
Languages and  
Regular expressions

Lecture 2
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Strings, Sets of Strings, Sets of 
Sets of Strings…

• We defined strings in the last lecture, and 
showed some properties. 

• What about sets of strings?
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Σn, Σ*, and Σ+

• Σn is the set of all strings over Σ of length exactly n. 
Defined inductively as: 

–  Σ0 = {ε} 

–  Σn = ΣΣn-1 if n > 0 

• Σ* is the set of all finite length strings:  

Σ* = ∪n≥0  Σn 

• Σ+ is the set of all nonempty finite length strings: 

Σ+ = ∪n≥1  Σn 
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Σn, Σ*, and Σ+

• |Σn| = ? 

• |Øn| = ?    

–  Ø0 = {ε} 

–  Øn = ØØn-1 = Ø if n > 0 

• |Øn| = 1  if n = 0 
|Øn| = 0  if n > 0
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Σn, Σ*, and Σ+

• |Σ*| = ? 

– Infinity. More precisely, ℵ0 

– |Σ*| = |Σ+| = |N| = ℵ0 

• How long is the longest string in Σ*? 

• How many infinitely long strings in Σ*?
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no longest 
string!

none
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Language
• Definition: A formal language L is a set of strings 

over some finite alphabet Σ or, equivalently, an 
arbitrary subset of Σ*. Convention: Italic Upper case 
letters denote languages. 

• Examples of languages :  

– the empty set Ø

–  the set {ε}, 

–  the set {0,1}* of all boolean finite length strings. 

– the set of all strings in {0,1}* with an odd number 
of 1’s. 

– The set of all python programs that print “Hello 
World!” 

• There are uncountably many languages (but each 
language has countably many strings)
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1 ε 0

2 0 0
3 1 1

4 00 0
5 01 1
6 10 1

7 11 0
8 000 0
9 001 1

10 010 1
11 011 0

12 100 1
13 101 0

14 110 0

15 111 1
16 1000 1
17 1001 0

18 1010 0
19 1011 1

20 1100 0
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Much ado about nothing

• ε is a string containing no symbols.  It is not a 
language. 

• {ε} is a language containing one string:  the 
empty string ε. It is not a string. 

• Ø is the empty language.  It contains no strings.
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Building Languages

• Languages can be manipulated like any other set. 

• Set operations: 

– Union: L1 ∪ L2 

– Intersection, difference, symmetric difference 

– Complement: L̅ =  Σ* \ L  =  { x ∈ Σ* |  x ∉ L} 

– (Specific to sets of strings) concatenation: L1⋅L2 = 
{ xy | x ∈ L1, y ∈ L2 } 
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 Concatenation
• L1⋅L2 = L1L2={ xy | x ∈ L1, y ∈ L2 } (we omit the bullet 

often) 

e.g. L1 = { fido, rover, spot }, L2 = { fluffy, tabby } 

 then L1L2 ={ fidofluffy, fidotabby,  
roverfluffy, ...}
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|L1L2| =?6 

L1 = {a,aa}, L2= {ε} 
L1L2 = ?L1 L1 = {a,aa}, L2 = Ø 

L1L2 = ?Ø 
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Building Languages
• Ln inductively defined: L0 = {ε}, Ln = LLn-1

Kleene Closure (star) L*

Definition 1: L* = ∪n≥0  Ln,  the set of all strings obtained 
by concatenating a sequence of zero or more stings from L
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Building Languages
• Ln inductively defined: L0 = {ε}, Ln = LLn-1

Kleene Closure (star) L*

Recursive Definition: L* is the set of strings w

such that either 

—w= ε or

— w=xy    for x in L and y in L*
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Building Languages

• {ε}* =  ?    Ø* = ? 

• For any other L, the Kleene closure is infinite and 
contains arbitrarily long strings. It is the smaller superset 
of L that is closed under concatenation and contains the 
empty string. 

• Kleene Plus

 L+ = LL*, set of all strings obtained by concatenating a 
sequence of at least one string from L. 

—When is it equal to L* ?
13

{ε}* =  Ø* = {ε}



Regular Languages
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Regular Languages
• The set of regular languages over some 

alphabet Σ is defined inductively by: 

• L is empty 

• L contains a single string (could be the empty 
string) 

• If L1, L2 are regular, then L= L1 ∪ L2 is regular 

• If L1, L2 are regular, then L= L1 L2 is regular 

• If L is regular, then L* is regular
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Regular Languages Examples

– L = any finite set of strings. E.g., L = set of all strings of 
length at most 10 

– L = the set of all strings of 0’s including the empty string 

– Intuitively L is regular if it can be constructed from 
individual strings using any combination of union, 
concatenation and unbounded repetition.
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Regular Languages Examples
• Infinite sets, but of strings with “regular” patterns 

– Σ* (recall: L* is regular if L is) 

– Σ+ = ΣΣ* 

– All binary integers, starting with 1 

• L = {1}{0,1}*  

– All binary integers which are multiples of 37 

• later
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Regular Expressions
• A compact notation to describe regular 

languages 

• Omit braces around one-string sets, use + to 
denote union and juxtapose subexpressions to 
represent concatenation (without the dot, like we 
have been doing). 

• Useful in  
– text search (editors, Unix/grep) 
– compilers: lexical analysis
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Inductive Definition
A regular expression r over alphabet Σ is one of the 

following (L(r) is the language it represents):
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Atomic expressions (Base cases)

Ø L(Ø) = Ø

w for w ∈ Σ* L(w) = {w}

Inductively defined expressions

(r1+r2) L(r1+r2) = L(r1) ∪ L(r2)
(r1r2) L(r1r2) = L(r1)L(r2)
(r*) L(r*) = L(r)*

Any regular language has a regular expression and vice versa

alt notation 
(r1|r2) or 
(r1∪r2)
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Regular Expressions
• Can omit many parentheses 

– By following precedence rules : 
star (*) before concatenation (⋅), before union (+) 

• e.g.  r*s + t  ≡ ((r*) s) + t

• 10* is shorthand for {1}⋅{0}* and NOT {10}*

– By associativity: (r+s)+t ≡ r+s+t, (rs)t ≡ rst

• More short-hand notation 

– e.g., r+ ≡ rr* (note: + is in superscript)
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Regular Expressions: Examples
• (0+1)*

– All binary strings 

• ((0+1)(0+1))*

– All binary strings of even length 

• (0+1)*001(0+1)*

– All binary strings containing the substring 001 

• 0*  +  (0*10*10*10*)*

– All binary strings with #1s ≡ 0 mod 3 

• (01+1)*(0+ε)

– All binary strings without two consecutive 0s
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Exercise:  create regular 
expressions

• All binary strings with either the pattern 001 or 
the pattern 100 occurring somewhere 

• All binary strings with an even number of 1s
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one answer:   (0+1)*001(0+1)*  +   (0+1)*100(0+1)*

one answer:   0*(10*10*)*
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Regular Expression Identities
• r*r* = r* 

• (r*)* = r* 

• rr* = r*r 

• (rs)*r = r(sr)* 

• (r+s)* = (r*s*)* = (r*+ s*)* = (r+s*)* = ... 
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Equivalence 
• Two regular expressions are equivalent if they 

describe the same language. eg. 

– (0+1)* = (1+0)* (why?)

• Almost every regular language can be 
represented by infinitely many distinct but 
equivalent regular expressions 

– (L Ø)*Lε+Ø = ?
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Regular Expression Trees
• Useful to think of a regular expression as a tree. Nice 

visualization of the recursive nature of regular expressions.  

• Formally, a regular expression tree is one of the following: 

– a leaf node labeled Ø 

– a leaf node labeled with a string 

– a node labeled +  with two children, each of which is 
the root of a regular expression tree 

– a node labeled ⋅  with two children, each of which is 
the root of a regular expression tree 

– a node labeled *  with one child, which is the root of a 
regular expression tree
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Not all languages are 
regular!
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Are there Non-Regular 
Languages?

• Every regular expression over {0,1} is itself a string 
over the 8-symbol alphabet {0,1,+,*,(,),ε, Ø}.  

• Interpret those symbols as digits 1 through 8. Every 
regular expression is a base-9 representation of a 
unique integer.  

• Countably infinite! 

• We saw (first few slides) there are uncountably many 
languages over {0,1}. 

• In fact, the set of all regular expressions over the 
{0,1} alphabet is a non-regular language over the 
alphabet {0,1,+,*,(,),ε, Ø}!!
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