Fooling Sets and Introduction to Non-

 deterministic Finite Automata Lecture 5
Proving that a language is not regular

- Given a language, we saw how to prove it is regular (union, intersection, concatenation, complement, reversal...)
- How to prove it is not regular?

Proving that a language is not regular

- Pick your favorite language L (= let L be an arbitrary language)
- For any strings x, y (x, y not necessarily in L) we define the following equivalence:

$$
x \equiv{ }_{L} y
$$

- Means for EVERY string $z \in \Sigma^{*}$ we have
$x z \in L$ if and only if $y z \in L$

Proving that a language is not regular

- Conversely,

$$
x \not \equiv_{L} y
$$

- Means for SOME string $z \in \Sigma^{*}$ we have

$$
\begin{aligned}
& \text { either } x z \in L \text { and } y z \quad L \\
& \text { or } x z \notin L \text { and } y z \in L
\end{aligned}
$$

We say z distinguishes x from y (take z, glue it to x and see what belongs to L)

Example

- Pick your favorite language
- e.g. $L=\{$ strings with even zeroes and odd ones\}
- Pick $x=0011$ and $y=01$. None of them in L!
- Can we find distinguishing suffix z ?

$$
z=1:
$$

$x z=00111$ in L
$\mathrm{yz}=011$ not in L

$$
\begin{aligned}
& z=0: \\
& x z=00110 \text { not in } L \\
& y z=010 \text { in } L
\end{aligned}
$$

$z=\varepsilon$:
$x z=0011$ not in L
$\mathrm{yz}=01$ not in L

Example

- $L=\{$ strings with even zeroes and odd ones $\}$
- Pick $x=0011$ and $y=01$. None of them in L!
- Can we find distinguishing suffix z ?

$$
\begin{aligned}
& \mathrm{z}=1: \\
& \mathrm{xz}=00111 \text { in } \mathrm{L} \\
& \mathrm{yz}=011 \text { not in } \mathrm{L}
\end{aligned}
$$

$$
\begin{aligned}
& z=0: \\
& x z=00110 \text { not in } L \\
& y z=010 \text { in } L
\end{aligned}
$$

Bad choice for z!
$x z=00$ not in L
$y z=01$ not in

Why do I care?

- I can learn something about the equivalence relation by looking at every DFA that accepts L.
- Assume that after the DFA reads x and y it ends up at the same state:

$$
\delta^{*}(s, x)=\delta^{*}(s, y) \Rightarrow x \equiv_{L} y
$$

Proof: For any z,

$$
\begin{array}{r}
\delta^{*}(s, x z)=\delta^{*}(s, y z) \Rightarrow \\
\delta^{*}(s, x z) \in A \Leftrightarrow \delta^{*}(s, y z) \in A
\end{array}
$$

Why do I care?

- This implication can be turned around:

$$
\begin{aligned}
& x \not \equiv y \Rightarrow \delta^{*}(s, x) \neq \delta^{*}(s, y) \\
& \text { In ANY DFA for } L \\
& \Rightarrow|Q| \geq 2
\end{aligned}
$$

- For the example before, we found two strings not equivalent. Any DFA for the language has AT LEAST two distinct states!
- Kind of trivial, cause what DFA has only one state?

Why do I care?

- Pushing it further:

If we can find k strings x_{1}, \cdots, x_{k} such that

$$
x_{i} \not \equiv x_{j} \quad \forall i \neq j
$$

Then, any DFA for L has at least k states

A way of formally proving how "complicated" a language is if it is regular

Our Example

- $L=\{$ strings with even zeroes and odd ones $\}$

```
X1=00
x2=01
x3}=00
X4=000
```


Our Example

- $L=\{$ strings with even zeroes and odd ones $\}$

Our Example

- $L=\{$ strings with even zeroes and odd ones $\}$

$$
\begin{aligned}
& x_{1}=00 \\
& x_{2}=01 \\
& x_{3}=001 \\
& x_{4}=000
\end{aligned}
$$

Our Example

- $L=\{$ strings with even zeroes and odd ones $\}$

$$
\begin{aligned}
& x_{1}=00 \\
& x_{2}=01 \\
& x_{3}=001 \\
& x_{4}=000
\end{aligned}
$$

Our Example

- $L=\{$ strings with even zeroes and odd ones $\}$

$$
\begin{aligned}
& x_{1}=00 \\
& x_{2}=01 \\
& x_{3}=001 \\
& x_{4}=000
\end{aligned}
$$

Any DFA for L has AT LEAST 4 states!
What is a DFA for L?

Our Example

- $L=\{$ strings with even zeroes and odd ones $\}$

We proved that this (obvious) DFA is the minimal one!!!

Our Example

- $L=\{$ strings with even zeroes and odd ones $\}$

Proving that a language is not regular

- Suppose I can find an infinite fooling set for L.
- Infinite set of strings $\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \ldots\right\}$ such that

$$
x_{i} \not \equiv x_{j} \quad \forall i \neq j
$$

- Then every D A for L has at least infinite number of distinct states
- L not regular!

Proving that a language is not regular

- Example: $L=\left\{0^{n} 1 n \mid n \geq 0\right\}=\{\varepsilon, 01,0011, \ldots\}$
- Claim: This is a fooling set: $\mathrm{F}=\left\{\mathrm{O}^{\eta} \mid n \geq 0\right\}$

Proof: Let x, y two arbitrary different strings in F.

Therefore $x \not \equiv y$.

Proving that a language is not regular

- Example: $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}=\{\varepsilon, 01,0011, \ldots\}$
- Claim: This is a fooling set: $\mathrm{F}=\left\{0^{n} \mid n \geq 0\right\}$

Proof: Let x, y two arbitrary different strings in F.
$\mathrm{x}=\mathrm{O}^{\mathrm{i}}$ for some integer i
$y=0$ i for some different integer j
$z=1 i$
Therefore $x \not \equiv y$.

Proving that a language is not regular

- Example: $L=\left\{0^{n} 1 \boldsymbol{n} \mid n \geq 0\right\}=\{\varepsilon, 01,0011, \ldots\}$
- Claim: This is a fooling set: $\mathrm{F}=\left\{\mathrm{O}^{\eta} \mid n \geq 0\right\}$

Proof: Let x, y two arbitrary different strings in F.
$x=0$ ifor some integer i
$y=0$ for some different integer j

$$
x z=0^{i} 1^{i} \text { in L }
$$

$y z=01^{1}$ not in L
$z=1 i$
Therefore $x \not \equiv y$.

Proving that a language is not regular

- To prove that L is not Regular:
- Find some infinite set F
- Prove for any two strings x and y in F there is a string z such that $x z$ is in $L X O R y z$ is in L.
- How to come up with those fooling sets?
- Be clever :)
- Think of what information you have to keep track of in a DFA for L.

What to keep track of?

- Example: $L=\left\{0^{n} 1^{n}\right\}=\{\varepsilon, 01,0011, \ldots\}$
- Is a string in L? What do I have to keep track of?
- I need to keep track of the number of zeroes.
- So, every number of zeroes is intuitively a different state (different equivalence class).
- Fooling set is a set of strings that exercises all possible values that I need to keep track in my head.
- Sometimes easier to narrow it down.

What to keep track of?

- Another Example: $L=\left\{w^{*} \mid w \in \Sigma^{*}\right\}=$ even length palindromes
- What is a fooling set?
- I have to remember the whole string w.

Attempt 1:
$F=\Sigma^{*}$
$x=0000$
$y=00$

Attempt 2:
$F=\{?\}$

What to keep track of?

- Another Example: $L=\left\{w^{*} \mid w \in \Sigma^{*}\right\}=$ even length palindromes
- What is a fooling set?
- I have to remember the whole string w.

Attempt 1:
$F=\Sigma^{*}$
$x=0000$
$y=00$

Attempt 2:

$$
\begin{aligned}
& F=0 * 1 \\
& x=0 i 1 \\
& y=0 i 1
\end{aligned}
$$

What to keep track of?

- Another Example: $L=\left\{w^{*} \mid w \in \Sigma^{*}\right\}=$ even length palindromes
- What is a fooling set?
- I have to remember the whole string w.

$$
\begin{aligned}
& F=0^{* 1} \\
& x=0 i 1 \\
& y=0 i 1
\end{aligned}
$$

What z (exercise)?

What to keep track of?

- Another Example: $L=\left\{w^{*} \mid w \in \Sigma^{*}\right\}=$ even length palindromes
- What is a fooling set?
- I have to remember the whole string w.

$$
\begin{aligned}
& F=0^{* 1} \\
& x=0 i 1 \\
& y=0 i 1 \\
& z=10^{i}
\end{aligned}
$$

What to keep track of?

- Another Example: $L=\left\{w \mid w=w^{R}\right\}=$ all palindromes
- What is a fooling set?

$$
\begin{aligned}
& F=0^{* 1} \\
& x=0 i 1 \\
& y=0 i 1 \\
& z=10^{i}
\end{aligned}
$$

What to keep track of?

- Another Example: $L=\left\{w \mid w=w^{R}\right\}=$ all palindromes
- What is a fooling set : SAME!

$$
\begin{aligned}
& F=0^{* 1} \\
& x=0 i 1 \\
& y=0 i 1 \\
& z=10^{i}
\end{aligned}
$$

What to keep track of?

- Another Example: $L=\left\{w \mid w=w^{R}\right\}=$ all palindromes over the alphabet $\{0,1, a, b, c, d, e, f\}$
- What is a fooling set : SAME!

$$
\begin{aligned}
& F=0^{* 1} \\
& x=0 i 1 \\
& y=0 i 1 \\
& z=10^{i}
\end{aligned}
$$

Proving that a language is not regular

Language is regular if and only if there is no infinite fooling set.

Nondeterminism

- Aka Magic.

Tracking Computation

current state and remaining input
A computation's configuration evolves in each time-step

on input 1010

1010
1010
1010
1010

Deterministic Computation

Deterministic: Each step is fully determined by the configuration of the previous step and the transition function. If you do it again, exactly the same thing will happen.

Nondeterminism

- Determinism: opposite of free will
- Nondeterminism: you suddenly have choices!

Non-Deterministic FA

What can be non-deterministic about an FA?

What language?

- At a given state, on a given input, a set of "next-states"
- set could be empty, could be all states...

NFA : Formally

$$
\text { DFA : } M=(\Sigma, Q, \delta, s, A)
$$

Σ : alphabet Q : state space s : start state A : set of accepting states

$$
\begin{gathered}
\delta: Q \times \Sigma \rightarrow \mathrm{Q} \\
\delta(q, a)=\text { a state } \\
\text { NFA }: N=(\Sigma, Q, \delta, s, A) \\
\delta: Q \times \Sigma \rightarrow 2 \mathrm{Q}=\mathcal{P}(Q) \\
\delta(q, a)=\{\text { a set of states }\}
\end{gathered}
$$

NFA

- Input = 1001

- $L=\{$ contains either 00 or 11$\}$

NFA

NFA

One of the states are accepting. There needs to be AT LEAST one accepting state

Nondeterminism

-What is non determinism?

- Magic?
- Parallelism?
- Advice?

Nondeterminism

- What is non determinism?
- Suppose I wanted to prove to you that the string 1001 is in $L=\{$ contains either 00 or 11\}
- We built a DFA with product last time.
- Proof is an accepting computation

NFA

1001
001
1001

Nondeterminism

-What is non determinism?

- Suppose I wanted to prove to you that the string 1001 is in $L=\{$ contains either 00 or 11\}
- We built a DFA with product last time.
- Proof is an accepting computation: guide for the reader to how to follow the steps to a given conclusion.

Nondeterminism

- Pvs. NP
- Are they the same?
- Easier to give the proof than come up with the proof! (?)

Nondeterminism

- For FSM, nondeterminism does not give you more expressive power!
- Any language that can be accepted by an NFAs can also be accepted by a DFA.
- It is more efficient, last example had 4 states but product construction had 8!

DFA for $L=\{w: w$ contains 00 or 11\}

NFA for $L=\{w: ~ w ~ c o n t a i n s ~ 00$ or 11\}

NFA : More efficient

Design an NFA to recognize
$L(M)=\{w \mid w: 7$ th character from the end is a 1$\}$

- Minimum DFA for this language would have 2^{7} states at least!
- need to remember the last 7 symbols.

NFA : Formally

- NFA has 5 parts, similar to a DFA : $N=(\Sigma, Q, \delta, s, A)$
Σ : alphabet Q : state space s : start state F : set of accepting states

$$
\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)=2 Q \text { transition function }
$$

- Define extended transition function:

$$
\begin{gathered}
\delta^{*}: Q \times \Sigma \rightarrow \mathcal{P}(Q)=2 \mathrm{Q} \\
\delta^{*}(q, w)=
\end{gathered}
$$

$$
\text { if } w=\varepsilon
$$

NFA : Formally

- NFA has 5 parts, similar to a DFA : $N=(\Sigma, Q, \delta, s, A)$
Σ : alphabet Q : state space s : start state F : set of accepting states

$$
\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q)=2 Q \text { transition function }
$$

- Define extended transition function:

$$
\begin{aligned}
\delta^{*}: Q \times \Sigma^{*} \rightarrow \mathcal{P}(Q)=2 \mathrm{Q} \\
\delta^{*}(q, w)=\begin{array}{c}
\{q\} \quad \text { if } \mathrm{w}=\varepsilon \\
\cup_{p \in \delta(q, a)} \delta^{*}(p, x) \text { if } \mathrm{w}=\mathrm{ax}
\end{array}
\end{aligned}
$$

NFA : When does it accept?

NFA accepts a string w if and only if

$$
\delta *(s, w) \cap \mathbf{A} \neq \emptyset
$$

