?

Closure Under Concatenation







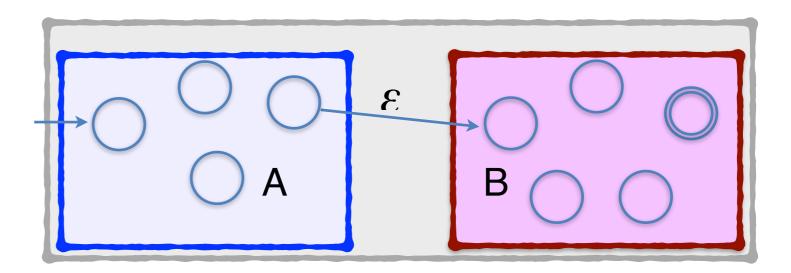
<u> 374</u>

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 2: L=AB

What is a NFA for L?



374

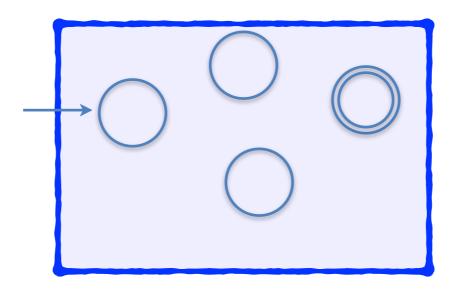
Theorem : Every regular language is accepted by an NFA.

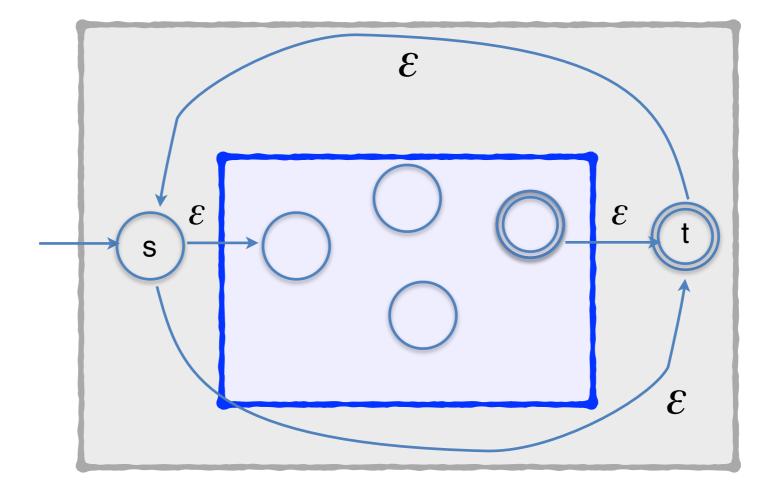
Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

What is a NFA for L?

Closure Under Kleene Star

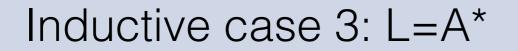




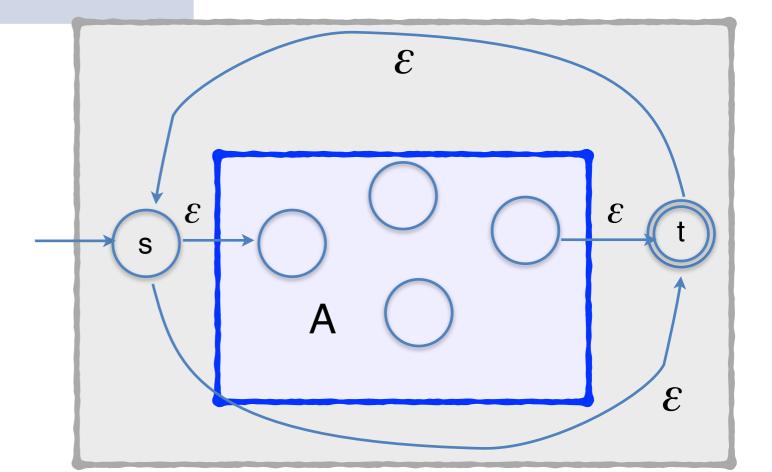
<u>CS</u> 374

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.



What is a NFA for L?



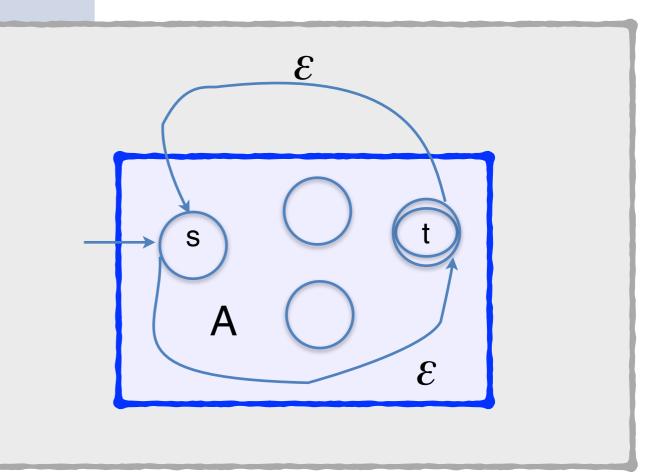
CS 374

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

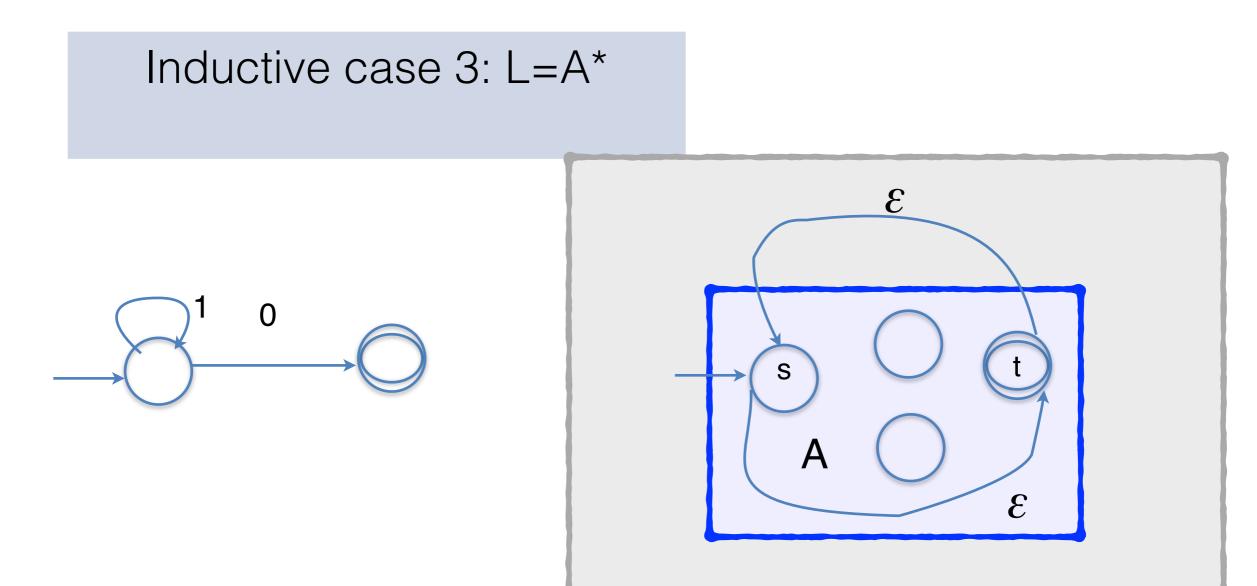
Inductive case 3: L=A*

Why not?



Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.



58 374

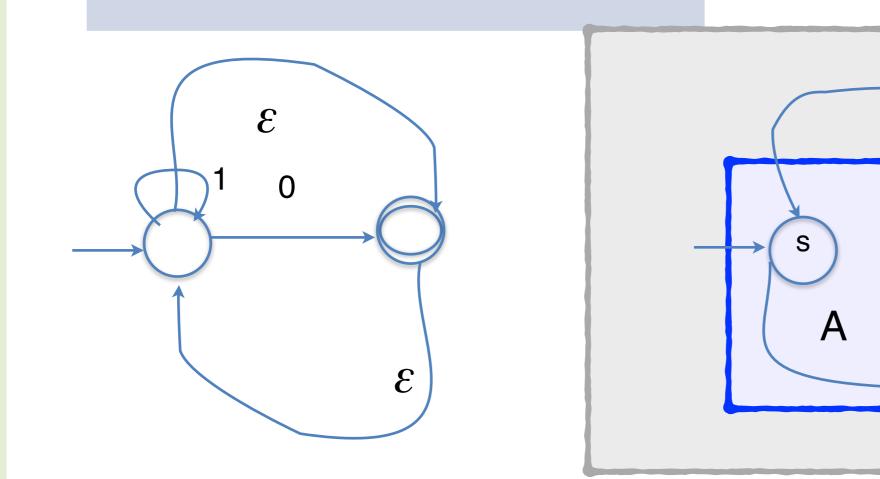
Theorem : Every regular language is accepted by an NFA.

8

8

Proof: Recall definition or Regular Language.

Inductive case 3: L=A*

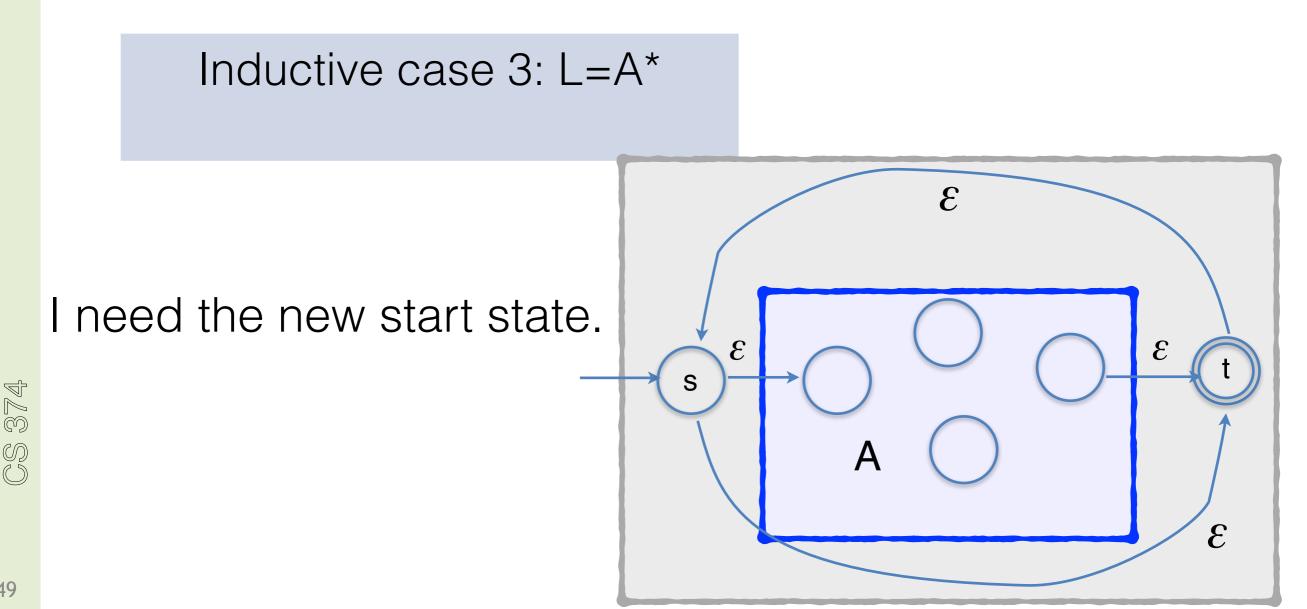


374

48

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.



Example : L given by regular expression $(10+1)^*$

