Decerministic Finite Aulomala

Lecture 4

Input Accepted by a DFA

We say that M accepts $w \in \Sigma^{*}$ if M, on input w, starting from the start state s, reaches a final state

$$
\text { i.e., } \delta *(s, w) \in F
$$

$L(M)$ is the set of all strings accepted by M

$$
\text { i.e., } L(M)=\{w \mid \delta *(s, w) \in F\}
$$

Called the language accepted by M

Input Accepted by a DFA

What kind of language is accepted by FSM?

- Automatic (it is an automaton after all)!
- We will use: REGULAR (not a coincidence)

Language is regular iff

-it is accepted by a finite state automaton
-it is described by a regular expression

Warning

" M accepts language L " does not mean simply that M accepts each string in L.
" M accepts language L " means M accepts each string in L and no others!

$$
L(M)=L
$$

Examples: What is $L(M)$?

$(A+B)^{*} A B B A$

Building DFAs

State $=$ Memory

First, decide on Q

The state of a DFA is its entire memory of what has come before

The state must capture enough information to complete the computation on the suffix to come

When designing a DFA, think "what do I need to know at this moment?" That is your state.

DFA Construction Exercise

$L(M)=\{w \mid w$ contains 00$\}$
Is it regular?? $<(0+1)^{*} 00(0+1)^{*}$
What should be in the memory?

DFA Construction Exercise

$L(M)=\{w \mid w$ contains 00$\}$
Is it regular?? $<(0+1)^{*} 00(0+1)^{*}$

What should be in the memory?

DFA Construction Exercise

$L(M)=\{w \mid w$ contains 00$\}$

What should be in the memory?

DFA Construction Exercise

$L(M)=\{w \mid w$ contains 00$\}$
Is it regular?? $<(0+1)^{*} 00(0+1)^{*}$
What should be in the memory?

DFA Construction Exercise

$L(M)=\{w \mid w$ contains 00$\}$
Is it regular?? $<(0+1)^{*} 00(0+1)^{*}$
What should be in the memory?

DFA Construction Exercise

$L(M)=\{w \mid w$ contains 00$\}$

- s : I haven't seen a 00, previous symbol was 1 or undefined.
- a: I haven't seen a 00, previous symbol was a 0
- b: I have seen a 00

$$
0,1
$$

- We have exhausted of all strings. Either accepted (with 00) or not.

DFA construction

- Make sure you interpret all the cases!
- How about design a DFA for $L(M)=\{w \mid w$ contains $001100110011111001101101\}$?
- There is algorithm to minimize the DFA, but when you are asked to do it, try to be clear versus succinct.
- Try to be "stupid", do brute force!!!
- When you are just trying to prove that a language is regular $\rightarrow>$ DFA for the language exists. Write an algorithm like we did for multiple of 5 !

A More Complicated example

$L(M)=\{w \mid w$ contains 00 and then 11\}

A More Complicated example

$L(M)=\{w \mid w$ contains 00$\}$

A More Complicated example

$L(M)=\{w \mid w$ contains 11$\}$

A More Complicated example

$L(M)=\{w \mid w$ contains 00 and then 11\}

A More Complicated example

$L(M)=\{w \mid w$ contains 00 and then 11$\}$

A More Complicated example

$L(M)=\{w \mid w$ contains 00 and then 11$\}$

A More Complicated example

$L(M)=\{w \mid w$ contains 00 and then 11$\}$

A More Complicated example

$L(M)=\{w \mid w$ contains 00 and then 11\}

A More Complicated example

$L(M)=\{w \mid w$ contains 00 and then 11$\}$

A More Complicated example

$L(M)=\{w \mid w$ contains 00 and then 11\}

A More Complicated example

$L(M)=\{w \mid w$ contains 00 and then 11\}

- If A and B are regular, then $A B$ is regular. Does the same hold for DFA?

A More Complicated example

 $L(M)=\{w \mid w$ contains 00 and then 11\}

- If A and B^{1} are regular, then $A B$ is regular. Does the same hold for DFA?
- NO! you cannot glue two DFAs together in general like that. This was a special case

What about the complement?

$L(M)=\{w \mid w$ contains no 11 after 00$\}$

What about the complement?

$L(M)=\{w \mid w$ contains no 11 after 00$\}$

What about the complement?

$L(M)=\{w \mid w$ contains no 11 after 00\}

-If L is regular, then $\Sigma^{*} \backslash L$ is regular

- Make the accepting states into non-accepting and the non-accepting states into accepting

$\mathrm{L}=\{\mathrm{w}: \mathrm{w}$ contains 00 ando. 11$\}$?

- I want to build a machine that decides if a string contains two zeroes in a row AND two ones in a row.
- I want to run both machines at the same time.
- At the end of the string, if I am on the accept state for machine 1 AND on the accept state for machine 2, then I accept.
- How many states total?

$\mathrm{L}=\{\mathrm{w}$: w contains 00 ando 11$\}$?

$L\left(M_{1}\right)$ contains 00
$L\left(M_{2}\right)$:contains 11

$L=\{w: w$ contains 00 ando 11$\} ?$

$L\left(M_{1}\right)$ contains 00

$\mathrm{L}=\{\mathrm{w}$: w contains 00 ando 11$\} ?$

The Product Construction

Formally, given two DFAs

$$
\begin{gathered}
M_{l}=\left(\Sigma, Q_{l}, S_{l}, A_{l}, \delta_{l}\right) \text { and } M_{2}=\left(\Sigma, Q_{2}, S_{2}, A_{2}, \delta_{2}\right) \\
\\
\text { Where } M_{l} \text { accepts } L_{l}
\end{gathered}
$$

M_{2} accepts L_{2}

$$
\begin{gathered}
M=(\Sigma, Q, s, A, \delta) \text { accepts } L_{1} \cap L_{2} \\
Q=Q_{1} \times Q_{2}, s=\left(s_{1}, s_{2}\right) \\
A=\left\{\left(q_{1}, q_{2}\right): q_{1} \in A_{l} \text { and } q_{2} \in A_{2}\right\} \\
\delta:\left(Q_{l} \times Q_{2}\right) \times \Sigma->Q_{l} \times Q_{2} \\
\delta\left(\left(q_{1}, q_{2}\right), a\right)=(\quad, \quad)
\end{gathered}
$$

The Product Construction

Formally, given two DFAs

$$
\begin{gathered}
M_{l}=\left(\Sigma, Q_{l}, S_{l}, A_{l}, \delta_{l}\right) \text { and } M_{2}=\left(\Sigma, Q_{2}, S_{2}, A_{2}, \delta_{2}\right) \\
\\
\text { Where } M_{l} \text { accepts } L_{l}
\end{gathered}
$$

M_{2} accepts L_{2}

$$
\begin{gathered}
M=(\Sigma, Q, s, A, \delta) \text { accepts } L_{1} \cap L_{2} \\
Q=Q_{1} \times Q_{2,} s=\left(s_{1}, s_{2}\right) \\
A=\left\{\left(q_{1}, q_{2}\right): q_{1} \in A_{l} \text { and } q_{2} \in A_{2}\right\} \\
\delta:\left(Q_{l} \times Q_{2}\right) \times \Sigma->Q_{l} \times Q_{2} \\
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
\end{gathered}
$$

The Product Construction

Formally, given two DFAs

$$
\begin{gathered}
M_{l}=\left(\Sigma, Q_{l}, S_{l}, A_{l}, \delta_{l}\right) \text { and } M_{2}=\left(\Sigma, Q_{2}, S_{2}, A_{2}, \delta_{2}\right) \\
\\
\text { Where } M_{l} \text { accepts } L_{l}
\end{gathered}
$$

$$
M_{2} \text { accepts } L_{2} \quad L_{1} \cup L_{2}
$$

$$
\begin{gathered}
M=(\Sigma, Q, s, A, \delta) \text { accepts } L_{1} \not L_{2} \\
Q=Q_{1} \times Q_{2}, s=\left(s_{1}, s_{2}\right) \\
A=\left\{\left(q_{1}, q_{2}\right): q_{1} \in A_{l} \text { and } q_{2} \in A_{2}\right\} \\
\delta:\left(Q_{l} \times Q_{2}\right) \times \Sigma->Q_{l} \times Q_{2} \\
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
\end{gathered}
$$

The Product Construction

Formally, given two DFAs

$$
\begin{gathered}
M_{l}=\left(\Sigma, Q_{l}, S_{l}, A_{l}, \delta_{l}\right) \text { and } M_{2}=\left(\Sigma, Q_{2}, S_{2}, A_{2}, \delta_{2}\right) \\
\\
\text { Where } M_{l} \text { accepts } L_{l}
\end{gathered}
$$

$$
M_{2} \text { accepts } L_{2} \quad L_{1} \cup L_{2}
$$

$$
M=(\Sigma, Q, s, A, \delta) \text { accepts } L_{1} \not L_{2}
$$

$$
Q=Q_{1} \times Q_{2, s}=\left(s_{1}, s_{2}\right)
$$

$$
A=\left\{\left(q_{1}, q_{2}\right): q_{1} \in A_{l} \text { or } q_{2} \in A_{2}\right\}
$$

$$
\delta:\left(Q_{1} \times Q_{2}\right) \times \Sigma->Q_{1} \times Q_{2}
$$

$$
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
$$

The Product Construction: Question

$$
\begin{gathered}
M_{l}=\left(\Sigma, Q_{l}, S_{1}, A_{l}, \delta_{l}\right) \text { and } M_{2}=\left(\Sigma, Q_{2}, S_{2}, A_{2}, \delta_{2}\right) \\
\text { Where } M_{l} \text { accepts } L_{l} \\
M_{2} \text { accepts } L_{2}
\end{gathered}
$$

$$
\begin{gathered}
M=(\Sigma, Q, s, A, \delta) \text { accepts } L_{1} \backslash L_{2} \\
Q=Q_{1} \times Q_{2}, s=\left(s_{1}, s_{2}\right) \\
A=\{ \} ? \\
\delta:\left(Q_{1} \times Q_{2}\right) \times \Sigma->Q_{1} \times Q_{2} \\
\delta\left(\left(q_{1}, q_{2}\right), a\right)=(\quad, \quad) ?
\end{gathered}
$$

The Product Construction:

 Question$$
M_{l}=\left(\Sigma, Q_{l}, S_{l}, A_{l}, \delta_{l}\right) \text { and } M_{2}=\left(\Sigma, Q_{2}, S_{2}, A_{2}, \delta_{2}\right)
$$

Where M_{l} accepts L_{l}
M_{2} accepts L_{2}

$$
\begin{gathered}
M=(\Sigma, Q, s, A, \delta) \text { accepts } L_{1} \vee L_{2} \\
Q=Q_{1} \times Q_{2}, s=\left(s_{1}, s_{2}\right) \\
A=\left\{\left(q_{1}, q_{2}\right): q_{1} \in A_{l} \text { but not } q_{2} \in A_{2}\right\} \\
\delta:\left(Q_{I} \times Q_{2}\right) \times \Sigma->Q_{I} \times Q_{2} \\
\delta\left(\left(q_{1}, q_{2}\right), a\right)=\left(\delta_{1}\left(q_{1}, a\right), \delta_{2}\left(q_{2}, a\right)\right)
\end{gathered}
$$

Closure Properties of Regular Languages

- Union: trivial for regular expressions, easy for DFAs via product
- Complement: easy for DFAs, hard for regular expressions
- Intersection: easy for DFAs via product, hard for regular expressions
- Difference: easy for DFAs via product, hard for regular expressions
- Concatenation: easy for regular expressions, hard for DFA's

