
Languages and  
Regular expressions

Lecture 2

1

C
S

37
4

Strings, Sets of Strings, Sets of
Sets of Strings…

• We defined strings in the last lecture, and
showed some properties.

• What about sets of strings?

2

C
S

37
4

Σn, Σ*, and Σ+

• Σn is the set of all strings over Σ of length exactly n.
Defined inductively as:

– Σ0 = {ε}

– Σn = ΣΣn-1 if n > 0

• Σ* is the set of all finite length strings:

Σ* = ∪n≥0 Σn

• Σ+ is the set of all nonempty finite length strings:

Σ+ = ∪n≥1 Σn
3

C
S

37
4

Σn, Σ*, and Σ+

• |Σn| = ?

• |Øn| = ?

– Ø0 = {ε}

– Øn = ØØn-1 = Ø if n > 0

• |Øn| = 1 if n = 0 
|Øn| = 0 if n > 0

4

|Σ|n

C
S

37
4

Σn, Σ*, and Σ+

• |Σ*| = ?

– Infinity. More precisely, ℵ0

– |Σ*| = |Σ+| = |N| = ℵ0

• How long is the longest string in Σ*?

• How many infinitely long strings in Σ*?

5

no longest
string!

none

Languages

6

C
S

37
4

Language
• Definition: A formal language L is a set of strings

over some finite alphabet Σ or, equivalently, an
arbitrary subset of Σ*. Convention: Italic Upper case
letters denote languages.

• Examples of languages :

– the empty set Ø

– the set {ε},

– the set {0,1}* of all boolean finite length strings.

– the set of all strings in {0,1}* with an odd number
of 1’s.

– The set of all python programs that print “Hello
World!”

• There are uncountably many languages (but each
language has countably many strings)

7

1 ε 0

2 0 0
3 1 1

4 00 0
5 01 1
6 10 1

7 11 0
8 000 0
9 001 1

10 010 1
11 011 0

12 100 1
13 101 0

14 110 0

15 111 1
16 1000 1
17 1001 0

18 1010 0
19 1011 1

20 1100 0

C
S

37
4

Much ado about nothing

• ε is a string containing no symbols. It is not a
language.

• {ε} is a language containing one string: the
empty string ε. It is not a string.

• Ø is the empty language. It contains no strings.

8

C
S

37
4

Building Languages

• Languages can be manipulated like any other set.

• Set operations:

– Union: L1 ∪ L2

– Intersection, difference, symmetric difference

– Complement: L̅ = Σ* \ L = { x ∈ Σ* | x ∉ L}

– (Specific to sets of strings) concatenation: L1⋅L2 =
{ xy | x ∈ L1, y ∈ L2 }

9

C
S

37
4

 Concatenation
• L1⋅L2 = L1L2={ xy | x ∈ L1, y ∈ L2 } (we omit the bullet

often)

e.g. L1 = { fido, rover, spot }, L2 = { fluffy, tabby }

 then L1L2 ={ fidofluffy, fidotabby,
roverfluffy, ...}

10

|L1L2| =?6

L1 = {a,aa}, L2= {ε}
L1L2 = ?L1 L1 = {a,aa}, L2 = Ø

L1L2 = ?Ø

C
S

37
4

Building Languages
• Ln inductively defined: L0 = {ε}, Ln = LLn-1

Kleene Closure (star) L*

Definition 1: L* = ∪n≥0 Ln, the set of all strings obtained
by concatenating a sequence of zero or more stings from L

11

C
S

37
4

Building Languages
• Ln inductively defined: L0 = {ε}, Ln = LLn-1

Kleene Closure (star) L*

Recursive Definition: L* is the set of strings w

such that either

—w= ε or

— w=xy for x in L and y in L*

12

C
S

37
4

Building Languages

• {ε}* = ? Ø* = ?

• For any other L, the Kleene closure is infinite and
contains arbitrarily long strings. It is the smaller superset
of L that is closed under concatenation and contains the
empty string.

• Kleene Plus

 L+ = LL*, set of all strings obtained by concatenating a
sequence of at least one string from L.

—When is it equal to L* ?
13

{ε}* = Ø* = {ε}

Regular Languages

14

C
S

37
4

Regular Languages
• The set of regular languages over some

alphabet Σ is defined inductively by:

• L is empty

• L contains a single string (could be the empty
string)

• If L1, L2 are regular, then L= L1 ∪ L2 is regular

• If L1, L2 are regular, then L= L1 L2 is regular

• If L is regular, then L* is regular
15

C
S

37
4

Regular Languages Examples

– L = any finite set of strings. E.g., L = set of all strings of
length at most 10

– L = the set of all strings of 0’s including the empty string

– Intuitively L is regular if it can be constructed from
individual strings using any combination of union,
concatenation and unbounded repetition.

16

C
S

37
4

Regular Languages Examples
• Infinite sets, but of strings with “regular” patterns

– Σ* (recall: L* is regular if L is)

– Σ+ = ΣΣ*

– All binary integers, starting with 1

• L = {1}{0,1}*

– All binary integers which are multiples of 37

• later

17

Regular Expressions

18

C
S

37
4

Regular Expressions
• A compact notation to describe regular

languages

• Omit braces around one-string sets, use + to
denote union and juxtapose subexpressions to
represent concatenation (without the dot, like we
have been doing).

• Useful in
– text search (editors, Unix/grep)
– compilers: lexical analysis

19

C
S

37
4

Inductive Definition
A regular expression r over alphabet Σ is one of the

following (L(r) is the language it represents):

20

Atomic expressions (Base cases)

Ø L(Ø) = Ø

w for w ∈ Σ* L(w) = {w}

Inductively defined expressions

(r1+r2) L(r1+r2) = L(r1) ∪ L(r2)
(r1r2) L(r1r2) = L(r1)L(r2)
(r*) L(r*) = L(r)*

Any regular language has a regular expression and vice versa

alt notation 
(r1|r2) or
(r1∪r2)

C
S

37
4

Regular Expressions
• Can omit many parentheses

– By following precedence rules : 
star (*) before concatenation (⋅), before union (+)

• e.g. r*s + t ≡ ((r*) s) + t

• 10* is shorthand for {1}⋅{0}* and NOT {10}*

– By associativity: (r+s)+t ≡ r+s+t, (rs)t ≡ rst

• More short-hand notation

– e.g., r+ ≡ rr* (note: + is in superscript)

21

C
S

37
4

Regular Expressions: Examples
• (0+1)*

– All binary strings

• ((0+1)(0+1))*

– All binary strings of even length

• (0+1)*001(0+1)*

– All binary strings containing the substring 001

• 0* + (0*10*10*10*)*

– All binary strings with #1s ≡ 0 mod 3

• (01+1)*(0+ε)

– All binary strings without two consecutive 0s
22

C
S

37
4

Exercise: create regular
expressions

• All binary strings with either the pattern 001 or
the pattern 100 occurring somewhere

• All binary strings with an even number of 1s

23

one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*

one answer: 0*(10*10*)*

C
S

37
4

Regular Expression Identities
• r*r* = r*

• (r*)* = r*

• rr* = r*r

• (rs)*r = r(sr)*

• (r+s)* = (r*s*)* = (r*+ s*)* = (r+s*)* = ...

24

C
S

37
4

Equivalence
• Two regular expressions are equivalent if they

describe the same language. eg.

– (0+1)* = (1+0)* (why?)

• Almost every regular language can be
represented by infinitely many distinct but
equivalent regular expressions

– (L Ø)*Lε+Ø = ?

25

C
S

37
4

Regular Expression Trees
• Useful to think of a regular expression as a tree. Nice

visualization of the recursive nature of regular expressions.

• Formally, a regular expression tree is one of the following:

– a leaf node labeled Ø

– a leaf node labeled with a string

– a node labeled + with two children, each of which is
the root of a regular expression tree

– a node labeled ⋅ with two children, each of which is
the root of a regular expression tree

– a node labeled * with one child, which is the root of a
regular expression tree

26

C
S

37
4

27

Not all languages are
regular!

28

C
S

37
4

Are there Non-Regular
Languages?

• Every regular expression over {0,1} is itself a string
over the 8-symbol alphabet {0,1,+,*,(,),ε, Ø}.

• Interpret those symbols as digits 1 through 8. Every
regular expression is a base-9 representation of a
unique integer.

• Countably infinite!

• We saw (first few slides) there are uncountably many
languages over {0,1}.

• In fact, the set of all regular expressions over the
{0,1} alphabet is a non-regular language over the
alphabet {0,1,+,*,(,),ε, Ø}!!

29

