NFA/DFA:

Closure Properties, Relation to Regular Languages

Lecture 5

Today

NFAs recap : Determinizing an NFA

Closure Properties of class of languages accepted by NFAs/DFAs

Towards proving equivalence of regular languages and languages accepted by NFAs (and hence DFAs)

More closure Properties of regular languages

NFA : Formally

$$
N=(\Sigma, Q, \delta, s, F)
$$

Σ : alphabet Q : state space s : start state F : set of accepting states

$$
\delta: Q \times\{\Sigma \cup \varepsilon\} \rightarrow \mathcal{P}(Q)
$$

By default, NFA can have ε-moves

We say $q \xrightarrow[\sim_{N}]{w} p$ if $\exists a_{1}, \ldots, a_{t} \in \Sigma \cup\{\varepsilon\}$ and $q_{1}, \ldots, q_{t+1} \in Q$, such that

$$
w=a_{1} \ldots a_{t}, q_{1}=q, q_{t+1}=p, \text { and } \forall i \in[1, t], q_{i+1} \in \delta\left(q_{i}, a_{i}\right)
$$

$$
L(N)=\left\{w \mid s_{w_{N}}^{w} p \text { for some } p \in F\right\}
$$

$$
\text { e.g., } \delta(1, o)=\{2\}, \delta(1, x)=\varnothing, \delta(1, \varepsilon)=\{\mathbf{2}\} . \quad \varepsilon \text {-closure } C \varepsilon(\{1\})=\{\mathbf{1}, \mathbf{2}, \mathbf{3}, 0\}
$$

ε-Moves is Syntactic Sugar

Can modify any NFA N, to get an NFA $N_{\text {new }}$ without ε-moves

Theorem: $L(N)=L\left(N_{\text {new }}\right)$

ε-Moves is Syntactic Sugar

Can modify any NFA N, to get an NFA $N_{\text {new }}$ without ε-moves

$$
\begin{gathered}
N_{\text {new }}=\left(\Sigma, Q, \delta_{\text {new }}, s, F_{\text {new }}\right. \\
\delta_{\text {new }}(q, a)=C_{\varepsilon}\left(\delta\left(C_{\varepsilon}(\{q\}), a\right)\right)
\end{gathered}
$$

q	C	a		δ
a $\{\mathrm{a}, \mathrm{b}, \mathrm{d}\}$		0	\{a, b, c \}	$\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$
		1	$\{\mathrm{b}, \mathrm{d}\}$	$\{\mathrm{b}, \mathrm{d}\}$
b	$\{\mathrm{b}, \mathrm{d}\}$	0	$\{\mathrm{b}, \mathrm{c}$ \}	$\{\mathrm{b}, \mathrm{c}, \mathrm{d}\}$
		1	\{d \}	\{d \}
c	\{ c \}	0	\varnothing	\varnothing
		1	\{d\}	\{d \}
d	\{ d \}	0	\varnothing	\varnothing
		1	\{d \}	\{d \}

ε-Moves is Syntactic Sugar

Can modify any NFA N, to get an NFA $N_{\text {new }}$ without ε-moves

$$
\begin{gathered}
N_{\text {new }}=\left(\Sigma, Q, \delta_{\text {new }}, s, F_{\text {new }}\right. \\
\delta_{\text {new }}(q, a)=C_{\varepsilon}\left(\delta\left(C_{\varepsilon}(\{q\}), a\right)\right)
\end{gathered}
$$

$q \quad a \quad \delta$

	0	$\{a, b, c, d\}$
	1	$\{b, d\}$
\mathbf{b}	0	$\{b, c, d\}$
	1	$\{d\}$
c	0	\varnothing
	1	$\{d\}$
d	0	\varnothing
	1	$\{d\}$

$$
F_{\mathrm{new}}= \begin{cases}F, & \text { if } C_{\varepsilon}(\{s\}) \cap F=\varnothing \\ F \cup\{s\}, & \text { otherwise } .\end{cases}
$$

NFA to DFA

Can modify any NFA N, to get an equivalent DFA M

NFA to DFA: Formally

$$
\begin{array}{c|c}
\text { NFA: } N=(\Sigma, Q, \delta, s, F) & \text { DFA: } M_{N}=\left(\Sigma, \mathcal{P}(Q), \delta^{\dagger}, s^{\dagger}, F^{\dagger}\right) \\
\delta: Q \times \Sigma \rightarrow \mathcal{P}(Q) & \delta^{\dagger}: \mathcal{P}(Q) \times \Sigma \rightarrow \mathcal{P}(Q) \\
\begin{array}{c}
\varepsilon \text {-moves } \\
\text { already } \\
\text { removed }
\end{array} & \begin{array}{c}
\delta^{\dagger}(T, a)=\cup_{q} \in T \\
\end{array} \\
s^{\dagger}=\{s, a) \\
\{s\}, \quad F^{\dagger}=\{T \mid T \cap F \neq \emptyset\}
\end{array}
$$

Theorem : $L(N)=L\left(M_{N}\right)$

Proof? Recall definitions of L (DFA), $L(\mathrm{NFA})$

Language Accepted by a DFA

$$
\text { DFA: } M=\left(\Sigma, Q_{M}, \delta_{M}, s_{M}, F_{M}\right)
$$

Two ways to define
the state that an input w leads to starting from a state

$$
q \stackrel{w}{w} p
$$

if $w=a_{1} \ldots a_{t}$ and $\exists q_{1}, \ldots, q_{t+1}$,
such that $q_{1}=q, q_{t+1}=p$, and

$$
\forall i \in[1, t], q_{i+1}=\delta_{M}\left(q_{i}, a_{i}\right)
$$

$$
\begin{aligned}
& \delta^{*}(q, \varepsilon)=q \\
& \delta^{*}(q, a u)=\delta^{*}\left(\delta_{M}(q, a), u\right)
\end{aligned}
$$

$$
\text { Theorem : } q \stackrel{w}{w} p \Leftrightarrow p=\delta^{*}(q, w)
$$

$$
L(M)=\left\{w \mid \exists p \in F_{M}, s_{M} \stackrel{w}{w} p\right\}=\left\{w \mid \delta^{*}\left(s_{M}, w\right) \in F_{M}\right\}
$$

Language Accepted by an NFA

$\mathrm{NFA}: N=\left(\Sigma, Q_{N}, \delta_{N}, s_{N}, F_{N}\right)$
Two ways to define
the set of states that an input w leads to starting from a set of states

$$
q \stackrel{w}{w \rightarrow} p
$$

if $\exists a_{1} \ldots a_{t}$ and q_{1}, \ldots, q_{t+1}, such that $w=a_{1} \ldots a_{t}, q_{1}=q, q_{t+1}=p$, and $\forall i \in[1, t], q_{i+1} \in \delta_{N}\left(q_{i}, a_{i}\right)$

$$
\begin{gathered}
\delta^{\dagger}(T, a)=\cup_{q \in T} \delta_{N}(q, a) \\
\begin{array}{l}
\delta^{\dagger *}(T, \varepsilon)=T \\
\delta^{\dagger *}(T, a u)=\delta^{\dagger *}\left(\delta^{\dagger}(T, a), u\right)
\end{array} \\
s^{\dagger}=\left\{s_{N}\right\}, \quad F^{\dagger}=\left\{T \mid T \cap F_{N} \neq \emptyset\right\}
\end{gathered}
$$

Theorem : $q^{w} p \Leftrightarrow p \in \delta^{+*}(\{q\}, w)$

$$
\begin{aligned}
L(N)=\left\{w \mid \exists p \in F_{N}, s_{N} \stackrel{w}{w} p\right\} & =\left\{w \mid \delta^{\dagger *}\left(\left\{s_{N}\right\}, w\right) \cap F_{N} \neq \emptyset\right\} \\
& =\left\{w \mid \delta^{\dagger *}\left(s^{\dagger}, w\right) \in F^{\dagger}\right\}
\end{aligned}
$$

Side-by-Side

DFA: $M=\left(\Sigma, Q_{M}, \delta_{M}, s_{M}, F_{M}\right)$

$$
\delta_{M}: Q_{M} \times \Sigma \rightarrow Q_{M}
$$

$$
\begin{aligned}
& \delta^{*}(q, \varepsilon)=q \\
& \delta^{*}(q, a u)=\delta^{*}\left(\delta_{M}(q, a), u\right)
\end{aligned}
$$

NFA: $N=\left(\Sigma, Q_{N}, \delta_{N}, s_{N}, F_{N}\right)$

$$
\begin{gathered}
\delta_{N}: Q_{N} \times \Sigma \rightarrow \mathcal{P}\left(Q_{N}\right) \\
\delta^{\dagger}: \mathcal{P}\left(Q_{N}\right) \times \Sigma \rightarrow \mathcal{P}\left(Q_{N}\right) \\
\delta^{\dagger}(T, a)=\cup_{q \in T} \delta_{N}(q, a) \\
\begin{array}{l}
\delta^{* *}(T, \varepsilon)=T \\
\delta^{\dagger *}(T, a u)=\delta^{\dagger *}\left(\delta^{\dagger}(T, a), u\right)
\end{array} \\
s^{\dagger}=\left\{s_{N}\right\}, \quad F^{\dagger}=\left\{T \mid T \cap F_{N} \neq \emptyset\right\} \\
L(N)=\left\{w \mid \delta^{\dagger *}\left(s^{\dagger}, w\right) \in F^{\dagger}\right\}
\end{gathered}
$$

$L(M)=\left\{w \mid \delta *\left(s_{M}, w\right) \in F_{M}\right\}$
If $Q_{M}=\mathcal{P}\left(Q_{N}\right), \delta_{M}=\delta^{\dagger}, s_{M}=s^{\dagger}, F_{M}=F^{\dagger}$, then $L(M)=L(N)$

Closure Properties for NFAs

If L has an NFA, then $\mathbf{o p}(L)$ has an NFA where op can be complement or Kleene star

If L_{1} and L_{2} each has an NFA, then L_{1} op L_{2} has an NFA where op can be a binary set operation (e.g., union, intersection, difference etc.) or concatenation

Complement and Binary set operations Consider the equivalent DFA

Union can be seen directly too...

Closure Under Union

Closure Properties for NFAs

If L has an NFA, then $\mathbf{o p}(L)$ has an NFA where op can be complement or Kleene star

If L_{1} and L_{2} each has an NFA, then L_{1} op L_{2} has an NFA where op can be a binary set operation (e.g., union, intersection, difference etc.) or concatenation

Complement and Binary set operations Consider the equivalent DFA
(Union can be seen directly too...)
Now: concatenation and Kleene star

Single Final State Form

Can compile a given NFA so that there is only one final state
(and there is no transition out of that state)

Closure Under Concatenation

Closure Under Kleene Star

NFAs \& Regular Languages

Theorem : For any language L, the following are equivalent:
(a) L is accepted by an NFA
(b) L is accepted by a DFA
(c) L is regular

$$
\begin{aligned}
& \text { Saw: }(\mathrm{a}) \Rightarrow(\mathrm{b}) \\
& \text { Later: }(\mathrm{b}) \Rightarrow(\mathrm{c}) \\
& \text { Now: }(\mathrm{c}) \Rightarrow(\mathrm{a})
\end{aligned}
$$

Proof of $(\mathrm{c}) \Rightarrow(\mathrm{a})$: By induction on the least number of operators in a regular expression for the language

NFAs \& Regular Languages

Theorem : L regular $\Rightarrow L$ is accepted by an NFA

Proof : To prove that if $L=L(r)$ for some regex r, then $L=L(N)$ for some NFA N. By induction on the number of operators in the regex.

Base case: L has a regular expression with 0 operators. Then the regex should be one of $\emptyset, \varepsilon, a \in \Sigma$. In each case, $\exists N$ s.t. $L=L(N)$.

Inductive step: Let $n>0$. Assume that every language which has a regex with k operators has an NFA, where $0 \leq k<n$.

If L has a regex with n operators, it must be of the form $r_{1} r_{2}, r_{1}+r_{2}$, or $r_{1}{ }^{*}$, and hence $L=L_{1} L_{2}$, or $L_{1} \cup L_{2}$ or $\left(L_{1}\right)^{*}$, where $L_{1}=L\left(r_{1}\right)$ and $L_{2}=L\left(r_{2}\right)$. Since r_{1} and r_{2} must have $<n$ operators, by IH L_{1}, L_{2} have NFAs. By closure of NFAs under these operations, so does L.

NFAs \& Regular Languages

Example : L given by regular expression (10+1)*

Closure Properties for Regular Languages

Theorem : If L_{i} are regular then, so is:

- $L_{1} \cup L_{2}, L_{1}^{*}, L_{1} L_{2}$

From the definition of regular languages (or from NFA closure properties)

* \bar{L}_{1}

By considering DFAs for the languages and using the complement construction for DFAs

- $L_{1} \cap L_{2}$
- formula $\left(L_{1}, L_{2}, \ldots, L_{k}\right)$

By De Morgan's Law (or by the

 cross-product construction for DFAs)- $\operatorname{suffix}\left(L_{1}\right)$
- $h\left(L_{1}\right)$ and $h^{-1}\left(L_{1}\right)$, where h is a homomorphism

Skipped from this course

More Closure Properties

formula ${ }_{f}\left(L_{1}, \ldots, L_{k}\right)=\left\{w \mid f\left(b_{1}, \ldots, b_{k}\right)\right.$ holds, where $\left.b_{i} \equiv\left(w \in L_{i}\right)\right\}$

$$
\text { e.g., } f\left(b_{1}, b_{2}, b_{3}\right)=\text { majority }\left(b_{1}, b_{2}, b_{3}\right)
$$

Theorem: If L_{1}, \ldots, L_{k} are regular, then for any boolean formula f, formula $_{f}\left(L_{1}, \ldots, L_{k}\right)$ is regular

Proof: Any boolean formula can be written using operators \wedge, \vee and \neg (AND, OR, NOT).
formula $_{f \wedge g}\left(L_{1}, \ldots, L_{k}\right)=$ formula $_{f}\left(L_{1}, \ldots, L_{k}\right) \cap$ formula $_{g}\left(L_{1}, \ldots, L_{k}\right)$ formula $_{f \vee g}\left(L_{1}, \ldots, L_{k}\right)=$ formula $_{f}\left(L_{1}, \ldots, L_{k}\right) \cup$ formula $_{g}\left(L_{1}, \ldots, L_{k}\right)$ formula $\neg_{f}\left(L_{1}, \ldots, L_{k}\right)=\Sigma^{*}-$ formula $_{f}\left(L_{1}, \ldots, L_{k}\right)$

Complete the proof by induction on the number of operators in f.

More Closure Properties

 $\operatorname{suffix}(L)=\{w \mid w$ is a suffix of a string in $L\}=\left\{w \mid \exists x \in \Sigma^{*} x w \in L\right\}$Theorem: If L is regular, then $\operatorname{suffix}(L)$ is regular
Proof: Let M be a DFA for L.
We shall construct an NFA N s.t. $L(N)=\operatorname{suffix}(L(M))$.
Idea: N will guess the state that M will be in after seeing a "correct" x and directly jump to that state. Then starts behaving like M.

Need to ensure that (some thread of) N accepts w iff $w \in \operatorname{suffix}(L)$.
If $w \in \operatorname{suffix}(L), \exists x, x w \in L$. Hence $\exists q$ s.t. $s \xrightarrow[\sim]{x} M q$ and $q{ }_{\sim}^{w} p p, p \in F$.

Converse? Trouble if N jumps to q and accepts w from there, but no x could take M to q (i.e., q unreachable)!

More Closure Properties

$\operatorname{suffix}(L)=\{w \mid w$ is a suffix of a string in $L\}=\left\{w \mid \exists x \in \Sigma^{*} x w \in L\right\}$
Theorem: If L is regular, then $\operatorname{suffix}(L)$ is regular
Proof: Let M be a DFA for L.
We shall construct an NFA N s.t. $L(N)=\operatorname{suffix}(L(M))$.
Idea: N will guess the state that M will be in after seeing a "correct" x and directly jump to that state. Then starts behaving like M.
$Q_{N}=Q_{M} \cup\left\{s_{N}\right\} . F_{N}=F_{M}$.
$\delta_{N}(q, a)=\left\{\delta_{M}(q, a)\right\}$ for $q \in Q_{M}$.
$\delta_{N}\left(s_{N}, \varepsilon\right)=\left\{q \in Q_{M} \mid q\right.$ reachable from $\left.s_{M}\right\}$

Exercise: Verify "corner cases": e.g., $L=\emptyset, \varepsilon \notin L$ etc.

More Closure Properties (FYI):

Homomorphism/Inverse Homomorphism

 Suppose given a mapping $h: \Sigma \rightarrow \Delta^{*}$.Given DFA M over Σ, consider
NFA N over Δ (with additional states) s.t. for any two of the original states, p, q, if $p \xrightarrow{a}_{M} q$ then $p^{(a)}$ $p^{h \rightarrow N} q$ via a path of new states

$L(N)=h(L(M))$

Given DFA M over Δ, consider
DFA K over Σ and the same set of states, s.t. $p \xrightarrow{a}_{K} q$ iff $p{ }_{p}^{h(a)} q$

$L(K)=h^{-1}(L(M))$

$$
\text { e.g., for } h(a)=01
$$

