Lanquages and
Regular expressions

CS 374

Strings, Sets of Strings, Sets of
Sets of Strings...

* We defined strings in the last lecture, and
showed some properties.

* What about sets of strings?

CS 374

2n 2% and 2*
« 27 is the set of all strings over X of length exactly n.
Defined inductively as:
- M= {e}
— 2n=233rlifn>0
¢ 2* s the set of all finite length strings:
2* = Upo 2N

* 2tis the set of all nonempity finite length strings:

Z+ — UI’ZZ] Z”

CS 374

2n 2% and 2*

o 2n| — |2|n

— @0 ={g)
- D=0 =@ iftn>0

* @7=1ifn=0

D7 =0 ifn>0

CS 374

Ul

2n 2% and 2*

o |Z*| =7
— Infinity. More precisely, NXo

— [2%] = [2* = N] = No

no longest
* How long is the longest string in 2*? string!

|

* How many infinitely long strings in 2*?

Languages

CS 374

~N

Language

» Definition: A formal language L is a set of strings
over some finite alphabet X or, equivalently, an
arbitrary subset of Z*. Convention: Italic Upper case
letters denote languages.

« Examples of languages :
— the empty set @
— the set {e},
— the set {0,1}* of all boolean finite length strings.

— the set of all strings in {0,1}* with an odd number
of 1’s.

— The set of all python programs that print “Hello
World!”

« There are uncountably many languages (but each
language has countably many strings)

O 0 NN O U1 A W N =

L G
= O

12

_~ = = = = = =
O O N O 1 A W

O = 0O 0 = = 0 0. 0 = = 00 - =0 =~0 o

CS 374

Much ado about nothing

* glisa containing no symbols. Itis not a
language.
 {e} IS a containing one string: the

empty string ¢. It is not a string.

* (isthe . It contains no strings.

CS 374

Building Languages

* Languages can be manipulated like any other set.
* Set operations:
— Union: L1 U L
— Intersection, difference, symmetric difference
— Complement: L= Z*\L = {x€X*| x& L}

— (Specific to sets of strings) concatenation: Li-La =
{xylxelL,yel,}

CS 374

Concatenation
o Lirlo=Lilo={xylx€ L,y € Ly } (we omit the bullet

often)

e.g. L = { fido, rover, spot }, L, = { fluffy, tabby }

then LiL, ={ fidoflufty, fidotabby,

rovert ufff(, .

|L1L2| =0]

r

Li={aaa},l,=0
IRV D)) =

~N

r

L, ={a,aa}, L,= {¢&}
L1L2 — L1

~N

Building Languages
* [rinductively defined: L0 = {&}, L" = LL"!

Kleene Closure (star) L*

Definition 1: L* = U,>9 L", the set of all strings obtained
by concatenating a sequence of zero or more stings from L

CS 374

Building Languages
* [rinductively defined: L0 = {&}, L" = LL"!

Kleene Closure (star) L*

Recursive Definition: L* is the set of strings w
such that either
— W= & or

— w=xy forxinLandyinL*

CS 374

CS 374

Building Languages

+ {ey¥=17 @*=<{e}*= 0% ={¢e}

* For any other L, the Kleene closure is infinite and
contains arbitrarily long strings. It is the smaller superset
of L that is closed under concatenation and contains the

empty string.
 Kleene Plus

L* = LL*, set of all strings obtained by concatenating a
sequence of at least one string from L.

—When is it equal to L* ?

Reqular Lanquages

CS 374

Regular Languages

The set of regular languages over some
alphabet X is defined inductively by:

_ IS empty

_ contains a single string (could be the empty
string)

It L1, Ly are regular, then L= L; U L, is regular

f L1, Ly are regular, then L= L; Ly is regular

f L is regular, then L* is regular

CS 374

Regular Languages Examples

— L = any finite set of strings. E.g., L = set of all strings of
length at most 10

— L =the set of all strings of O’s including the empty string

— Intuitively L is regular if it can be constructed from
iIndividual strings using any combination of union,
concatenation and unbounded repetition.

CS 374

Regular Languages Examples

* Infinite sets, but of strings with “regular” patterns
— 2* (recall: L* is regular if L is)
— S+ = %
— All binary integers, starting with 1
e L={1}{0,1}*
— All binary integers which are multiples of 37

e |ater

Regular Expressions

CS 374

Regular Expressions

* A compact notation to describe regular
languages

* Omit braces around one-string sets, use + to
denote union and juxtapose subexpressions to
represent concatenation (without the dot, like we
have been doing).

* Useful in
— text search (editors, Unix/grep)
— compilers: lexical analysis

Inductive Definition

A regular expression r over alphabet X is one of the
following (L(r) is the language it represents):

Atomic expressions (Base cases)

% L(D) =0

w for w € 3% L(w) = {w}

Inductively defined expressions

alt notation

(r1+r2) L(ri+r2) = L(r1) U L(r2) (ri]r2) or
(r1r2) L(r1r2) = L(r1)L(r2) (r1Ur)
(r*) L(r*) = L(r)*

Any regular language has a regular expression and vice versa

CS 374

Regular Expressions

« Can omit many parentheses

— By following precedence rules :
star (*) before concatenation (-), before union (+)

e e.g. rfs+1t =((r*)s)+t
e 10* is shorthand for {1}-{0}* and NOT {10} *
— By associativity: (r+s)+t = r+s+t, (rs)t = rst
* More short-hand notation

— e.qg., r* =rr¥ (note: * is in superscript)

CS 374

Regular Expressions: Examples

(O+1)*

— All binary strings
((0+1)(0+1))*

— All binary strings of even length
(0+1)*001(0+1)*

— All binary strings containing the substring 001
0* + (0*10*10*10%)*

— All binary strings with #1s = 0 mod 3
(01+1)*(0+¢)

— All binary strings without two consecutive Os

CS 374

Exercise: create regular
expressions

* All binary strings with either the pattern 001 or
the pattern 100 occurring somewhere

one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*

* All binary strings with an even number of 1s

one answer: 0*(10*10%)*

CS 374

Regular Expression Identities

° r*r* — r*
® (r*)* — r*
* Ir*=r%r

o (rs)*r =r(sr)*

* (r+s)* = (r’s*)* = (r*+ s*)* = (r+s*)* = ...

CS 374

Equivalence

* Two regular expressions are equivalent if they
describe the same language. eqg.

— (0+1)* = (14+0)* (why?)

* Almost every regular language can be
represented by infinitely many distinct but
equivalent regular expressions

— (LO)*Le+@ =7

CS 374

Regular Expression Trees

» Useful to think of a regular expression as a tree. Nice
visualization of the recursive nature of regular expressions.

« Formally, a regular expression tree is one of the following:
— aleaf node labeled
— a leaf node labeled with a string

— a node labeled + with two children, each of which is
the root of a regular expression tree

— a node labeled - with two children, each of which is
the root of a regular expression tree

— a node labeled * with one child, which is the root of a
regular expression tree

CS 374

*

*

0

1

A regular expression tree for © + 0*1(10*1 + 01*0)*10*

Not all languages are
reqular!

CS 374

Are there Non-Regular
Languages?

Every regular expression over {0,1} is itself a string
over the 8-symbol alphabet {0,1,+,*,(,),&, G}.

Interpret those symbols as digits 1 through 8. Every
regular expression is a base-9 representation of a
unique integer.

Countably infinite!

We saw (first few slides) there are uncountably many
languages over {0,1}.

In fact, the set of all regular expressions over the
{0,1} alphabet is a non-regular language over the
alphabet {0,1,+,%,(,),&, D}

