Languages and Regular expressions Lecture 2

Sets of Strings, Sets of Strings...

- We defined strings in the last lecture, and showed some properties.
- What about sets of strings?

374 2

Σ^n , Σ^* , and Σ^+

Σⁿ is the set of all strings over Σ of length exactly n.
Defined inductively as:

 $- \Sigma^0 = \{\varepsilon\}$

374

3

$$- \Sigma^n = \Sigma \Sigma^{n-1} \text{ if } n > 0$$

• Σ^* is the set of all finite length strings:

$$\Sigma^* = \bigcup_{n \ge 0} \Sigma^n$$

• Σ^+ is the set of all <u>nonempty</u> finite length strings:

$$\Sigma^{+} = \bigcup_{n \ge 1} \Sigma^{n}$$

Σ^n , Σ^* , and Σ^+

- $|\Sigma^n| = |\Sigma|^n$
- $|\mathcal{O}^n| = ?$

374

 \mathcal{O}

4

 $- \quad \text{ } \emptyset^0 = \{\varepsilon\}$

$$- \quad \emptyset^n = \emptyset \emptyset^{n-1} = \emptyset \text{ if } n > 0$$

• $|\mathcal{Q}^n| = 1$ if n = 0 $|\mathcal{Q}^n| = 0$ if n > 0

Σ^n , Σ^* , and Σ^+

no longest

string!

none

- $|\Sigma^*| = ?$
 - Infinity. More precisely, κ_0

 $- |\Sigma^*| = |\Sigma^+| = |\mathbb{N}| = \aleph_0$

- How long is the longest string in Σ^* ?
- How many infinitely long strings in Σ^* ?

374 S 5

Languages

Language

- Definition: A formal language L is a set of strings over some finite alphabet Σ or, equivalently, an arbitrary subset of Σ*. Convention: Italic Upper case letters denote languages.
- Examples of languages :
 - the empty set Ø
 - the set $\{\varepsilon\}$,
 - the set {0,1}* of all boolean finite length strings.
 - the set of all strings in {0,1}* with an odd number of 1's.
 - The set of all python programs that print "Hello World!"
- There are uncountably many languages (but each language has countably many strings)

1	З	0
2	0	0
3	1	1
4	00	0
5	01	1
6	10	1
7	11	0
8	000	0
9	001	1
10	010	1
11	011	0
12	100	1
13	101	0
14	110	0
15	111	1
16	1000	1
17	1001	0
18	1010	0
19	1011	1
20	1100	0

7

Much ado about nothing

- ε is a string containing no symbols. It is not a language.
- {ε} is a language containing one string: the empty string ε. It is not a string.
- Ø is the empty language. It contains no strings.

374

Building Languages

- Languages can be manipulated like any other set.
- Set operations:
 - Union: $L_1 \cup L_2$
 - Intersection, difference, symmetric difference
 - Complement: $\overline{L} = \Sigma^* \setminus L = \{ x \in \Sigma^* \mid x \notin L \}$
 - (Specific to sets of strings) concatenation: $L_1 \cdot L_2 = \{xy \mid x \in L_1, y \in L_2\}$

374

 \mathcal{O}

Concatenation

• $L_1 \cdot L_2 = L_1 L_2 = \{ xy \mid x \in L_1, y \in L_2 \}$ (we omit the bullet often)

e.g. $L_1 = \{ \text{ fido, rover, spot } \}, L_2 = \{ \text{ fluffy, tabby } \}$

then $L_1L_2 = \{ fidofluffy, fidotabby, roverfluffy, ... \}$ $|L_1L_2| = 6$ $L_1 = \{ e$

$$L_1 = \{a,aa\}, L_2 = \emptyset$$

 $L_1L_2 = \emptyset$

 $L_1 = \{a,aa\}, L_2 = \{\varepsilon\}$ $L_1L_2 = L_1$

Building Languages

• L^n inductively defined: $L^0 = \{\varepsilon\}, L^n = LL^{n-1}$

374

 \mathcal{O}

11

Kleene Closure (star) L*

Definition 1: $L^* = \bigcup_{n \ge 0} L^n$, the set of all strings obtained by concatenating a sequence of zero or more stings from L

Building Languages

• L^n inductively defined: $L^0 = \{\varepsilon\}, L^n = LL^{n-1}$

Kleene Closure (star) L*

Recursive Definition: L* is the set of strings w such that either

 $-w = \varepsilon \ or$

-w=xy for x in L and y in L*

•
$$\{\epsilon\}^* = ? \quad \emptyset^* = \{\epsilon\}^* = \emptyset^* = \{\epsilon\}$$

- For any other L, the Kleene closure is infinite and contains arbitrarily long strings. It is the smaller superset of L that is closed under concatenation and contains the empty string.
- Kleene Plus

 $L^+ = LL^*$, set of all strings obtained by concatenating a sequence of at least one string from L.

—When is it equal to L^* ?

374

Regular Languages

Regular Languages

- The set of regular languages over some alphabet Σ is defined inductively by:
- L is empty
- L contains a single string (could be the empty string)
- If L_1, L_2 are regular, then $L = L_1 \cup L_2$ is regular
- If L_1 , L_2 are regular, then $L = L_1 L_2$ is regular
- If L is regular, then L^* is regular

728 SO 15

Regular Languages Examples

- L = any finite set of strings. E.g., L = set of all strings of length at most 10
- -L = the set of all strings of 0's including the empty string

 Intuitively L is regular if it can be constructed from individual strings using any combination of union, concatenation and unbounded repetition.

Regular Languages Examples

- Infinite sets, but of strings with "regular" patterns
 - $-\Sigma^*$ (recall: L^* is regular if L is)
 - $-\Sigma^{+}=\Sigma\Sigma^{*}$
 - All binary integers, starting with 1
 - $L = \{1\}\{0,1\}^*$
 - All binary integers which are multiples of 37
 - later

Regular Expressions

Regular Expressions

- A compact notation to describe regular languages
- Omit braces around one-string sets, use + to denote union and juxtapose subexpressions to represent concatenation (without the dot, like we have been doing).
- Useful in
 - text search (editors, Unix/grep)
 - compilers: lexical analysis

Inductive Definition

A regular expression r over alphabet Σ is one of the following (L(r) is the language it represents):

Atomic expressions (Base cases)

Ø	$L(\emptyset) = \emptyset$
w for $w \in \Sigma^*$	$L(w) = \{w\}$

Inductively defined expressions		alt notation
$(r_1 + r_2)$	$L(r_1+r_2) = L(r_1) \cup L(r_2)$	$(r_1 r_2)$ or
(r_1r_2)	$L(r_1r_2) = L(r_1)L(r_2)$	$(r_1 \cup r_2)$
(r^*)	$L(r^*) = L(r)^*$	

Any regular language has a regular expression and vice versa

Regular Expressions

- Can omit many parentheses
 - By following precedence rules : star (*) before concatenation (·), before union (+)

• e.g.
$$r^*s + t \equiv ((r^*)s) + t$$

- 10* is shorthand for $\{1\} \cdot \{0\}^*$ and NOT $\{10\}^*$
- By associativity: $(r+s)+t \equiv r+s+t$, $(rs)t \equiv rst$
- More short-hand notation

- e.g., $r^+ \equiv rr^*$ (note: + is in superscript)

21

Regular Expressions: Examples

- (0+1)*
 - All binary strings
- ((0+1)(0+1))*
 - All binary strings of even length
- (0+1)*001(0+1)*
 - All binary strings containing the substring 001
- 0* + (0*10*10*10*)*
 - All binary strings with $#1s \equiv 0 \mod 3$
- (01+1)*(0+*ε*)
 - All binary strings without two consecutive 0s

Exercise: create regular expressions

• All binary strings with either the pattern 001 or the pattern 100 occurring somewhere

one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*

• All binary strings with an even number of 1s

one answer: $0^{*}(10^{*}10^{*})^{*}$

374

S

Regular Expression Identities

- $r^*r^* = r^*$
- $(r^*)^* = r^*$
- *rr** = *r***r*
- $(rs)^*r = r(sr)^*$
- $(r+s)^* = (r^*s^*)^* = (r^*+s^*)^* = (r+s^*)^* = \dots$

Equivalence

• Two regular expressions are equivalent if they describe the same language. eg.

 $- (0+1)^* = (1+0)^* (why?)$

 Almost every regular language can be represented by infinitely many distinct but equivalent regular expressions

 $- (L \emptyset)*L\epsilon + \emptyset = ?$

Regular Expression Trees

- Useful to think of a regular expression as a tree. Nice visualization of the recursive nature of regular expressions.
- Formally, a regular expression tree is one of the following:
 - a leaf node labeled Ø
 - a leaf node labeled with a string
 - a node labeled + with two children, each of which is the root of a regular expression tree
 - a node labeled · with two children, each of which is the root of a regular expression tree
 - a node labeled * with one child, which is the root of a regular expression tree

374

A regular expression tree for $0 + 0^{*1}(10^{*1} + 01^{*0})^{*10^{*}}$

Not all languages are regular!

Are there Non-Regular Languages?

- Every regular expression over {0,1} is itself a string over the 8-symbol alphabet {0,1,+,*,(,),ε, Ø}.
- Interpret those symbols as digits 1 through 8. Every regular expression is a base-9 representation of a unique integer.
- Countably infinite!
- We saw (first few slides) there are uncountably many languages over {0,1}.
- In fact, the set of all regular expressions over the {0,1} alphabet is a non-regular language over the alphabet {0,1,+,*,(,),ε, Ø}!!