
NFA/DFA:  
Closure Properties,  

Relation to Regular Languages
Lecture 5

1

C
S

37
4

Today

NFAs recap : Determinizing an NFA

Closure Properties of  
class of languages accepted by NFAs/DFAs

Towards proving equivalence of regular languages and  
languages accepted by NFAs (and hence DFAs)

More closure Properties of  
regular languages

2

C
S

37
4

NFA : Formally

N = (Σ, Q, δ, s, F)  
Σ: alphabet Q: state space s: start state F: set of accepting states"

δ : Q × {Σ ∪ ε} → �(Q)  

3

By default, NFA
can have ε-moves

ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε

We say q �N p if ∃ a1,…, at ∈ Σ ∪ {ε} and q1,…,qt+1 ∈ Q, such that  
 w = a1… at, q1 = q, qt+1 = p, and ∀ i ∈ [1, t], qi+1 ∈ δ(qi,ai)

w

e.g., δ(1,o) = {2}, δ(1,x)=Ø, δ(1,ε)={2}. ε-closure Cε({1}) = { 1, 2, 3, 0 }

L(N) = { w | for some p ∈ F }ws �N p

C
S

37
4

Can modify any NFA N, to get an NFA Nnew without ε-moves 
Nnew = (Σ, Q, δnew, s, Fnew)!

δnew(q, a) = Cε(δ(Cε({q}), a))$

e.g.: δnew(1,o) = ? . 
 
 

Theorem: L(N) = L(Nnew)

ε-Moves is Syntactic Sugar

4

{0,2,3,4,5}

a ∈ Σ

ε

ε

o u r
3 4 5 6

c o l
0 1 2

a-z

ε ε

ε

{ p | q �N p }a

For |w|≥1, q �N p ⇔ q �Nnew p ww

q �N p ⇔ p ∈ Cε({q}),  
q �Nnew p ⇔ p=q,

ε

ε

{Fnew =
F, if Cε({s})∩F = Ø  
F ∪ {s}, otherwise.

Prove!

C
S

37
4

Can modify any NFA N, to get an NFA Nnew without ε-moves 
Nnew = (Σ, Q, δnew, s, Fnew)!

δnew(q, a) = Cε(δ(Cε({q}), a))

ε-Moves is Syntactic Sugar

5

q C a δ δ

a { a, b, d }
0 { a, b, c } { a, b, c, d }

1 { b, d } { b, d }

b { b, d }
0 { b, c } { b, c, d }

1 { d } { d }

c { c }
0 Ø Ø

1 { d } { d }

d { d }
0 Ø Ø

1 { d } { d }

c

d

ba

0
1,ε

0 0

ε

1

1

C
S

37
4

Can modify any NFA N, to get an NFA Nnew without ε-moves 
Nnew = (Σ, Q, δnew, s, Fnew)!

δnew(q, a) = Cε(δ(Cε({q}), a))

ε-Moves is Syntactic Sugar

6

q a δ

a
0 { a, b, c, d }

1 { b, d }

b
0 { b, c, d }

1 { d }

c
0 Ø

1 { d }

d
0 Ø

1 { d }

c

d

ba

0
1,ε

0 0

ε

1

1

,1

,1

,1

c

d

ba

0
0

0 0
1

1

0

0

0

{Fnew =
F, if Cε({s})∩F = Ø  
F ∪ {s}, otherwise.

C
S

37
4

Can modify any NFA N, to get an equivalent DFA M

NFA to DFA

7

q a δ

a
0 { a, b, c, d }

1 { b, d }

b
0 { b, c, d }

1 { d }

c
0 Ø

1 { d }

d
0 Ø

1 { d }

,1

,1

,1

c

d

ba

0
0

0 0
1

1

0

0

0

{a}

{a,b,c,d}

{b,d}

{b,c,d}

{d}

Ø

To avoid errors, first,
remove ε-moves

0
1

0
1

0
1

0
1

0
1

0
1

Ø
Ø

Ø
{ d }

{ b,c,d }
{ d }

{ b,c,d }
{ d }

{ a,b,c,d }
{ b,d }

{ a,b,c,d }
{ b,d }

T a δ

a

Remember to
specify final states

d

bcd

1

0

0

bd

abcd

1
0,1

1

Ø0
0

1

0

1

C
S

37
4

NFA to DFA: Formally

8

NFA: N = (Σ, Q, δ, s, F)

δ : Q × Σ → �(Q) δ† : �(Q) × Σ → �(Q)

DFA: MN = (Σ, �(Q), δ†, s†, F†)

s† = {s}, F† = { T | T∩F ≠ Ø }

δ†(T, a) = ∪q∈T δ(q,a)

Theorem : L(N) = L(MN)

Proof? Recall definitions of L(DFA), L(NFA)

ε-moves
already

removed

C
S

37
4

Language Accepted by a DFA

9

DFA: M = (Σ, QM, δM, sM, FM)
Two ways to define 

the state that an input w leads to starting from a state

δ*(q,ε) = q 
δ*(q,au) = δ*(δM(q,a), u)

wq � p

wTheorem : q � p ⇔ p = δ*(q,w)

if w = a1… at and ∃ q1,…,qt+1,
such that q1 = q, qt+1 = p, and
∀ i ∈ [1, t], qi+1 = δM(qi,ai)

L(M) = { w | ∃p ∈ FM, sM � p } = { w | δ*(sM,w) ∈ FM }w

Prove!

C
S

37
4

Language Accepted by an NFA

10

NFA: N = (Σ, QN, δN, sN, FN)
Two ways to define 

the set of states that an input w leads to starting from a set of states

δ†*(T, ε) = T  
δ†*(T, au) = δ†*(δ†(T, a), u)

wq � p

wTheorem : q � p ⇔ p ∈ δ†*({q},w)

if ∃ a1… at and q1,…,qt+1, such
that w = a1… at, q1 = q, qt+1 = p,
and ∀ i ∈ [1, t], qi+1 ∈ δN(qi,ai)

L(N) = { w | ∃p ∈ FN, sN � p} = { w | δ†*({sN},w) ∩ FN ≠ Ø }w

δ†(T, a) = ∪q∈T δN(q,a)

= { w | δ†*(s†,w) ∈ F† }

s† = {sN}, F† = { T | T ∩ FN ≠ Ø }
Prove!

C
S

37
4

Side-by-Side

11

NFA: N = (Σ, QN, δN, sN, FN)

δ†*(T, ε) = T  
δ†*(T, au) = δ†*(δ†(T, a), u)

δ†(T, a) = ∪q∈T δN(q,a)

L(N) = { w | δ†*(s†,w) ∈ F† }

s† = {sN}, F† = { T | T ∩ FN ≠ Ø }

DFA: M = (Σ, QM, δM, sM, FM)

δ*(q,ε) = q 
δ*(q,au) = δ*(δM(q,a), u)

L(M) ={ w | δ*(sM,w) ∈ FM }

δ† : �(QN) × Σ → �(QN)δM : QM × Σ → QM

δN : QN × Σ → �(QN)

If QM = �(QN), δM = δ†, sM = s†, FM = F†, then L(M)=L(N) ✓

C
S

37
4

Closure Properties for NFAs

If L has an NFA, then op(L) has an NFA  
where op can be complement or Kleene star

If L1 and L2 each has an NFA, then L1 op L2 has an NFA 
where op can be a binary set operation (e.g., union,

intersection, difference etc.) or concatenation

Complement and Binary set operations  
Consider the equivalent DFA

Union can be seen directly too…

12

C
S

37
4

Closure Under Union

13

ε

ε

C
S

37
4

Closure Properties for NFAs

If L has an NFA, then op(L) has an NFA  
where op can be complement or Kleene star

If L1 and L2 each has an NFA, then L1 op L2 has an NFA 
where op can be a binary set operation (e.g., union,

intersection, difference etc.) or concatenation

Complement and Binary set operations  
Consider the equivalent DFA

(Union can be seen directly too…)

Now: concatenation and Kleene star
14

C
S

37
4

Single Final State Form

Can compile a given NFA so that there is  
only one final state 

(and there is no transition out of that state)

15

ε

ε

C
S

37
4

Closure Under Concatenation

16

ε

C
S

37
4

Closure Under Kleene Star

17

ε

ε

C
S

37
4

NFAs & Regular Languages

Theorem : For any language L, the following are equivalent:

(a) L is accepted by an NFA  
(b) L is accepted by a DFA  
(c) L is regular

Saw : (a) ⇒ (b)  
Later : (b) ⇒ (c) 
Now : (c) ⇒ (a)

Proof of (c) ⇒ (a) : By induction on the least number of
operators in a regular expression for the language

18

C
S

37
4

NFAs & Regular Languages

Theorem : L regular ⇒ L is accepted by an NFA

Proof : To prove that if L = L(r) for some regex r, then L=L(N) for
some NFA N. By induction on the number of operators in the regex.

Base case: L has a regular expression with 0 operators. Then the
regex should be one of Ø, ε, a ∈ Σ. In each case, ∃N s.t. L=L(N). ✓

Inductive step: Let n > 0. Assume that every language which has a
regex with k operators has an NFA, where 0 ≤ k < n.

If L has a regex with n operators, it must be of the form r1r2, r1+r2, or
r1*, and hence L = L1L2, or L1 ∪ L2 or (L1)*, where L1=L(r1) and
L2=L(r2). Since r1 and r2 must have < n operators, by IH L1, L2 have
NFAs. By closure of NFAs under these operations, so does L. ✓19

C
S

37
4

NFAs & Regular Languages

Example : L given by regular expression (10+1)*

20

1

ε

ε

ε

ε

1 ε 0
ε

ε

C
S

37
4

Closure Properties for  
Regular Languages

Theorem : If Li are regular then, so is:
L1 ∪ L2, L1*, L1L2$

L̅1$

L1 ∩ L2$

formula(L1, L2, …, Lk)$

suffix(L1)$

h(L1) and h-1(L1), where h is a homomorphism

…
21

From the definition of regular languages  
(or from NFA closure properties)

By considering DFAs for the languages and
using the complement construction for DFAs

By De Morgan’s Law (or by the
cross-product construction for DFAs)

Skipped from this course

C
S

37
4

More Closure Properties
formula f (L1, …, Lk) = { w | f (b1,…,bk) holds, where bi ≡ (w∈Li) }$

e.g., f (b1, b2, b3) = majority (b1, b2, b3)

Theorem: If L1, …, Lk are regular, then for any boolean formula f,  
 formula f (L1, …, Lk) is regular

Proof: Any boolean formula can be written using operators  
 ∧, ∨ and ¬ (AND, OR, NOT).  
 
formula f ∧ g(L1, …, Lk) = formula f (L1, …, Lk) ∩ formula g(L1, …, Lk)  
formula f ∨ g(L1, …, Lk) = formula f (L1, …, Lk) ∪ formula g(L1, …, Lk)  
formula ¬f (L1, …, Lk) = Σ* — formula f (L1, …, Lk)

Complete the proof by induction on the number of operators in f.

22

C
S

37
4

More Closure Properties
suffix(L) = { w | w is a suffix of a string in L } = { w | ∃ x ∈ Σ* xw ∈ L }

Theorem: If L is regular, then suffix(L) is regular

Proof: Let M be a DFA for L. 
 We shall construct an NFA N s.t. L(N) = suffix(L(M)).

Idea: N will guess the state that M will be in after seeing a “correct”
x and directly jump to that state. Then starts behaving like M.

Need to ensure that (some thread of) N accepts w iff w ∈ suffix(L).

If w ∈ suffix(L), ∃x, xw ∈ L. Hence ∃q s.t. s �M q and q �M p, p ∈ F.
So some thread of N will jump to q (s �N q) and accept w (q �N p).

Converse?
23

w
w

x
ε

Trouble if N jumps to q and accepts w from there, 
 but no x could take M to q (i.e., q unreachable)!

C
S

37
4

More Closure Properties
suffix(L) = { w | w is a suffix of a string in L } = { w | ∃ x ∈ Σ* xw ∈ L }

Theorem: If L is regular, then suffix(L) is regular

Proof: Let M be a DFA for L. 
 We shall construct an NFA N s.t. L(N) = suffix(L(M)).

Idea: N will guess the state that M will be in after seeing a “correct”
x and directly jump to that state. Then starts behaving like M.

24

QN = QM ∪ {sN}. FN = FM.  
δN(q,a) = {δM(q,a)} for q ∈ QM.  
δN(sN,ε) = {q∈QM | q reachable from sM}

 
Exercise: Verify “corner cases”: e.g., L = Ø, ε ∉ L etc.

ε

ε

ε

C
S

37
4
More Closure Properties (FYI): 

Homomorphism/Inverse Homomorphism
Suppose given a mapping h : Σ → Δ*.

25

Given DFA M over Δ, consider
DFA K over Σ and the same set of
states, s.t. p →K q iff p �M qa h(a)

a

Given DFA M over Σ, consider
NFA N over Δ (with additional
states) s.t. for any two of the
original states, p,q, if p →M q then

p �N q via a path of new statesh(a)

a 0 1

M N

0
1

a

M K

e.g., for h(a) = 01
L(N) = h(L(M)) L(K) = h-1(L(M))

