
NFA/DFA,  
Relation to Regular

Languages
Lecture 6

1

C
S

37
4

NFA recap
• Last lecture, we saw these objects called NFAs…

2

1

0

1

0

0,1

0,1

• Like DFA, but with a weird transition function:
choices!

• DFA is a special case of NFA (how?)

C
S

37
4

NFA recap
• Last lecture, we saw these objects called NFAs…

3

3 models for (Regular) Languages:

Regular Expression NFADFA

C
S

37
4

NFA recap

4

Kleene’s Theorem

Regular Expression NFADFA= =

C
S

37
4

NFA+ε: Formally

• I want to be able to change my state without consuming
input

1

0

1

0

0,1

0,1

C
S

37
4

NFA+ε: Formally
• I want to be able to change my state without consuming

input

• On input 10001?

1

0

1

0

0

ε

ε

ε

ε

0,1
a b c

d e f

s X

C
S

37
4

NFA+ε: Formally

N = (Σ, Q, δ, s, A)  
Σ: alphabet Q: state space s: start state A: set of accepting states

δ : Q × {Σ ∪ ε} → P(Q)  

7 ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε

We say q ⇝N p if ∃ a1,…, at ∈ Σ ∪ {ε} and q1,…,qt+1 ∈ Q, such that  
 w = a1… at, q1 = q, qt+1 = p, and ∀ i ∈ [1, t], qi+1 ∈ δ(qi,ai)

w

e.g., δ(1,o) = {2}, δ(1,x)=Ø, δ(1,ε)={2}.

L(N) = { w | for some p ∈ A }ws ⇝N p

C
S

37
4

NFA+ε: Formally

8 ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε
e.g., δ(1,o) = {2}, δ(1,x)=Ø, δ(1,ε)={2}. ε-reach({1}) = { 1, 2, 3, 0 }

• any state q such that for some r in the ε-reach of p εr ⇝N q

We define the ε-reach of a state p:

• p itself

Means that there is a sequence of ε-transitions from p to q

C
S

37
4

Can modify any NFA N, to get an NFA Nnew without ε-moves 
Nnew = (Σ, Qnew, δnew, snew, Anew)

Qnew=Q

snew=s

Anew={q| ε-reach(q) includes a state in A}

e.g.: δnew(1,o) = ? .

Get rid of nothing

9

{0,2,3,4,5}

{ p | q ⇝N p }a

ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε

�new(q, a) = [p2"�reach(q)�(p, a)

C
S

37
4

Can modify any NFA N, to get an NFA Nnew without ε-moves 
Nnew = (Σ, Qnew, δnew, snew, Anew)

Qnew=Q

snew=s

Anew={q| ε-reach(q) includes a state in A}

 .

Theorem: L(N) = L(Nnew)

Get rid of nothing

10

{ p | q ⇝N p }a

�new(q, a) = [p2"�reach(q)�(p, a)

C
S

37
4

NFA+ε: Formally

1

0

1

0

0

ε

ε

ε

ε

0,1
a b c

d e f

s X

C
S

37
4

NFA-ε

1

0

1

0

0

ε

ε

0,1

�new(q, a) = [p2"�reach(q)�(p, a)

a b c

d e f

s X

C
S

37
4

NFA-ε

1

0

1

0

0

�new(q, a) = [p2"�reach(q)�(p, a)

0,1 ε

ε

a b c

d e f

s X

C
S

37
4

NFA-ε

�new(q, a) = [p2"�reach(q)�(p, a)

1

0

1

0

0

0,10,1

0,1

a b c

d e f

s X

C
S

37
4

NFA-ε
• Same NFA!

1

0

1

0

0,1

0,1

1

0

1

0

0

0,0,1

0,

a b c

d e f

s X

C
S

37
4

Kleene’s theorem

16

Regular Expression NFADFA= =

Theorem: A language L can be described by a regular expression
if and only if L is the language accepted by a DFA.

C
S

37
4

Kleene’s theorem

17

DFA Regular
Expressions

NFA+ε

C
S

37
4

Kleene’s theorem

18

DFA Regular
Expressions

NFA+ε

Do Nothing

1 2

3

C
S

37
4

Kleene’s theorem

19

DFA Regular
Expressions

NFA+ε

Do Nothing

1 2

3

C
S

37
4

DFA from NFA (aka the subset
construction)

20

NFA: N = (Σ, Q, δ, s, A)

δ : Q × Σ → P(Q)

assume no
ε-moves

1

0

1

0

0,1

0,1

a

b

s

t

C
S

37
4

NFA

21

[s]

10011001 1001 1001 1001

[b]

[s]

[s] [a]

[t]

[s]

[a]
[t]

[s]

[b]

1

0

1

0

0,1

0,1

a

b

s

t

C
S

37
4

NFA

22

[s]

10011001 1001 1001 1001

[b]

[s]

[s] [a]

[t]

[s]

[a]
[t]

[s]

[b]

1

0

1

0

0,1

0,1

a

b

s

t

C
S

37
4

NFA

23

[s]

10011001 1001 1001 1001

[b]

[s]

[s] [a]

[t]

[s]

[a]
[t]

[s]

[b]

1

0

1

0

0,1

0,1

a

b

s

t

C
S

37
4

NFA to DFA

24

NFA: N = (Σ, Q, δ, s, A)

δ : Q × Σ → P(Q)

assume no
ε-moves

DFA: MN = (Σ, Q’, δ’, s’, A’)

Q’=2Q=P(Q)
s’={s}

Deterministic state is now a set of
 (non-deterministic) states

A’= {all subsets P of Q s.t. P∩A ≠ Ø}

δ’ : P(Q) × Σ → P(Q)

δ’(P, a) = ∪q∈P δ(q,a)

Theorem : L(N) = L(MN)

C
S

37
4

NFA to DFA

25

• There are too many states in this DFA, more than
necessary.

• Construct the DFA incrementally instead, by performing
BFS on the DFA graph.

• Prepare a table as follows

C
S

37
4

26

P ε δ’(P,0) δ’(P,1) q’∈ A’

s s as bs No

as as ats bs No

bs bs as bts No

ats ats ats bts Yes

bts bts ats bts Yes

1

0

1

0

0,1

0,1

a

b

s

t

C
S

37
4

27

P ε δ’(P,0) δ’(P,1) q’∈ A’

s s as bs No

as as ats bs No

bs bs as bts No

ats ats ats bts Yes

bts bts ats bts Yes

1

0

1

0

0,1

0,1

a

b

s

t

1

0

1

1

1

ats

bs

s

bts

0
as

0

1

1

0

C
S

37
4

Kleene’s theorem

28

DFA Regular
Expressions

NFA+ε

Do Nothing

1 2

3

Subset Construction

C
S

37
4

Kleene’s theorem

29

DFA Regular
Expressions

NFA+ε

Do Nothing

1 2

3

Subset Construction

C
S

37
4

NFAs from Regular Languages

Theorem (Thompsons Algorithm): Every regular language
is accepted by an NFA.

We will show how to get from regular expressions to NFA+ε,
but in a particular way. One accepting state only!

30

C
S

37
4

Single Final State Form

Can compile a given NFA so that there is  
only one final state  

(and there is no transition out of that state)

31

ε

ε
s t

s t

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

32

Atomic expressions (Base cases)

Ø L(Ø) = Ø

w for w ∈ Σ* L(w) = {w}

Inductively defined expressions

(r1+r2) L(r1+r2) = L(r1) ∪ L(r2)
(r1r2) L(r1r2) = L(r1)L(r2)
(r*) L(r*) = L(r)*

NFAs from Regular Languages

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

33

Base Case 1: L=Ø

NFAs from Regular Languages

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

34

Base Case 1: L=Ø

NFAs from Regular Languages

s t

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

35

Base Case 2: L={ε}

NFAs from Regular Languages

s t
ε

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

36

Base Case 3: L={a}, some
string in Σ* (e.g. HW2)

NFAs from Regular Languages

s t
H W 2

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

37

Inductive case 1: L=A ∪ B

NFAs from Regular Languages

C
S

37
4

Closure Under Union

38

ε

ε

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

39

Inductive case 1: L=A ∪ B

NFAs from Regular Languages

ε

ε

A

B

ε

ε

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

40

Inductive case 2: L=AB

NFAs from Regular Languages

C
S

37
4

Closure Under Concatenation

41

ε

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

42

Inductive case 2: L=AB

NFAs from Regular Languages

ε
A B

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

43

Inductive case 3: L=A*

NFAs from Regular Languages

C
S

37
4

Closure Under Kleene Star

44

ε

ε

ε
s tε

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

What is a NFA for L?

45

Inductive case 3: L=A*

NFAs from Regular Languages

ε

ε

ε
s tε

A

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

Why not?

46

Inductive case 3: L=A*

NFAs from Regular Languages

ε

ε

s t

A

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

47

Inductive case 3: L=A*

NFAs from Regular Languages

1 0

ε

s t

A

ε

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

48

Inductive case 3: L=A*

NFAs from Regular Languages

1 0

ε

ε ε

s t

A

ε

C
S

37
4

Theorem : Every regular language is accepted by an NFA.

Proof: Recall definition or Regular Language.

I need the new start state.

49

Inductive case 3: L=A*

NFAs from Regular Languages

ε

ε

ε
s tε

A

C
S

37
4

NFAs & Regular Languages

Example : L given by regular expression (10+1)*

50

1

ε

ε

ε

ε

1 ε 0
ε

ε

ε

