NFA/DFA: Closure Properties, Relation to Regular Languages

Lecture 5

Today

Closure Properties of class of languages accepted by NFAs/DFAs

Towards proving equivalence of regular languages and languages accepted by NFAs (and hence DFAs)

More closure Properties of regular languages

NFA : Formally

$N = (\Sigma, Q, \delta, s, F)$

 Σ : alphabet Q: state space s: start state F: set of accepting states

$$\delta: Q \times \{\Sigma \cup \varepsilon\} \twoheadrightarrow \mathcal{P}(Q)$$

By default, NFA can have ε -moves

We say $q \xrightarrow{W}_{N} p$ if $\exists a_1, ..., a_t \in \Sigma \cup \{\varepsilon\}$ and $q_1, ..., q_{t+1} \in Q$, such that $w = a_1...a_t$, $q_1 = q$, $q_{t+1} = p$, and $\forall i \in [1, t], q_{i+1} \in \delta(q_i, a_i)$

 $L(N) = \{ w \mid s \stackrel{W}{\leadsto}_N p \text{ for some } p \in F \}$

374

ε-Moves is Syntactic Sugar

Can modify any NFA N, to get an NFA N_{new} without ε -moves

$$a \in \Sigma$$

$$N_{\text{new}} = (\Sigma, Q, \delta_{\text{new}}, s, F_{\text{new}})$$

$$\begin{cases} a \in \Sigma \\ \delta_{\text{new}}(q, a) = C_{\varepsilon}(\delta(C_{\varepsilon}(\{q\}), a)) \\ \bullet g \therefore \delta_{\text{new}}(q, a) = C_{\varepsilon}(\delta(C_{\varepsilon}(\{q\}), a)) \\ \bullet g \therefore \delta_{\text{new}}(1, 0) = \{0, 2, 3, 4, 5\} \\ \bullet g \therefore \delta_{\text{new}}(1, 0) = \{0, 2, 3, 4, 5\} \\ \hline For |w| \ge 1, q \stackrel{W}{\rightsquigarrow}_{N} p \Leftrightarrow q \stackrel{W}{\rightsquigarrow}_{Nnew} p \\ For |w| \ge 1, q \stackrel{W}{\rightsquigarrow}_{N} p \Leftrightarrow q \stackrel{W}{\rightsquigarrow}_{Nnew} p \\ F_{\text{new}} = \begin{cases} F, & \text{if } C_{\varepsilon}(\{s\}) \cap F = \emptyset \\ F \cup \{s\}, & \text{otherwise.} \end{cases}$$

Theorem: $L(N) = L(N_{new})$

374

 \bigcirc

ε-Moves is Syntactic Sugar

Can modify any NFA *N*, to get an NFA N_{new} without ε -moves $N_{\text{new}} = (\Sigma, Q, \delta_{\text{new}}, s, F_{\text{new}})$

$$\delta_{\text{new}}(q, a) = C_{\varepsilon}(\delta(C_{\varepsilon}(\{q\}), a))$$

q	С	a	δ	δ
а	{ a, b, d }	0	{ a, b, c }	{ a, b, c, d }
		1	{ b, d }	{ b, d }
b	{ b, d }	0	{ b, c }	{ b, c, d }
		1	{ d }	{ d }
С	{ c }	0	Ø	Ø
		1	{ d }	{ d }
d	{ d }	0	Ø	Ø
		1	{ d }	{ d }

5S 374

ε-Moves is Syntactic Sugar

Can modify any NFA N, to get an NFA N_{new} without ε -moves $N_{\text{new}} = (\Sigma, Q, \delta_{\text{new}}, s, F_{\text{new}})$

NFA to DFA

Can modify any NFA N, to get an equivalent DFA M

Theorem : $L(N) = L(M_N)$

Proof? Recall definitions of *L*(DFA), *L*(NFA)

Language Accepted by a DFA

DFA: $M = (\Sigma, Q_M, \delta_M, s_M, F_M)$

Two ways to define

the state that an input w leads to starting from a state

 $q \xrightarrow{w} p$ if $w = a_1...a_t$ and $\exists q_1,...,q_{t+1}$, such that $q_1 = q, q_{t+1} = p$, and $\forall i \in [1, t], q_{i+1} = \delta_M(q_i, a_i)$

$$\delta^{*}(q,\varepsilon) = q$$

$$\delta^{*}(q,au) = \delta^{*}(\delta_{M}(q,a), u)$$

Prove!

Theorem : $q \stackrel{w}{\rightsquigarrow} p \Leftrightarrow p = \delta^*(q,w)$

 $L(M) = \{ w \mid \exists p \in F_M, s_M \stackrel{w}{\rightsquigarrow} p \} = \{ w \mid \delta^*(s_M, w) \in F_M \}$

Language Accepted by an NFA

NFA: $N = (\Sigma, Q_N, \delta_N, s_N, F_N)$

Two ways to define

the set of states that an input w leads to starting from a set of states

 $q \stackrel{W}{\leadsto} p$ if $\exists a_1 \dots a_t$ and q_1, \dots, q_{t+1} , such that $w = a_1 \dots a_t$, $q_1 = q$, $q_{t+1} = p$, and $\forall i \in [1, t], q_{i+1} \in \delta_N(q_i, a_i)$ Theorem : $q \stackrel{W}{\leadsto} p \Leftrightarrow p \in \delta^{\dagger*}(\{q\}, w)$ $\delta^{\dagger}(T, a) = \bigcup_{q \in T} \delta_N(q, a)$ $\delta^{\dagger*}(T, \varepsilon) = T$ $\delta^{\dagger*}(T, au) = \delta^{\dagger*}(\delta^{\dagger}(T, a), u)$ $s^{\dagger} = \{s_N\}, \quad F^{\dagger} = \{T \mid T \cap F_N \neq \emptyset\}$ Prove!

 $L(N) = \{ w \mid \exists p \in F_N, s_N \stackrel{w}{\leadsto} p \} = \{ w \mid \delta^{\dagger} * (\{s_N\}, w) \cap F_N \neq \emptyset \}$ $= \{ w \mid \delta^{\dagger} * (s^{\dagger}, w) \in F^{\dagger} \}$

10

Side-by-Side

DFA:
$$M = (\Sigma, Q_M, \delta_M, s_M, F_M)$$

 $\delta_M: Q_M \times \Sigma \to Q_M$

$$\begin{split} \delta^*(q,\varepsilon) &= q \\ \delta^*(q,au) &= \delta^*(\delta_M(q,a), u) \end{split}$$

374

11

$$NFA: N = (\Sigma, Q_N, \delta_N, S_N, F_N)$$

$$\delta_N: Q_N \times \Sigma \to \mathcal{P}(Q_N)$$

$$\delta^{\dagger}: \mathcal{P}(Q_N) \times \Sigma \to \mathcal{P}(Q_N)$$

$$\delta^{\dagger}(T, a) = \bigcup_{q \in T} \delta_N(q, a)$$

$$\delta^{\dagger*}(T, \varepsilon) = T$$

$$\delta^{\dagger*}(T, au) = \delta^{\dagger*}(\delta^{\dagger}(T, a), u)$$

$$s^{\dagger} = \{s_N\}, \quad F^{\dagger} = \{T \mid T \cap F_N \neq \emptyset\}$$

 $L(N) = \{ w \mid \delta^{\dagger *}(s^{\dagger}, w) \in F^{\dagger} \}$

$$L(M) = \{ w \mid \delta^*(s_M, w) \in F_M \}$$

If $Q_M = \mathcal{P}(Q_N)$, $\delta_M = \delta^{\dagger}$, $s_M = s^{\dagger}$, $F_M = F^{\dagger}$, then L(M) = L(N)

Closure Properties for NFAs

If *L* has an NFA, then op(L) has an NFA where op can be complement or Kleene star

If L_1 and L_2 each has an NFA, then L_1 **op** L_2 has an NFA where **op** can be a **binary set operation** (e.g., union, intersection, difference etc.) or **concatenation**

> Complement and Binary set operations Consider the equivalent DFA

Union can be seen directly too...

CS 374

Closure Properties for NFAs

If *L* has an NFA, then op(L) has an NFA where op can be complement or Kleene star

If L_1 and L_2 each has an NFA, then L_1 **op** L_2 has an NFA where **op** can be a **binary set operation** (e.g., union, intersection, difference etc.) or **concatenation**

> Complement and Binary set operations Consider the equivalent DFA

(Union can be seen directly too...)

Now: concatenation and Kleene star

Single Final State Form

Can compile a given NFA so that there is only one final state (and there is no transition out of that state)

<u>5</u>S 374

Closure Under Concatenation

<u>CS 374</u>

Closure Under Kleene Star

CS 374

NFAs & Regular Languages

Theorem : For any language L, the following are equivalent:

(a) L is accepted by an NFA(b) L is accepted by a DFA(c) L is regular

Saw: (a) \Rightarrow (b) Later: (b) \Rightarrow (c) Now: (c) \Rightarrow (a)

CS 374

Proof of (c) \Rightarrow (a) : By induction on the least number of operators in a regular expression for the language

NFAs & Regular Languages

Theorem : *L* regular \Rightarrow *L* is accepted by an NFA

374

19

Proof : To prove that if L = L(r) for some regex *r*, then L=L(N) for some NFA *N*. By induction on the <u>number of operators</u> in the regex.

<u>Base case</u>: *L* has a regular expression with 0 operators. Then the regex should be one of \emptyset , ε , $a \in \Sigma$. In each case, $\exists N$ s.t. L=L(N).

Inductive step: Let n > 0. Assume that every language which has a regex with k operators has an NFA, where $0 \le k < n$.

If *L* has a regex with *n* operators, it must be of the form r_1r_2 , r_1+r_2 , or r_1^* , and hence $L = L_1L_2$, or $L_1 \cup L_2$ or $(L_1)^*$, where $L_1=L(r_1)$ and $L_2=L(r_2)$. Since r_1 and r_2 must have < n operators, by IH L_1 , L_2 have NFAs. By closure of NFAs under these operations, so does *L*.

NFAs & Regular Languages

Example : L given by regular expression $(10+1)^*$

Closure Properties for Regular Languages

Theorem : If L_i are regular then, so is:

From the definition of regular languages (or from NFA closure properties)

By De Morgan's Law (or by the

cross-product construction for DFAs)

By considering DFAs for the languages and using the complement construction for DFAs

 $\blacktriangleright L_1 \cap L_2$

 $\blacktriangleright \overline{L}_1$

▶ formula($L_1, L_2, ..., L_k$)

 $\blacktriangleright L_1 \cup L_2, L_1^*, L_1L_2$

suffix(L_1)

 $h(L_1)$ and $h^{-1}(L_1)$, where h is a homomorphism Skipped from this course

21

More Closure Properties

formula $_{f}(L_{1}, ..., L_{k}) = \{ w | f(b_{1}, ..., b_{k}) \text{ holds, where } b_{i} = (w \in L_{i}) \}$

e.g., $f(b_1, b_2, b_3) =$ majority (b_1, b_2, b_3)

Theorem: If $L_1, ..., L_k$ are regular, then for any boolean formula f, formula $_f(L_1, ..., L_k)$ is regular

Proof: Any boolean formula can be written using operators \land , \lor and \neg (AND, OR, NOT).

formula $_{f \land g}(L_1, \ldots, L_k) =$ formula $_f(L_1, \ldots, L_k) \cap$ formula $_g(L_1, \ldots, L_k)$ formula $_{f \lor g}(L_1, \ldots, L_k) =$ formula $_f(L_1, \ldots, L_k) \cup$ formula $_g(L_1, \ldots, L_k)$ formula $\neg_f(L_1, \ldots, L_k) = \Sigma^* -$ formula $_f(L_1, \ldots, L_k)$

Complete the proof by induction on the number of operators in f.

More Closure Properties

suffix(L) = { $w \mid w \text{ is a suffix of a string in } L$ } = { $w \mid \exists x \in \Sigma^* \quad xw \in L$ }

Theorem: If L is regular, then suffix(L) is regular

Proof: Let *M* be a DFA for *L*. We shall construct an NFA *N* s.t. L(N) = suffix(L(M)).

<u>Idea</u>: N will guess the state that M will be in after seeing a "correct" x and directly jump to that state. Then starts behaving like M.

Need to ensure that (some thread of) N accepts w iff $w \in suffix(L)$.

If $w \in \operatorname{suffix}(L)$, $\exists x, xw \in L$. Hence $\exists q \text{ s.t. } s \xrightarrow{x}_{M} q$ and $q \xrightarrow{w}_{M} p, p \in F$. So some thread of N will jump to q ($s \xrightarrow{\varepsilon}_{M} q$) and accept w ($q \xrightarrow{w}_{M} p$).

Converse? Trouble if N jumps to q and accepts w from there, but no x could take M to q (i.e., q unreachable)!

374

 \bigcirc

More Closure Properties

suffix(L) = { $w \mid w \text{ is a suffix of a string in } L$ } = { $w \mid \exists x \in \Sigma^* \quad xw \in L$ }

Theorem: If L is regular, then suffix(L) is regular

Proof: Let *M* be a DFA for *L*. We shall construct an NFA *N* s.t. L(N) = suffix(L(M)).

<u>Idea</u>: *N* will guess the state that *M* will be in after seeing a "correct" *x* and directly jump to that state. Then starts behaving like *M*.

$$Q_N = Q_M \cup \{s_N\}, F_N = F_M.$$

$$\delta_N(q,a) = \{\delta_M(q,a)\} \text{ for } q \in Q_M.$$

$$\delta_N(s_N,\varepsilon) = \{q \in Q_M \mid q \text{ reachable from } s_M\}$$

Exercise: Verify "corner cases": e.g., $L = \emptyset$, $\varepsilon \notin L$ etc.

374

