
And, for the hous is crinkled to and fro,
And hath so queinte weyes for to go—
For hit is shapen as the mase is wroght—
Therto have I a remedie in my thoght,
That, by a clewe of twyne, as he hath goon,
The same wey he may returne anoon,
Folwing alwey the threed, as he hath come.

— Geoffrey Chaucer, The Legend of Good Women (c. 1385)
“We’ll just go in here, so that you can say you’ve been, but it’s very simple. It’s
absurd to call it a maze. You keep on taking the first turning to the right. We’ll
just walk round for ten minutes, and then go and get some lunch.”

— Harris describing the Hampton Court labyrinthJerome K. Jerome, Three Men in a Boat (1889)
“Com’è bello il mondo e come sono brutti i labirinti!” dissi sollevato.
“Come sarebbe bello il mondo se ci fosse una regola per girare nei labirinti,”
rispose il mio maestro.

— Umberto Eco, Il nome della rosa (1980)

CHAPTER 6
Depth-First Search

ÆÆÆThis is mostly the Spring 2016 revision in the new skin.In particular, Sections 6.1–6.3 still need significant revision.Start with directed graphs!
Recall from the previous lecture the recursive formulation of depth-first search in

undirected graphs.

DFS(v):
if v is unmarked

mark v
for each edge vw

DFS(w)

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms/ for the most recent revision. 1

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms/

6. DEPTH-FIRST SEARCH

We can make this algorithm slightly faster (in practice) by checking whether a node is
marked before we recursively explore it. This modification ensures that we call DFS(v)
only once for each vertex v. We can further modify the algorithm to define parent
pointers and other useful information about the vertices and edges. This additional
information is computed by two black-box subroutines, PreVisit and PostVisit, which
we leave unspecified for now.

DFS(v):
mark v
PreVisit(v)
for each edge vw

if w is unmarked
parent(w)← v
DFS(w)

PostVisit(v)

We can search any connected graph by unmarking all vertices and then calling DFS(s)
for an arbitrary start vertex s. As we argued in the previous lecture, the subgraph of all
parent edges v�parent(v) defines a spanning tree of the graph, which we consider to be
rooted at the start vertex s.

Lemma 1. Let T be a depth-first spanning tree of a connected undirected graph G, com-
puted by calling DFS(s). For any node v, the vertices that are marked during the execution
of DFS(v) are the proper descendants of v in T .

Proof: T is also the recursion tree for DFS(s). �

Lemma 2. Let T be a depth-first spanning tree of a connected undirected graph G. For
every edge vw in G, either v is an ancestor of w in T , or v is a descendant of w in T .

Proof: Assume without loss of generality that v is marked before w. Then w is unmarked
when DFS(v) is invoked, but marked when DFS(v) returns, so the previous lemma implies
that w is a proper descendant of v in T . �

Lemma 2 implies that any depth-first spanning tree T divides the edges of G into
two classes: tree edges, which appear in T , and back edges, which connect some node
in T to one of its ancestors.

6.1 Counting and Labeling Components

ÆÆÆ Already moved to Chapter 5. (Except for comments about PREVISIT and POSTVISIT.)
2

6.2. Preorder and Postorder Labeling

For graphs that might be disconnected, we can compute a depth-first spanning forest
by calling the following wrapper function; again, we introduce a generic black-box
subroutine Preprocess to perform any necessary preprocessing for the PostVisit and
PostVisit functions.

DFSAll(G):
Preprocess(G)
for all vertices v

unmark v
for all vertices v

if v is unmarked
DFS(v)

With very little additional effort, we can count the components of a graph; we simply
increment a counter inside the wrapper function. Moreover, we can also record which
component contains each vertex in the graph by passing this counter to DFS. The single
line comp(v)← count is a trivial example of PreVisit. (And the absence of code after
the for loop is a vacuous example of PostVisit.)

CountAndLabel(G):
count← 0
for all vertices v

unmark v
for all vertices v

if v is unmarked
count← count+ 1
LabelOne(v, count)

return count

〈〈Label one component〉〉
LabelOne(v, count):
mark v
comp(v)← count
for each edge vw

if w is unmarked
LabelOne(w, count)

It should be emphasized that depth-first search is not specifically required here; any
other instantiation of our earlier generic traversal algorithm (“whatever-first search”)
can be used to count components in the same asymptotic running time. However, most
of the other algorithms we consider in this note do specifically require depth-first search.

6.2 Preorder and Postorder Labeling

You should already be familiar with preorder and postorder traversals of rooted trees,
both of which can be computed using from depth-first search. Similar traversal orders
can be defined for arbitrary graphs by passing around a counter as follows:

3

6. DEPTH-FIRST SEARCH

PrePostLabel(G):
for all vertices v

unmark v
clock← 0
for all vertices v

if v is unmarked
clock← LabelOne(v, clock)

LabelOne(v, clock):
mark v
pre(v)← clock
clock← clock+ 1
for each edge vw

if w is unmarked
clock← LabelOne(w, clock)

post(v)← clock
clock← clock+ 1
return clock

Equivalently, if we’re willing to use (shudder) global variables, we can use our generic
depth-first-search algorithm with the following subroutines Preprocess, PreVisit, and
PostVisit.

Preprocess(G):
clock← 0

PreVisit(v):
pre(v)← clock
clock← clock+ 1

PostVisit(v):
post(v)← clock
clock← clock+ 1

Consider two vertices u and v, where u is marked after v. Then we must have
pre(u) < pre(v). Moreover, Lemma 1 implies that if v is a descendant of u, then
post(u)> post(v), and otherwise, pre(v)> post(u). Thus, for any two vertices u and v,
the intervals [pre(u),post(u)] and [pre(v),post(v)] are either disjoint or nested; in
particular, if uv is an edge, Lemma 2 implies that the intervals must be nested.

6.3 Directed Graphs and Reachability

ÆÆÆ Already in Chapter 5
The recursive algorithm requires only one minor change to handle directed graphs:

DFSAll(G):
for all vertices v

unmark v
for all vertices v

if v is unmarked
DFS(v)

DFS(v):
mark v
PreVisit(v)
for each edge v�w

if w is unmarked
DFS(w)

PostVisit(v)

However, we can no longer use this modified algorithm to count components.
Suppose G is a single directed path. Depending on the order that we choose to visit
the nodes in DFSAll, we may discover any number of “components” between 1 and n.
All that we can guarantee is that the “component” numbers computed by DFSAll do
not increase as we traverse the path. In fact, the real problem is that the definition of
“component” is only suitable for undirected graphs.

4

6.4. Directed Acyclic Graphs

Instead, for directed graphs we rely on a more subtle notion of reachability. We
say that a node v is reachable from another node u in a directed graph G—or more
simply, that u can reach v—if and only if there is a directed path in G from u to v. Let
Reach(u) denote the set of vertices that are reachable from u (including u itself). A
simple inductive argument proves that reach(u) is precisely the subset of nodes that are
marked by calling DFS(u).

6.4 Directed Acyclic Graphs

A directed acyclic graph or dag is a directed graph with no directed cycles. Any vertex
in a dag that has no incoming vertices is called a source; any vertex with no outgoing
edges is called a sink. Every dag has at least one source and one sink (Do you see why?),
but may have more than one of each. For example, in the graph with n vertices but no
edges, every vertex is a source and every vertex is a sink.

ÆÆÆNeed an example here.

We can check whether a given directed graph G is a dag in O(V + E) time as follows.
First, to simplify the algorithm, we add a single artificial source s, with edges from s to
every other vertex. Let G + s denote the resulting augmented graph. Because s has no
incoming edges, no directed cycle in G + s goes through s, which implies that G + s is a
dag if and only if G is a dag. Then we preform a depth-first search of G + s starting at
the new source vertex s; by construction every other vertex is reachable from s, so this
search visits every node in the graph.

Instead of vertices being merely marked or unmarked, each vertex has one of three
statuses—New, Active, or Done—which depend on whether we have started or finished
the recursive depth-first search at that vertex. (This algorithm never uses parent pointers,
so I’ve removed the line “parent(w)← v”.)

IsAcyclic(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

return IsAcyclicDFS(s)

IsAcyclicDFS(v):
status(v)← Active
for each edge v�w

if status(w) = Active
return False

else if status(w) = New
if IsAcyclicDFS(w) = False

return False
status(v)← Done
return True

Lemma 3. IsAcyclic(G) returns False if and only if G contains a directed cycle.

5

6. DEPTH-FIRST SEARCH

Proof: Suppose IsAcyclic(G) returns False. Then the algorithm must discover an
edge v�w such that status(w) = Active. When IsAcyclicDFS(v) is called, the Active
vertices are precisely the vertices currently on the recursion stack, all of which are
ancestors of vertex v. Thus, there is a directed path from w to v, and so the graph has a
directed cycle.

On the other hand, suppose G has a directed cycle C . Let w be the first vertex
in C that the algorithm marks Active, and let v�w be the edge in C leading into v.
Because there is a directed path from w to v, we must recursively call IsAcyclicDFS(v)
during the execution of IsAcyclicDFS(w), unless we discover some other cycle first.
During the execution of IsAcyclicDFS(v), we consider the edge v�w, discover that
status(w) = Active. The return value False bubbles up through all the recursive calls to
the top level. �

If modifying the graph is impossible or undesirable, we can use a wrapper function
like our earlier WFSAll, which calls the subroutine repeatedly for every New vertex. It
should be clear that this is merely a change of notation, not a change in the algorithm; all
we’ve done is replace a loop over the edges s�v with a loop directly over the vertices v.

IsAcyclic(G):
for all vertices v

status(v)← New
for all vertices v

if status(w) = New
if IsAcyclicDFS(v) = False

return False
return True

6.5 Topological Sort

ÆÆÆ Need an example here.
A topological ordering of a directed graph G is a total order ≺ on the vertices such

that u≺ v for every edge u�v. Less formally, a topological ordering arranges the vertices
along a horizontal line so that all edges point from left to right. A topological ordering is
clearly impossible if the graph G has a directed cycle—the rightmost vertex of the cycle
would have an edge pointing to the left! On the other hand, every dag has a topological
order, which can be computed by either of the following algorithms.

TopologicalSort(G) :
n← |V |
for i← 1 to n

v← any source in G
S[i]← v
delete v and all edges leaving v

return S[1 .. n]

TopologicalSort(G) :
n← |V |
for i← n down to 1

v← any sink in G
S[i]← v
delete v and all edges entering v

return S[1 .. n]

6

6.5. Topological Sort

The correctness of these algorithms follow inductively from the observation that deleting
a vertex cannot create a cycle.

This simple algorithm has two major disadvantages. First, the algorithm actually
destroys the input graph. This destruction can be avoided bymarking the vertices instead
of actually deleting them, and defining a vertex to be a source (sink) if none of its
incoming (outgoing) edges come from (lead to) an unmarked vertex. The more serious
problem is that finding a source vertex seems to require Θ(V) time in the worst case,
which makes the running time of this algorithm Θ(V 2).

In the rest of this section, I’ll present two topological sorting algorithms that run in
O(V + E) time without destroying the graph.

Whatever-Sink-First Search

Our first fast topological sort algorithm is just a fast implementation of the previous
method, first published by Arthur Kahn in 1962.

Like whatever-first search, Khan’s algorithmmaintains a bag of source vertices. (Kahn
used a queue, but we don’t have to.) Instead of a “mark”, each new vertex maintains
its in-degree, which is the number of incoming edges. At each iteration, we grab a new
source v from the bag, “delete” v from the graph, and then add any new “sources” to the
bag. But we do not actually delete v; instead, we merely decrement the in-degrees of
every successor of v, exactly as if v was deleted. Then we put any successor of v with
in-degree zero into the bag as a new source and start the next iteration.

KhanInitialize(V, E):
for every vertex v

v.indeg← 0
for every edge u�v

v.indeg← v.indeg+ 1
for every vertex v

if v.indeg= 0
put v into the bag

KhanTopoSort(V, E):
KhanInitialize(V, E)
clock← 0
while the bag is not empty

take v from the bag
clock← clock+ 1
S[clock]← v
for all edges v�w

w.indeg← w.indeg− 1 (∗)
if w.indeg= 0

put w into the bag
if clock< V

fail gracefully 〈〈There’s a cycle!〉〉
else

return S[1 .. V]

(This version of the algorithm adds each vertex v to the output array S[] when v is
taken out of the bag; we could alternatively add v to the output array when we put v
into the bag. You say potato, I say potato.¹)

1You say Car-mee-na, I say Car-my-na. You say Buh-ray-na, I say Buh-rah-na. Car-mee-na, Car-my-na,
Buh-ray-na, Buh-rah-na. Let’s Carl the whole thing Orff!

7

6. DEPTH-FIRST SEARCH

Suppose each bag operation takes O(1) time; for example, suppose we are using
either a stack or a queue. The initialization phase clearly runs in at most O(V + E) time.
In the main algorithm, note that line (∗) is executed exactly once for each edge, and
each vertex is put into the bag at most once and taken out of the bag at most once, so the
main algorithm also runs in O(V + E) time. Thus, the overall algorithm runs in O(V + E)
time.

Even though Khan’s algorithm is universally presented using a queue for the “bag”,
the algorithm is arguably simpler if we use an implicit stack via recursion.

KhanTopoSort(V, E):
for every vertex v

v.indeg← 0
for every edge u�v

v.indeg← v.indeg+ 1

clock← 0
for every vertex v

if v.indeg= 0
clock← KhanDFS(v, clock)

if clock< V
fail gracefully 〈〈There’s a cycle!〉〉

else
return S[1 .. V]

KhanDFS(v, clock):
clock← clock+ 1
S[clock]← v
for all edges v�w

w.indeg← w.indeg− 1 (∗)
if w.indeg= 0

clock← KhanDFS(w, clock)
return clock

Depth-First Search

But even the simple bookkeeping in Khan’s algorithm is unnecessary; our earlier depth-
first search algorithm for deciding if a graph is acyclic actually outputs a topological
order as a side-effect. This application of depth-first search was first observed by Robert
Tarjan in 1971.

Lemma 4. For any directed graph G, the first vertex (if any) marked Done by IsAcyclic(G)
is a sink.

Proof: Let v be the first vertex marked Done during an execution of IsAcyclic(G). For
the sake of argument, suppose v has an outgoing edge v�w. When IsAcyclicDFS first
considers the edge v�w, there are three cases to consider.
• If status(w) = Done, then w was marked Done before v, which contradicts the

definition of v.

• If status(w) = New, the algorithm calls TopoSortDFS(w), which (among other
computation) marks w Done. Thus, w was marked Done before v, which contradicts
the definition of v.

• If status(w) = Active, then G has a directed cycle, contradicting our assumption
that G is acyclic. Alternatively: If status(w) = Active, then the algorithm aborts
execution before marking v Done

8

6.5. Topological Sort

In all three cases, we have a contradiction, so v must be a sink. �

It follows by induction that to topologically sort a dag G, it suffices to list the vertices in
the reverse order of being marked Done.

ÆÆÆNeed more details here
For example, we could push each vertex onto a stack when we mark it Done, and then
pop every vertex off the stack.

TopologicalSort(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

TopoSortDFS(s)

for i ← 1 to V
S[i]← Pop

return S[1 .. V]

TopoSortDFS(v):
status(v)← Active
for each edge v�w

if status(w) = New
ProcessBackwardDFS(w)

else if status(w) = Active
fail gracefully

status(v)← Done
Push(v)
return True

We don’t even need the stack if we are willing let the output array be a global variable.

TopologicalSort(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

TopoSortDFS(s, V)
return S[1 .. V]

TopoSortDFS(v, clock):
status(v)← Active
for each edge v�w

if status(w) = New
clock← TopoSortDFS(w, clock)

else if status(w) = Active
fail gracefully

status(v)← Done
S[clock]← v
clock← clock− 1
return clock

Implicit Topological Sort

But maintaining a separate data structure is actually overkill. In most applications
of topological sort, our actual goal is not a topologically sorted list of the vertices;
instead, we want to perform some fixed computation at each vertex of the graph, either
in topological order or in reverse topological order. For these applications, it is not
necessary to record the topological order.

To process the graph in reverse topological order, we can just process each vertex at
the end of its recursive depth-first search.

9

6. DEPTH-FIRST SEARCH

ProcessBackward(G):
add vertex s
for all vertices v 6= s

add edge s�v
status(v)← New

ProcessPostorderDFS(s)

ProcessPostorderDFS(v):
status(v)← Active
for each edge v�w

if status(w) = New
ProcessPostorderDFS(w)

else if status(w) = Active
fail gracefully

status(v)← Done
Process(v)

If we already know that the input graph is acyclic, we can simplify the algorithm by
simply marking vertices instead of labeling them Active or Done.

ProcessDagPostorder(G):
add vertex s
for all vertices v 6= s

add edge s�v
unmark v

ProcessDagPostorderDFS(s)

ProcessDagPostorderDFS(v):
mark v
for each edge v�w

if w is unmarked
ProcessDagPostorderDFS(w)

Process(v)

Except for the addition of the artificial source vertex s, which we need to ensure that every
vertex is visited, this is just the standard depth-first search algorithm, with PostVisit
renamed to Process!

Similar modification to Khan’s algorithm allow us to process any dag in forward
topological order. Alternatively, we could apply depth-first search to the reversal of
the input graph, which is obtained by replacing each each v�w with its reversal w�v.
Reversing a directed cycle gives us another directed cycle with the opposite orientation,
so the reversal of a dag is another dag. Every source in G becomes a sink in the reversal
of G and vice versa; it follows inductively that every topological ordering for the reversal
of G is the reversal of a topological ordering of G. The reversal of any directed graph
can be computed in O(V + E) time; the details of this construction are left as an easy
exercise.

6.6 Memoization

Our topological sort algorithm is arguably the model for a wide class of dynamic
programming algorithms. Recall that the dependency graph of a recurrence has a vertex
for every recursive subproblem and an edge from one subproblem to another if evaluating
the first subproblem requires a recursive evaluation of the second. The dependency
graph must be acyclic, or the naïve recursive algorithm would never halt.

Evaluating any recurrence with memoization is exactly the same as performing a
depth-first search of the dependency graph. In particular, a vertex of the dependency
graph is “marked” if the value of the corresponding subproblem has already been

10

6.6. Memoization

computed. The black-box subroutines PreVisit and PostVisit are proxies for the actual
value computation.

Memoize(x) :
if value[x] is undefined

initialize value[x]

for all subproblems y of x
Memoize(y)
update value[x] based on value[y]

finalize value[x]

DFS(v) :
if v is unmarked

mark v
PreVisit(x)
for all edges v�w

DFS(w)

PostVisit(x)

Carrying this analogy further, evaluating a recurrence using dynamic programming
is the same as evaluating all subproblems in the dependency graph of the recurrence
in reverse topological order—every subproblem is considered after the subproblems it
depends on. Thus, every dynamic programming algorithm is equivalent to the following
algorithm run on the dependency graph of the underlying recurrence:

DynamicProgramming(G) :
for all subproblems x in reverse topological order

initialize value[x]
for all subproblems y of x

update value[x] based on value[y]
finalize value[x]

However, there are some minor differences between most dynamic programming
algorithms and topological sort. First, in most dynamic programming algorithms, the
dependency graph is implicit—the nodes and edges are not explicitly stored in memory,
but rather are encoded by the underlying recurrence. But this difference really is minor;
as long as we can enumerate recursive subproblems in constant time each, we can
traverse the dependency graph exactly as if it were explicitly stored in an adjacency list.

More significantly, most dynamic programming recurrences have highly structured
dependency graphs. For example, as we discussed in Chapter 5, the dependency graph for
the edit distance recurrence is a regular grid with diagonals, and the dependency graph
for optimal binary search trees is an upper triangular grid with all possible rightward
and upward edges. This regular structure lets us hard-wire a topological order directly
into the algorithm—which we previously called an evaluation order—so we don’t need
to compute it at run time.

Dynamic Programming in Dags

Conversely, we can use depth-first search to build dynamic programming algorithms for
problems with less structured dependency graphs. For example, consider the longest
path problem, which asks for the path of maximum total weight from one node s to

11

6. DEPTH-FIRST SEARCH

Figure 6.1. The dependency dag of the edit distance recurrence.

another node t in a directed graph G with weighted edges. The longest path problem is
NP-hard in general directed graphs, by an easy reduction from the traveling salesman
problem, but it is easy to solve in linear time if the input graph G is acyclic, as follows.

Fix the target vertex t, and for any node v, let LLP(v) denote the Length of the
Longest Path in G from v to t. If G is a dag, this function satisfies the recurrence

LLP(v) =

¨

0 if v = t,

maxv�w (`(v�w) + LLP(w)) otherwise,

where `(v�w) is the given weight (“length”) of edge v�w. In particular, if v is a sink
but not equal to t, then LLP(v) = −∞.

The dependency graph for this recurrence is the input graph G itself: subproblem
LLP(v) depends on subproblem LLP(w) if and only if v�w is an edge in G. Thus, we
can evaluate this recursive function in O(V + E) time by performing a depth-first search
of G, starting at s. The algorithm memoizes each length LLP(v) into an extra field in
the corresponding node v.

LongestPath(v, t):
if v = t

return 0
if v.LLP is undefined

v.LLP ←−∞
for each edge v�w

v.LLP ←max
�

v.LLP, `(v�w) + LongestPath(w, t)
	

return v.LLP

In principle, we can transform this memoized recursive algorithm into a dynamic
programming algorithm via topological sorting:

12

6.7. Strong Connectivity

LongestPath(s, t):
for each node v in reverse topological order

if v = t
v.LLP ← 0

else
v.LLP ←−∞
for each edge v�w

v.LLP ←max
�

v.LLP, `(v�w) +w.LLP
	

return s.LLP

But these two algorithms are arguably identical—the pattern of recursion in the first
algorithm and the for-loop in the second algorithm are both just depth-first search!

Almost any dynamic programming problem that asks for an optimal sequence of
decisions can be recast as finding an optimal path in some associated dag. For example,
the subset sum, longest increasing subsequence, and edit distance problemswe considered
in Chapters 2 and 3 can all be reformulated as finding either a longest path or a shortest
path in a dag, possibly with weighted vertices or edges.

6.7 Strong Connectivity

Let’s go back to the proper definition of connectivity in directed graphs. Recall that
one vertex u can reach another vertex v in a graph G if there is a directed path in G
from u to v, and that reach(u) denotes the set of all vertices that u can reach. Two
vertices u and v are strongly connected if u can reach v and v can reach u. Tedious
definition-chasing implies that strong connectivity is an equivalence relation over the
set of vertices of any directed graph, just as connectivity is for undirected graphs. The
equivalence classes of this relation are called the strongly connected components (or
more simply, the strong components) of G. If G has a single strong component, we call it
strongly connected. G is a directed acyclic graph if and only if every strong component
of G is a single vertex.

For any directed graph G, the strong component graph scc(G) is another directed
graph obtained by contracting each strong component of G to a single (meta-)vertex
and collapsing parallel edges. The strong component graph is sometimes also called the
meta-graph or condensation of G. It’s not hard to prove (hint, hint) that scc(G) is always
a dag. Thus, in principle, it is possible to topologically order the strong components of G;
that is, the vertices can be ordered so that every backward edge joins two edges in the
same strong component.

ÆÆÆNeed an example here.
It is straightforward to compute the strong component containing a single vertex v in

O(V + E) time. First we compute reach(v) by calling WhateverFirstSearch(v). Then
we compute reach−1(v) = {u | v ∈ reach(u)} by searching the reversal of G. Finally, the

13

6. DEPTH-FIRST SEARCH

strong component of v is the intersection reach(v)∩ reach−1(v). In particular, we can
determine whether the entire graph is strongly connected in O(V + E) time.

We can compute all the strong components in a directed graph by wrapping the single-
strong-component algorithm in a wrapper function. However, the resulting algorithm
runs in O(V E) time; there are at most V strong components, and each requires O(E)
time to discover. Surely we can do better! After all, we only need O(V + E) time to
decide whether every strong component is a single vertex.

6.8 Strong Components in Linear Time

Let C be any strong component of G that is a sink in scc(G); we call C a sink component.
Every vertex in C can reach every other vertex in C , so a depth-first search from any
vertex in C visits every vertex in C . On the other hand, because C is a sink component,
there is no edge from C to any other strong component, so a depth-first search starting
in C visits only vertices in C . So if we can compute all the strong components as follows:

StrongComponents(G):
count← 0
while G is non-empty

count← count+ 1
v← any vertex in a sink component of G
C ← OneComponent(v, count)
remove C and incoming edges from G

At first glance, finding a vertex in a sink component quickly seems quite hard.
However, we can quickly find a vertex in a source component using the standard depth-
first search. A source component is a strong component of G that corresponds to a
source in scc(G). Specifically, we compute finishing times (otherwise known as post-order
labeling) for the vertices of G as follows.

DFSAll(G):
for all vertices v

unmark v
clock← 0
for all vertices v

if v is unmarked
clock← DFS(v, clock)

DFS(v, clock):
mark v
for each edge v�w

if w is unmarked
clock← DFS(w, clock)

clock← clock+ 1
finish(v)← clock
return clock

Lemma 5. The vertex with largest finishing time lies in a source component of G.

Proof: Let v be the vertex with largest finishing time. Then DFS(v, clock) must be the
last direct call to DFS made by the wrapper algorithm DFSAll.

14

6.8. Strong Components in Linear Time

Let C be the strong component of G that contains v. For the sake of argument,
suppose there is an edge x�y such that x 6∈ C and y ∈ C . Because v and y are strongly
connected, y can reach v, and therefore x can reach v. There are two cases to consider.

• If x is already marked when DFS(v) begins, then v must have been marked during
the execution of DFS(x), because x can reach v. But then v was already marked
when DFS(v) was called, which is impossible.

• If x is not marked when DFS(v) begins, then x must be marked during the execution
of DFS(v), which implies that v can reach x . Since x can also reach v, we must have
x ∈ C , contradicting the definition of x .

We conclude that C is a source component of G. �

Essentially the same argument implies the following more general result.

Lemma 6. For any edge v�w in G, if finish(v) < finish(w), then v and w are strongly
connected in G.

Proof: Let v�w be an arbitrary edge of G. There are three cases to consider.If w is
unmarked when DFS(v) begins, then the recursive call to DFS(w) finishes w, which
implies that finish(w)< finish(v). If w is still active when DFS(v) begins, there must be
a path from w to v, which implies that v and w are strongly connected. Finally, if w is
finished when DFS(v) begins, then clearly finish(w)< finish(v). �

This observation is consistent with our earlier topological sorting algorithm; for every
edge v�w in a directed acyclic graph, we have finish(v)> finish(w).

It is easy to check (hint, hint) that any directed G has exactly the same strong
components as its reversal rev(G); in fact, we have rev(scc(G)) = scc(rev(G)). Thus, if
we order the vertices of G by their finishing times in DFSAll(rev(G)), the last vertex in
this order lies in a sink component of G. Thus, if we run a second whatever-first graph
traversal WFSAll(G), where the wrapper function considers vertices in reverse order of
their finishing times in DFSAll(rev(G)), then each call to WFS visits exactly one strong
component of G. (Both Kosaraju and Sharir used depth-first search in the second phase,
but we don’t have to.)

Putting everything together, we obtain the following algorithm to count and label the
strong components of a directed graph in O(V+E) time, discovered (but never published)
by Rao Kosaraju in 1978, and then independently rediscovered by Micha Sharir in 1981.
(There are rumors that the same algorithm appears int he Russian literature even before
Kosaraju, but I haven’t tracked down that source yet.) The Kosaraju-Sharir algorithm has
two phases. The first phase performs a depth-first search of the reversal of G, pushing
each vertex onto a stack when it is finished. In the second phase, we perform another
whatever-first traversal of the original graph G, considering vertices in the order they
appear on the stack.

15

6. DEPTH-FIRST SEARCH

KosarajuSharir(G):
〈〈Phase 1: Push in DFS finishing order〉〉
unmark all vertices
for all vertices v

if v is unmarked
RevPushDFS(v)

〈〈Phase 2: WFS in stack order〉〉
unmark all vertices
count← 0
while the stack is non-empty

v ← Pop
if v is unmarked

count← count+ 1
LabelOneWFS(v, count)

RevPushDFS(v):
mark v
for each edge v�u in rev(G)

if u is unmarked
RevPushDFS(u)

Push(v)

LabelOneWFS(v, count):
put v into the bag
while the bag is not empty

take v from the bag
mark v
label(v)← count
for each edge v�w in G

if w is unmarked
put w into the bag

With further minor modifications, we can also compute the strongly connected
component graph scc(G) in O(V + E) time.

Exercises

ÆÆÆ Need more exercises that are not solved by dynamic programming!
0. (a) Describe an algorithm to compute the reversal rev(G) of a directed graph in

O(V + E) time.

(b) Prove that for any directed graph G, the strong component graph scc(G) is acyclic.

(c) Prove that for any directed graph G, we have scc(rev(G)) = rev(scc(G)).

(d) Fix an arbitrary directed graph G. For any vertex v of G, let S(v) denote the
strong component of G that contains v. Prove, for all vertices u and V of G, that
v is reachable from u in G if and only if S(v) is reachable from S(u) in scc(G).

(e) Suppose S and T are two strong components in a directed graph G. Prove that
either finish(u)< finish(v) for all vertices u ∈ S and v ∈ T , or finish(u)> finish(v)
for all vertices u ∈ S and v ∈ T .

1. The transitive closure GT of a directed graph G is a directed graph with the same
vertices as G, that contains any edge u�v if and only if there is a directed path from
u to v in G. A transitive reduction of G is a graph with the smallest possible number
of edges whose transitive closure is GT . The same graph may have several transitive
reductions.

(a) Describe an efficient algorithm to compute the transitive closure of a given
directed graph.

16

Exercises

(b) Prove that a directed graph G has a unique transitive reduction if and only if G is
acyclic.

(c) Describe an efficient algorithm to compute a transitive reduction of a given
directed graph.

2. A directed graph G is semi-connected if, for every pair of vertices u and v, either u is
reachable from v or v is reachable from u (or both).

(a) Give an example of a dag that is not semi-connected.

(b) Describe and analyze an algorithm to determine whether a given directed acyclic
graph is semi-connected.

(c) Describe and analyze an algorithm to determine whether an arbitrary directed
graph is semi-connected.

3. One of the oldest algorithms for exploring arbitrary connected graphs was proposed
by Gaston Tarry in 1895, as a procedure for solving mazes.² The input to Tarry’s
algorithm is an undirected graph G; however, for ease of presentation, we formally
split each undirected edge uv into two directed edges u�v and v�u. (In an actual
implementation, this split is trivial; the algorithm simply uses the given adjacency
list for G as though G were directed.)

Tarry(G):
unmark all vertices of G
color all edges of G white
s← any vertex in G
RecTarry(s)

RecTarry(v):
mark v 〈〈“visit v”〉〉
if there is a white arc v�w

if w is unmarked
color w�v green

color v�w red ©

〈〈“traverse v�w”〉〉RecTarry(w)
else if there is a green arc v�w

color v�w red ©

〈〈“traverse v�w”〉〉RecTarry(w)

We informally say that Tarry’s algorithm “visits” vertex v every time it marks v,
and it “traverses” edge v�w when it colors that edge red and recursively calls
RecTarry(w). Unlike our earlier graph traversal algorithm, Tarry’s algorithm can
mark same vertex multiple times.

(a) Describe how to implement Tarry’s algorithm so that it runs in O(V + E) time.

(b) Prove that no directed edge in G is traversed more than once.

2Even older graph-traversal algorithms were described by Charles Trémaux in 1882, by Christian Wiener
in 1873, and (implicitly) by Leonhard Euler in 1736. Wiener’s algorithm is equivalent to depth-first search in
a connected undirected graph.

17

6. DEPTH-FIRST SEARCH

(c) When the algorithm visits a vertex v for the kth time, exactly how many edges
into v are red, and exactly how many edges out of v are red? [Hint: Consider
the starting vertex s separately from the other vertices.]

(d) Prove each vertex v is visited at most deg(v) times, except the starting vertex s,
which is visited at most deg(s) + 1 times. This claim immediately implies that
Tarry(G) terminates.

(e) Prove that the last vertex visited by Tarry(G) is the starting vertex s.

(f) For every vertex v that Tarry(G) visits, prove that all edges into v and out of v
are red when Tarry(G) halts. [Hint: Consider the vertices in the order that they
are marked for the first time, starting with s, and prove the claim by induction.]

(g) Prove that Tarry(G) visits every vertex of G. This claim and the previous claim
imply that Tarry(G) traverses every edge of G exactly once.

4. Consider the following variant of Tarry’s graph-traversal algorithm; this variant
traverses green edges without recoloring them red and assigns two numerical labels
to every vertex:

Tarry2(G):
unmark all vertices of G
color all edges of G white
s← any vertex in G
RecTarry(s, 1)

RecTarry2(v, clock):
if v is unmarked

pre(v)← clock; clock← clock+ 1
mark v

if there is a white arc v�w
if w is unmarked

color w�v green
color v�w red
RecTarry2(w, clock)

else if there is a green arc v�w
post(v)← clock; clock← clock+ 1
RecTarry2(w, clock)

Prove or disprove the following claim: When Tarry2(G) halts, the green edges
define a spanning tree and the labels pre(v) and post(v) define a preorder and
postorder labeling that are all consistent with a single depth-first search of G. In
other words, prove or disprove that Tarry2 produces the same output as depth-first
search, even though it visits the edges in a completely different order.

5. You have a collection of n lockboxes and m gold keys. Each key unlocks at most one
box. However, each box might be unlocked by one key, by multiple keys, or by no
keys at all. There are only two ways to open each box once it is locked: Unlock it
properly (which requires having one matching key in your hand), or smash it to bits
with a hammer.

Your baby brother, who loves playing with shiny objects, has somehow managed
to lock all your keys inside the boxes! Luckily, your home security system recorded

18

Exercises

everything, so you know exactly which keys (if any) are inside each box. You need
to get all the keys back out of the boxes, because they are made of gold. Clearly you
have to smash at least one box.

(a) Your baby brother has found the hammer and is eagerly eyeing one of the boxes.
Describe and analyze an algorithm to determine if it is possible to retrieve all the
keys without smashing any box except the one your brother has chosen.

(b) Describe and analyze an algorithm to compute the minimum number of boxes
that must be smashed to retrieve all the keys.

6. Suppose you are teaching an algorithms course. In your second midterm, you give
your students a drawing of a graph and ask then to indicate a breadth-first search
tree and a depth-first search tree rooted at a particular vertex. Unfortunately, once
you start grading the exam, you realize that the graph you gave the students has
several such spanning trees—far too many to list. Instead, you need a way to tell
whether each student’s submission is correct!

In each of the following problems, suppose you are given a connected graph G, a
start vertex s, and a spanning tree T of G.

(a) Suppose G is undirected. Describe and analyze an algorithm to decide whether T
is a depth-first spanning tree rooted at s.

(b) Suppose G is undirected. Describe and analyze an algorithm to decide whether T
is a breadth-first spanning tree rooted at s. [Hint: It’s not enough for T to be an
unweighted shortest-path tree. Yes, this is the right chapter for this problem!]

(c) Suppose G is directed. Describe and analyze an algorithm to decide whether T is
a breadth-first spanning tree rooted at s. [Hint: Solve part (b) first.]

(d) Suppose G is directed. Describe and analyze an algorithm to decide whether T is
a depth-first spanning tree rooted at s.

7. Several modern programming languages, including JavaScript, Python, Perl, and
Ruby, include a feature called parallel assignment, which allows multiple assignment
operations to be encoded in a single line of code. For example, the Python code
x,y = 0,1 simultaneously sets x to 0 and y to 1. The values of the right-hand side
of the assignment are all determined by the old values of the variables. Thus, the
Python code a,b = b,a swaps the values of a and b, and the following Python code
computes the nth Fibonacci number:

def fib(n):
prev, curr = 1, 0
while n > 0:

prev, curr, n = curr, prev+curr, n-1
return curr

19

6. DEPTH-FIRST SEARCH

Suppose the interpreter you are writing needs to convert every parallel assign-
ment into an equivalent sequence of individual assignments. For example, the
parallel assignment a,b = 0,1 can be serialized in either order—either a=0; b=1
or a=0; b=1—but the parallel assignment x,y = x+1,x+y can only be serialized
as y=x+y; x=x+1. Serialization may require one or more additional temporary
variables; for example, serializing a,b = b,a requires one temporary variable, and
serializing x,y = x+y,x-y requires two temporary variables.

(a) Describe an algorithm to determine whether a given parallel assignment can be
serialized without additional temporary variables.

(b) Describe an algorithm to determine whether a given parallel assignment can be
serialized with exactly one additional temporary variable.

Assume that the given parallel assignment involves only simple integer variables
(no indirection via pointers or arrays); no variable appears on the left side more
than once; and expressions on the right side have no side effects. Don’t worry about
the details of parsing the assignment statement; just assume (but describe!) an
appropriate graph representation.

Dynamic Programming

8. Suppose we are given a directed acyclic graph G whose nodes represent jobs and
whose edges represent precedence constraints; that is. each edge u�v indicates the
job u must be completed before job v begins. Each node v also has a weight T (v)
indicating the time required to execute job v.

(a) Describe an algorithm to determine the shortest interval of time in which all jobs
in G can be executed.

(b) Suppose the first job starts at time 0. Describe an algorithm to determine, for
each vertex v, the earliest time when job v can begin.

(c) Now describe an algorithm to determine, for each vertex v, the latest time when
job v can begin without violating the precedence constraints or increasing the
overall completion time (computed in part (a)), assuming that every job except v
starts at its earliest start time (computed in part (b)).

9. Let G be a directed acyclic graph with a unique source s and a unique sink t.

(a) A Hamiltonian path in G is a directed path in G that contains every vertex in G.
Describe an algorithm to determine whether G has a Hamiltonian path.

(b) Suppose the vertices of G have weights. Describe an efficient algorithm to find
the path from s to t with maximum total weight.

(c) Suppose we are also given an integer `. Describe an efficient algorithm to find
the maximum-weight path from s to t that contains at most ` edges. (Assume
there is at least one such path.)

20

Exercises

(d) Suppose some of the vertices of G are marked as important, and we are also
given an integer k. Describe an efficient algorithm to find the maximum-weight
path from s to t that visits at least k important vertices. (Assume there is at least
one such path.)

(e) Describe an algorithm to compute the number of paths from s to t in G. (Assume
that you can add arbitrarily large integers in O(1) time.)

10. Let G be a directed acyclic graph whose vertices have labels from some fixed alphabet,
and let A[1 ..`] be a string over the same alphabet. Any directed path in G has a
label, which is a string obtained by concatenating the labels of its vertices.

(a) Describe an algorithm that either finds a path in G whose label is A or correctly
reports that there is no such path.

(b) Describe an algorithm to find the number of paths in G whose label is A. (Assume
that you can add arbitrarily large integers in O(1) time.)

(c) Describe an algorithm to find the longest path in G whose label is a subsequence
of A.

(d) Describe an algorithm to find the shortest path in G whose label is a supersequence
of A.

(e) Describe an algorithm to find a path in G whose label has minimum edit distance
from A.

11. A polygonal path is a sequence of line segments joined end-to-end; the endpoints of
these line segments are called the vertices of the path. The length of a polygonal
path is the sum of the lengths of its segments. A polygonal path with vertices
(x1, y1), (x2, y2), . . . , (xk, yk) ismonotonically increasing if x i < x i+1 and yi < yi+1
for every index i—informally, each vertex of the path is above and to the right of its
predecessor.

A monotonically increasing polygonal path with seven vertices through a set of points
Suppose you are given a set S of n points in the plane, represented as two arrays

X [1 .. n] and Y [1 .. n]. Describe and analyze an algorithm to compute the length of
the maximum-length monotonically increasing path with vertices in S. Assume you
have a subroutine Length(x , y, x ′, y ′) that returns the length of the segment from
(x , y) to (x ′, y ′).

21

6. DEPTH-FIRST SEARCH

12. For any two nodes u and v in a directed acyclic graph G, the interval G[u, v] is
the union of all directed paths in G from u to v. Equivalently, G[u, v] consists of all
vertices x such that x ∈ reach(u) and v ∈ reach(x), together with all the edges in G
connecting those vertices.

Suppose we are given a directed acyclic graph G, in which every edge has a
numerical weight, which may be positive, negative, or zero. Describe an efficient
algorithm to find the maximum-weight interval in G, where the weight of any interval
is the sum of the weights of its vertices.

13. Let G be a directed acyclic graph whose vertices have labels from some fixed alphabet.
Any directed path in G has a label, which is a string obtained by concatenating the
labels of its vertices. Recall that a palindrome is a string that is equal to its reversal.

(a) Describe and analyze an algorithm to find the length of the longest palindrome
that is the label of a path in G. For example, given the graph in Figure 6.2, your
algorithm should return the integer 6, which is the length of the palindrome
HANNAH.

A

A

H

H

N

N

S

O

D

T

E

N

T

O

Figure 6.2. A dag whose longest palindrome path label has length 6.
(b) Describe an algorithm to find the longest palindrome that is a subsequence of

the label of a path in G.
(c) Describe an algorithm to find the shortest palindrome that is a supersequence of

the label of a path in G.

14. Suppose you are given two directed acyclic graphs G and H in which every node
has a label from some finite alphabet; different nodes may have the same label. The
label of a path in either dag is the string obtained by concatenating the labels of its
vertices.

(a) Describe and analyze an algorithm to compute the length of the longest string
that is both the label of a path in G and the label of a path in H.

(b) Describe and analyze an algorithm to compute the length of the longest string
that is both a subsequence of the label of a path in G both a subsequence of the
label of a path in H.

22

Exercises

(c) Describe and analyze an algorithm to compute the length of the shortest string
that is both a supersequence of the label of a path in G both a supersequence of
the label of a path in H.

15. Let G be an arbitrary (not necessarily acyclic) directed graph in which every vertex v
has an integer weight w(v).

(a) Describe an algorithm to find the longest directed path in G whose vertex weights
define an increasing sequence.

(b) Describe and analyze an algorithm to determine the maximumweight descendant
of every vertex in G. That is, for each vertex v, your algorithm needs to compute
max{w(x) | x ∈ reach(v)}.

16. Suppose you are given a directed graph G in which every edge has negative weight,
and a source vertex s. Describe and analyze an efficient algorithm that computes
the shortest-path distances from s to every other vertex in G. Specifically, for every
vertex t:

• If t is not reachable from s, your algorithm should report dist(t) =∞.

• If G has a cycle that is reachable from s, and t is reachable from that cycle, then
the shortest-path distance from s to t is not well-defined, because there are paths
(formally, walks) from s to t of arbitrarily large negative length. In this case, your
algorithm should report dist(t) = −∞.

• If neither of the two previous conditions applies, your algorithm should report
the correct shortest-path distance from s to t.

[Hint: This problem may be easier after you’ve read about shortest paths in Chapter 8.
First think about graphs where the first two conditions never happen.]

17. Kris is a professional rock climber who is competing in the U.S. climbing nationals.
The competition requires Kris to use as many holds on the climbing wall as possible,
using only transitions that have been explicitly allowed by the route-setter.

The climbing wall has n holds. Kris is given a list of m pairs (x , y) of holds, each
indicating that moving directly from hold x to hold y is allowed; however, moving
directly from y to x is not allowed unless the list also includes the pair (y, x). Kris
needs to figure out a sequence of allowed transitions that uses as many holds as
possible, since each new hold increases his score by one point. The rules allow Kris
to choose the first and last hold in his climbing route. The rules also allow him to
use each hold as many times as he likes; however, only the first use of each hold
increases Kris’s score.

(a) Define the natural graph representing the input. Describe and analyze an
algorithm to solve Kris’s climbing problem if you are guaranteed that the input
graph is a dag.

23

6. DEPTH-FIRST SEARCH

(b) Describe and analyze an algorithm to solve Kris’s climbing problem with no
restrictions on the input graph.

Both of your algorithms should output the maximum possible score that Kris can
earn.

18. The Doctor and River Song decide to play a game on a directed acyclic graph G,
which has one source s and one sink t.³

Each player has a token on one of the vertices of G. At the start of the game, The
Doctor’s token is on the source vertex s, and River’s token is on the sink vertex t.
The players alternate turns, with The Doctor moving first. On each of his turns, the
Doctor moves his token forward along a directed edge; on each of her turns, River
moves her token backward along a directed edge.

If the two tokens ever meet on the same vertex, River wins the game. (“Hello,
Sweetie!”) If the Doctor’s token reaches t or River’s token reaches s before the two
tokens meet, then the Doctor wins the game.

Describe and analyze an algorithm to determine who wins this game, assuming
both players play perfectly. That is, if the Doctor can win no matter how River moves,
then your algorithm should output “Doctor”, and if River can win no matter how the
Doctor moves, your algorithm should output “River”. (Why are these the only two
possibilities?) The input to your algorithm is the graph G.

19. Let x = x1 x2 . . . xn be a given n-character string over some finite alphabet Σ, and let
A be a deterministic finite-state machine with m states over the same alphabet.

(a) Describe and analyze an algorithm to compute the length of the longest sub-
sequence of x that is accepted by A. For example, if A accepts the language (AR)∗

and x = ABRACADABRA, your algorithm should output the number 4, which is the
length of the subsequence ARAR.

(b) Describe and analyze an algorithm to compute the length of the shortest super-
sequence of x that is accepted by A. For example, if A accepts the language
(ABCDR)∗ and x = ABRACADABRA, your algorithm should output the number 25,
which is the length of the supersequence ABCDRABCDRABCDRABCDRABCDR.

Analyze your algorithms in terms of the length n of the input string, the number m
of states in the finite-state machine, and the size of the alphabet Σ.

20. Not every dynamic programming algorithm can be modeled as finding an optimal
path through a directed acyclic graph; the most obvious counterexample is the
optimal binary search tree problem. But every dynamic programming problem does

3The labels s and t may be abbreviations for the Untempered Schism and the Time Vortex, or the
Shining World of the Seven Systems (otherwise known as Gallifrey) and Trenzalore, or Skaro and Telos, or
Something else Timey-wimey. We’ll never know for sure.

24

Exercises

traverse a dependency graph in reverse topological order, performing some additional
computation at every vertex.

(a) Suppose we are given a directed acyclic graph G where every node stores a
numerical search key. Describe and analyze an algorithm to find the largest
binary search tree that is a subgraph of G.

(b) Let G be a directed acyclic graph with the following features:

• G has a single source s and several sinks t1, t2, . . . , tk.

• Each edge v�w has an associated weight p(v�w) between 0 and 1.

• For each non-sink vertex v, the total weight of all edges leaving v is 1; that is,
∑

w p(v�w) = 1.

The weights p(v�w) define a random walk in G from the source s to some sink t i;
after reaching any non-sink vertex v, the walk follows edge v�w with probability
p(v�w). Describe and analyze an algorithm to compute the probability that this
random walk reaches sink t i, for every index i. (Assume that any arithmetic
operation requires O(1) time.)

© Copyright 2016 Jeff Erickson.This work is licensed under a Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/4.0/).Free distribution is strongly encouraged; commercial distribution is expressly forbidden.See http://jeffe.cs.illinois.edu/teaching/algorithms for the most recent revision. 25

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://jeffe.cs.illinois.edu/teaching/algorithms

	Depth-First Search
	Counting and Labeling Components
	Preorder and Postorder Labeling
	Directed Graphs and Reachability
	Directed Acyclic Graphs
	Topological Sort
	Memoization
	Strong Connectivity
	Strong Components in Linear Time

