
NFA/DFA,  
Relation to Regular 

Languages
Lecture 6
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NFA recap
• Last lecture, we saw these objects called NFAs…
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1

0

1

0

0,1

0,1

• Like DFA, but with a weird transition function: 
choices! 

• DFA is a special case of NFA (how?)
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NFA recap
• Last lecture, we saw these objects called NFAs…
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3 models for (Regular) Languages:

Regular Expression NFADFA
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NFA recap
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Kleene’s Theorem

Regular Expression NFADFA= =
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NFA+ε: Formally

• I want to be able to change my state without consuming 
input
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NFA+ε: Formally
• I want to be able to change my state without consuming 

input

• On input 10001?
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ε

ε

0,1
a b c

d e f

s X
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NFA+ε: Formally

N = (Σ, Q, δ, s, A)  
Σ: alphabet Q: state space s: start state A: set of accepting states

δ : Q × {Σ ∪ ε} → P(Q)  

7 ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε

We say q ⇝N p  if ∃ a1,…, at ∈ Σ ∪ {ε} and q1,…,qt+1 ∈ Q, such that  
 w = a1… at,  q1 = q, qt+1 = p,  and  ∀ i ∈ [ 1, t ],   qi+1 ∈ δ(qi,ai)

w

e.g., δ(1,o) = {2}, δ(1,x)=Ø, δ(1,ε)={2}.

L(N) = { w |             for some p ∈ A  }ws ⇝N p
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NFA+ε: Formally

8 ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε
e.g., δ(1,o) = {2}, δ(1,x)=Ø, δ(1,ε)={2}. ε-reach({1}) = { 1, 2, 3, 0 }

• any state q such that               for some r in the ε-reach of p εr ⇝N q

We define the ε-reach of a state p:

• p itself

Means that there is a sequence of ε-transitions from p to q
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Can modify any NFA N, to get an NFA Nnew without ε-moves 
Nnew = (Σ, Qnew,  δnew, snew, Anew)

Qnew=Q

snew=s

Anew={q| ε-reach(q) includes a state in A}

e.g.: δnew(1,o) =    ?            .

Get rid of nothing

9

{0,2,3,4,5}

{ p | q ⇝N p }a

ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε

�new(q, a) = [p2"�reach(q)�(p, a)
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Can modify any NFA N, to get an NFA Nnew without ε-moves 
Nnew = (Σ, Qnew,  δnew, snew, Anew)

Qnew=Q

snew=s

Anew={q| ε-reach(q) includes a state in A}

          .

Theorem: L(N) = L(Nnew)

Get rid of nothing

10

{ p | q ⇝N p }a

�new(q, a) = [p2"�reach(q)�(p, a)
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NFA+ε: Formally
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NFA-ε

1
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0
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ε

0,1

�new(q, a) = [p2"�reach(q)�(p, a)

a b c

d e f

s X
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NFA-ε

1

0

1

0

0

�new(q, a) = [p2"�reach(q)�(p, a)

0,1 ε

ε

a b c

d e f

s X
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NFA-ε

�new(q, a) = [p2"�reach(q)�(p, a)
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0,1
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d e f

s X
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NFA-ε
• Same NFA!
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Kleene’s theorem
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Regular Expression NFADFA= =

Theorem: A language L can be described by a regular expression 
if and only if L is the language accepted by a DFA.
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Kleene’s theorem
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DFA Regular 
Expressions

NFA+ε
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Kleene’s theorem
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DFA Regular 
Expressions

NFA+ε

Do Nothing

1 2

3
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Kleene’s theorem
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DFA Regular 
Expressions

NFA+ε

Do Nothing

1 2

3
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DFA from NFA (aka the subset 
construction)

20

NFA: N = (Σ, Q, δ, s, A)

δ : Q × Σ → P(Q)

assume no 
ε-moves
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NFA

21
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NFA

22
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NFA

23
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NFA to DFA
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NFA: N = (Σ, Q, δ, s, A)

δ : Q × Σ → P(Q)

assume no 
ε-moves

DFA: MN = (Σ, Q’, δ’, s’, A’)

Q’=2Q=P(Q)
s’={s}

Deterministic state is now a set of
 (non-deterministic) states

A’= {all subsets P of Q s.t. P∩A ≠ Ø}

δ’ : P(Q) × Σ → P(Q)

δ’(P, a) = ∪q∈P  δ(q,a)

Theorem : L(N) = L(MN)
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NFA to DFA
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• There are too many states in this DFA, more than 
necessary.

• Construct the DFA incrementally instead, by performing 
BFS on the DFA graph.

• Prepare a table as follows
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P ε δ’(P,0) δ’(P,1) q’∈ A’ 

s s as bs No

as as ats bs No

bs bs as bts No

ats ats ats bts Yes

bts bts ats bts Yes

1
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0,1

0,1

a

b

s

t
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P ε δ’(P,0) δ’(P,1) q’∈ A’ 

s s as bs No

as as ats bs No

bs bs as bts No

ats ats ats bts Yes

bts bts ats bts Yes

1

0
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0

0,1

0,1

a

b

s

t
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Kleene’s theorem
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DFA Regular 
Expressions

NFA+ε

Do Nothing

1 2

3

Subset Construction
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Kleene’s theorem
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DFA Regular 
Expressions

NFA+ε

Do Nothing

1 2

3

Subset Construction



C
S 

37
4

NFAs from Regular Languages

Theorem (Thompsons Algorithm): Every regular language 
is accepted by an NFA. 

We will show how to get from regular expressions to NFA+ε, 
but in a particular way. One accepting state only!

30
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Single Final State Form

Can compile a given NFA so that there is  
only one final state  

(and there is no transition out of that state)

31

ε 

ε 
s t

s t
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

32

Atomic expressions (Base cases)

Ø L(Ø) = Ø

w for w ∈ Σ* L(w) = {w}

Inductively defined expressions

(r1+r2) L(r1+r2) = L(r1) ∪ L(r2)
(r1r2) L(r1r2) = L(r1)L(r2)
(r*) L(r*) = L(r)*

NFAs from Regular Languages
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

33

Base Case 1: L=Ø

NFAs from Regular Languages



C
S 

37
4

Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

34

Base Case 1: L=Ø

NFAs from Regular Languages

s t
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

35

Base Case 2: L={ε}

NFAs from Regular Languages

s t
ε
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

36

Base Case 3: L={a}, some 
string in Σ* (e.g. HW2)

NFAs from Regular Languages

s t
H W 2
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

37

Inductive case 1: L=A ∪ B

NFAs from Regular Languages
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Closure Under Union

38

ε 

ε 
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

39

Inductive case 1: L=A ∪ B

NFAs from Regular Languages

ε 

ε 

A

B

ε 

ε 
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

40

Inductive case 2: L=AB

NFAs from Regular Languages
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Closure Under Concatenation

41

ε 
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

42

Inductive case 2: L=AB

NFAs from Regular Languages

ε 
A B
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

43

Inductive case 3: L=A*

NFAs from Regular Languages
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Closure Under Kleene Star

44

ε 

ε 

ε 
s tε 
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

What is a NFA for L?

45

Inductive case 3: L=A*

NFAs from Regular Languages

ε 

ε 

ε 
s tε 

A
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

Why not?

46

Inductive case 3: L=A*

NFAs from Regular Languages

ε 

ε 

s t

A
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

47

Inductive case 3: L=A*

NFAs from Regular Languages

1 0

ε 

s t

A

ε 
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

48

Inductive case 3: L=A*

NFAs from Regular Languages

1 0

ε 

ε ε 

s t

A

ε 
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Theorem : Every regular language is accepted by an NFA. 

Proof: Recall definition or Regular Language. 

I need the new start state.

49

Inductive case 3: L=A*

NFAs from Regular Languages

ε 

ε 

ε 
s tε 

A
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NFAs & Regular Languages

Example : L given by regular expression (10+1)*

50
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