NFA/DFA,
Relation to Reqular
Lanquages

Cs 374

NFA recap

 |astlecture, we saw these objects called NFAs...

N2
e

e | ke DFA, but with a weird transition function:
choices!

 DFA Is a special case of NFA (how?)

NFA recap ‘

 |astlecture, we saw these objects called NFAs...

3 models for (Regular) Languages:

Regular Expression DFA NFA

Cs 374

NFA recap ‘

Kleene’s Theorem

Regular Expression DFA NFA

Cs 374

Cs 374

Input

NFA+e: Formally

@

1

- | want to be able to change my state without consuming

\OOJ .

1

O

o

>©Q >

Cs 374

NFA+e: Formally

- | want to be able to change my state without consuming

iInput

* Oninput 100017

Cs 374

NFA+¢: Formally

N=(Z,0,0,s,A)
2. alphabet Q: state space s: start state A: set of accepting states

0:0x{ZU e} — P0)

We say g %yp ifdai,..,a;€EXU {e} and qi,...,qis1 € O, such that
w=ai...a, q1=q,qw+1=p, and ViE[1,t], qir1 € 0(gi,ai)

LIN)={wls*»yp forsomepEA }

e.qg., o(1,0) = {2}, 0(1,x)=0, o(1.,6)={2}.

Oa-z /_g >
66 o) \12/1. r @

Cs 374

NFA+e: Formally

We define the e-reach of a state p:

e pitself

e any state q such that r oy g for some r in the €-reach of p

Means that there 1s a sequence of e-transitions from p to q

e.qg., o(1, o)—{2} 6(1 xX)=0, o(1 e) {2}. e-reach({ {1,2,3,0}

Cs 374

Get rid of nothing

Can modity any NFA N, to get an NFA Npew Without e-moves

new — (Z, Qnew, 6new, Snew, Anew)
QneW:Q

Snew=3_§

new=1{ql €-reach(q) includes a state in A}

{plgwyp}
A y

5new(£]> a) — UpEs—reach(q)é(pa a)
e.g.: Onew(1,0)={0,2,3.4,5}

Oa—z E

a QOO

Cs 374

10

Get rid of nothing

Can modify any NFA N, to get an NFA Npew Without e-moves

Nuew = (Z, Qnew, 6new, Snew, Anew)

QneW:Q
Snew=23
AneW: | - h . 1 d tat . A
{ql e-reach(q) includes a state in A} (plgbyp)
5 - 5(p.a |
new(% a) — UpEs—reaCh(q) (pa a)

Theorem: L(N) = L(Nrew)

NFA+&: Formally ‘

Cs 374

Cs 374

5new(qa CL) — UpEe—reach(q)é(pv CL)

%}:
[
cp
)
O

%}:
[
cp
)
O

5new(qa CL) — UpEs—reaCh(q)é(pa CL)

Cs 374

Kleene’s theorem

DFA

Regular Expression NFA

~ Theorem: A language L can be described by a regular expression
~if and only if L is the language accepted by a DFA.

16

Kleene’s theorem ‘

4 N

DFA - > NFA+e T- » Regular
EXpressions

_ J

Cs 374

17

Kleene’s theorem ‘

4)

» Regular
» Expressions

_ J

DFA p

Cs 374

18

Kleene’s theorem ‘

4)

» Regular
» Expressions

_ J

DFA p

Cs 374

19

DFA from NFA (aka the subset @

construction)
NFA:N=(Z,0,9,s,A) |

0:0x3— PO)

asSume no
E-MOVES

o

S

9 ?
OmnoSh

Cs 374

1001 001 01 1

Cs 374

23

1001

001

NFA to DFA

NFA: N = (2, 0, 0, 5, A)

0:0x2—P0O)

asSume no
E-MOVES

DFA: My=(2,0’,0',s,A)

Q’'=20=P(Q)
s’={s}

Deterministic state is now a set of
(non-deterministic) states

A’= {all subsets Pof Q s.t. PNA # @}

Theorem : L(N) = L(My) d : P(O) x = — P(0)

Cs 374

24

(5,(P, CZ) — UQEP 6(q,d)

Cs 374

25

NFA to DFA

- There are too many states in this DFA, more than

necessary.

- Construct the DFA incrementally instead, by performing

BFS on the DFA graph.

- Prepare a table as follows

Cs 374

27

as

bs

ats

bts

‘ £ ‘ 6'(P0) ‘ 0'(P.1) ‘6]’6.

S

as

bs

ats

bts

as

ats

as

ats

ats

bs

bs

bts

bts

bts

No

No

No

Yes

Yes

Kleene’s theorem ‘

4)

» Regular
» Expressions

_ J

DFA p

Cs 374

28

Kleene’s theorem ‘

4)

» Regular
EXpressions

_ J

DFA p

Cs 374

29

NFAs from Regular Languages I

Theorem (Thompsons Algorithm): Every regular language
IS accepted by an NFA.

We will show how to get from regular expressions to NFA+e,
but in a particular way. One accepting state only!

Cs 374

30

Cs 374

31

Single Final State Form

Can compile a given NFA so that there is
only one final state
(and there is no transition out of that state)

® ®
O~ 0O (OHe
O © 20

B

NFAs from Regular Languages ®

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Atomic expressions (Base cases)

Y (D) = @
w for w e X% L(w) = {w}
ﬁ
e (r1472) L(r1472) = L(r1) U L(r2)
: (r1r2) L(r1r2) = L(r1)L(r)

32 (r*) L(r*) = L(r)*

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 1: L=0

What is a NFA for L?

Cs 374

33

Cs 374

34

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 1: L=0

What is a NFA for L? —(s)

Cs 374

35

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 2: L={¢}

What is a NFA for L? —(s) —@

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Base Case 3: L={a}, some
string in 2* (e.g. HW2)

Hw 2
Whatis a NFA for L? — (s)y—(—()—()

Cs 374

36

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 1: L=A U B

What is a NFA for L?

Cs 374

37

Closure Under Union ‘

0O 0 0P 0
O O
4G
S
O~ 0O 8
: eje 00
: 00O

Cs 374

39

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 1: L=A U B

What is a NFA for L?

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 2; L=AB

What is a NFA for L?

Cs 374

40

Cs 374

Closure Under Concatenation

Cs 374

42

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 2; L=AB

What is a NFA for L?
DA BOO

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3; L=A~

What is a NFA for L?

Cs 374

43

Cs 374

Closure Under Kleene Star

®

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3; L=A~

What is a NFA for L?

Cs 374

45

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3; L=A~

Why not”?

Cs 374
>

46

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3; L=A~

Cs 374
>

47

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3; L=A~

Cs 374

48

NFAs from Regular Languages ®

Theorem : Every regular language Is accepted by an NFA.

Proof: Recall definition or Regular Language.

Inductive case 3; L=A~

Cs 374

49

Cs 374

NFAs & Regular Languages

Example : L given by regular expression (10+1)*

&

"o

QWQ '
s o /

E

