Strings, Languages, and Regular expressions
 Lecture 2

Strings

Definitions for strings

 e.g., $\Sigma=\{0,1\}$,$\Sigma=\{\alpha, \beta, \ldots, \omega\}$, $\Sigma=$ set of ascii characters

- alphabet $\Sigma=$ finite set of symbols
- string $=$ finite sequence of symbols of Σ
- length of a string w is denoted $|w|$.
- empty string is denoted " ε ".

$$
|\varepsilon|=0
$$

Could formalize as a function $w:[n] \rightarrow \Sigma$ where $|w|=n$

Variable conventions (for this lecture)
$a, b, c, \ldots \quad$ elements of Σ (i.e., strings of length 1)
w, x, y, z, \ldots strings of length 0 or more
A, B, C, \ldots sets of strings

Much ado about nothing

- ε is a string containing no symbols. It is not a set.
- $\{\varepsilon\}$ is a set containing one string: the empty string ε. It is a set, not a string.
- \varnothing is the empty set. It contains no strings.

Concatenation \& its properties

- $x y$ denotes the concatenation of strings x and y (sometimes written $x \cdot y$)
- Associative: $(u v) w=u(v w)$ and we write $u v w$.
- Identity element ε : $\varepsilon w=w \varepsilon=w$
- Can be used to define strings (set of all strings Σ^{*}) inductively
- NOT commutative: $a b \neq b a$

Substring, Prefix, Suffix, Exponents

- v is a substring of w iff there exist strings x, y, such that $w=x v y$.
- If $x=\varepsilon \quad(w=v y)$ then v is a prefix of w.
- If $y=\varepsilon(w=x v)$ then v is a suffix of w.
- If w is a string, then w^{n} is defined inductively by:

$$
\begin{aligned}
& -w^{n}=\varepsilon \text { if } n=0 \\
& -w^{n}=w w^{n-1} \text { if } n>0
\end{aligned}
$$

$(\text { blah })^{4}=$ blahblahblahblah

Set Concatenation

- If X and Y are sets of strings, then
$X Y=\{x y \mid x \in X, y \in Y\}$
e.g. $X=\{$ fido, rover, spot $\}, Y=\{$ fluffy, tabby $\}$ then $X Y=\{$ fidofluffy, fidotabby, roverfluffy, ...\}

$$
|X Y|=6
$$

$$
A=\{\mathrm{a}, \mathrm{aa}\}, B=\{\varepsilon, \mathrm{a}\}
$$

$$
|A B|=3
$$

$$
\begin{gathered}
A=\{\mathrm{a}, \mathrm{aa}\}, B=\emptyset \\
A B=\emptyset
\end{gathered}
$$

Σ^{n}, Σ^{*}, and Σ^{+}

- Σ^{n} is the set of all strings over Σ of length exactly n. Defined inductively as:

$$
\begin{aligned}
& -\Sigma^{0}=\{\varepsilon\} \\
& -\Sigma^{n}=\Sigma \Sigma^{n-1} \text { if } n>0
\end{aligned}
$$

- Σ^{*} is the set of all finite length strings:

$$
\Sigma^{*}=\cup_{n \geq 0} \quad \Sigma^{n}
$$

- Σ^{+}is the set of all nonempty finite length strings:

$$
\Sigma^{+}=\cup_{n \geq 1} \Sigma^{n}
$$

$\Sigma^{n}, \Sigma^{\star}$, and Σ^{+}

- $\left|\Sigma^{n}\right|=|\Sigma|^{n}$
- $\left|\emptyset_{n}\right|=$?
$-\emptyset^{0}=\{\varepsilon\}$
- $\emptyset^{n}=\emptyset^{n-1}=\emptyset$ if $n>0$
- $\left|\emptyset^{n}\right|=1$ if $n=0$
$\left|\emptyset^{n}\right|=0$ if $n>0$

$\Sigma^{n}, \Sigma^{\star}$, and Σ^{+}

- Σ^{*} is the set of all finite length strings:

$$
\Sigma^{*}=\cup_{n \geq 0} \Sigma^{n}
$$

- x is a string iff $x=\varepsilon$ or $x=a u$ where $|u|=|x|-1$
- $\left|\Sigma^{*}\right|=$?
- Infinity. More precisely, κ_{0}
$-\left|\Sigma^{*}\right|=\left|\Sigma^{+}\right|=|\mathbb{N}|=\kappa_{0}$
- How long is the longest string in Σ^{*} ? string!
- How many infinitely long strings in Σ^{*} ? none

$\Sigma^{n}, \Sigma^{\star}$, and Σ^{+}

- Σ^{+}is the set of all nonempty finite length strings:

$$
\Sigma^{+}=\cup_{n \geq 1} \Sigma^{n}
$$

- $\Sigma^{+}=$?
$-\Sigma \Sigma^{*}$
$-\Sigma^{*} \Sigma$
$-\Sigma \Sigma^{*} \Sigma$
$-\Sigma \cup \Sigma^{2} \Sigma^{\star}$

Enumerating Strings

- Canonical (standard) ordering is the lexicographical (dictionary) ordering
- Order by length (starting with 0)
- Order the $|\Sigma|^{n}$ strings of length n by comparing characters left to right

1	ε	0
2	0	1
3	1	1
4	00	2
5	01	2
6	10	2
7	11	2
8	000	3
9	001	3
10	010	3
11	011	3
12	100	3
13	101	3
14	110	3
15	111	3
16	1000	4
17	1001	4
18	1010	4
19	1011	4
20	1100	4

Inductive Definitions

- Often operations on strings are formally defined inductively
- e.g., w^{n} in terms of w^{n-1}

$$
\begin{gathered}
\varepsilon^{\mathrm{R}}=\varepsilon \\
(a u)^{\mathrm{R}}=u^{\mathrm{R}} a
\end{gathered}
$$

- Another example: w^{R} (w reversed) inducting on length Well-defined:
$|u|<|w|$
- If $|w|=0, w^{\mathrm{R}}=\varepsilon$
$a \in \Sigma, u \in \Sigma^{*}$
- If $|w| \geq 1, w^{\mathrm{R}}=u^{\mathrm{R}} a$ where $w=a u$

$$
\begin{aligned}
& \text { - e.g. (cat })^{R}=(c \cdot a t)^{R}=(a t)^{R} \cdot c=(a \cdot t)^{R} \cdot c \\
& =(\mathrm{t})^{\mathrm{R}} \cdot \mathrm{a} \cdot \mathrm{C}=(\mathrm{t} \cdot \varepsilon)^{\mathrm{R}} \cdot \mathrm{ac}=\varepsilon^{\mathrm{R}} \cdot \mathrm{tac}=\mathrm{tac}
\end{aligned}
$$

Inductive Proofs

- Inductive proofs follow inductive definitions
- Theorem: $(u v)^{\mathrm{R}}=v^{\mathrm{R}} u^{\mathrm{R}}$
- Proof: By induction

$$
\begin{gathered}
\varepsilon^{\mathrm{R}}=\varepsilon \\
(a u)^{\mathrm{R}}=u^{\mathrm{R}} a
\end{gathered}
$$

But on what? $|u|,|v|,|u+v|$, double induction on $|u|,|v|$? $|u|$ (or $|v|$) is good enough:

Base case: $|u|=0$: i.e., $u=\varepsilon$.
Then: $(u v)^{\mathrm{R}}=v^{\mathrm{R}}$
$\& \quad v^{\mathrm{R}} u^{\mathrm{R}}=v^{\mathrm{R}} \varepsilon^{\mathrm{R}}=v^{\mathrm{R}} \varepsilon=v^{\mathrm{R}}$

(Definition of Reversal:
base-case

Inductive Proofs

- Inductive proofs follow inductive definitions
- Theorem: $(u v)^{\mathrm{R}}=v^{\mathrm{R}} u^{\mathrm{R}}$
- Proof: By induction

$$
\begin{gathered}
\varepsilon^{\mathrm{R}}=\varepsilon \\
(a u)^{\mathrm{R}}=u^{\mathrm{R}} a
\end{gathered}
$$

Inductive step: Let $n>0$. Assume $(w v)^{\mathrm{R}}=v^{\mathrm{R}} w^{\mathrm{R}} \quad \forall w,|w|<n$
Consider any u with $|u|=n$. So $u=a w, a \in \Sigma, w \in \Sigma^{*}$.

$$
\begin{aligned}
(u v)^{\mathrm{R}} & =(a w v)^{\mathrm{R}}=(a(w v))^{\mathrm{R}}=(w v)^{\mathrm{R}} a \quad\{\mathrm{DE} \\
& =v^{R} w^{R} a \quad\{\text { Inductive Hypothesis: }|w|<n \\
& =v^{R}(a w)^{R} \\
& =v^{R} u^{R}
\end{aligned}
$$

Languages

Computation

Problem.

T. mivute a function F that maps each input (a string) to an output bit

Program:

A finitely described process taking a string as input, and outputting a bit (or not halting)
\underline{r} computes F if for every $x, P(x)$ outputs $F(x)$ and halts
Too restrictive?

Enough to compute functions with longer outputs too: $P(x, i)$ outputs the $i^{\text {th }}$ bit of $F(x)$

Enough to model interactive computation too: P^{*} (x,state) outputs (y,new_state)

Language

- A function from Σ^{*} to $\{0,1\}$ can be identified with the set of strings mapped to 1
- A language is a subset of Σ^{*}
- Computational problem for a language: given a string in Σ^{*}, decide if it belongs to the language
- Examples of languages : $\emptyset, \Sigma^{*}, \Sigma,\{\varepsilon\}$, set of strings of odd length, set of strings encoding valid C programs, set of strings encoding valid C programs that halt, ...
- There are uncountably many languages (but each language has countably many strings)

1	ε	$\mathbf{0}$
2	0	$\mathbf{0}$
$\mathbf{3}$	1	$\mathbf{1}$
$\mathbf{4}$	00	$\mathbf{0}$
5	01	$\mathbf{1}$
$\mathbf{6}$	10	$\mathbf{1}$
$\mathbf{7}$	11	$\mathbf{0}$
$\mathbf{8}$	000	$\mathbf{0}$
$\mathbf{9}$	001	$\mathbf{1}$
$\mathbf{1 0}$	010	$\mathbf{1}$
$\mathbf{1 1}$	011	$\mathbf{0}$
$\mathbf{1 2}$	100	$\mathbf{1}$
$\mathbf{1 3}$	101	$\mathbf{0}$
$\mathbf{1 4}$	110	$\mathbf{0}$
$\mathbf{1 5}$	111	$\mathbf{1}$
$\mathbf{1 6}$	1000	$\mathbf{1}$
$\mathbf{1 7}$	1001	$\mathbf{0}$
$\mathbf{1 8}$	1010	$\mathbf{0}$
19	1011	$\mathbf{1}$
$\mathbf{2 0}$	1100	$\mathbf{0}$

Operations on Languages

- Already seen concatenation: $L_{1} L_{2}=\left\{x y \mid x \in L_{1}, y \in L_{2}\right\}$
- Set operations:
- Complement: $\bar{L}=\Sigma^{*}-L=\left\{x \in \Sigma^{*} \mid x \notin L\right\}$
- Union: $L_{1} \cup L_{2}$
- Intersection, difference (can be based on the above two)
- L^{n} inductively defined: $L^{0}=\{\varepsilon\}, L^{n}=L L^{n-1}$
- $L^{*}=\cup_{n \geq 0} L^{n}$, and $L^{+}=L L^{*}$
- $\{\varepsilon\}^{*}=$? $\quad \emptyset^{*}=$?

Complexity of Languages

- How computable is a language?
- Singleton languages
$-L$ such that $|L|=1$. Example: $L=\{374\}$
- An algorithm can have the single string hard-coded into it
- More generally, finite languages
- Algorithm can have all the strings hard-coded into it
- Many interesting languages are uncomputable
- But many others are neither too easy nor impossible...

Regular Languages

Regular Languages

- The set of regular languages over some alphabet Σ is defined inductively by:
- \quad is a regular language
- $\{\varepsilon\}$ is a regular language
- $\{a\}$ is a regular language for each $a \in \Sigma$
- If L_{1}, L_{2} are regular, then $L_{1} \cup L_{2}$ is regular
- If L_{1}, L_{2} are regular, then $L_{1} L_{2}$ is regular
- If L is regular, then L^{*} is regular

Regular Languages Examples

- $L=\{w\}$ where $w \in \Sigma^{*}$ is any fixed string
- e.g., $L=\{a b a\}=\{a\}\{b\}\{a\}$ and $\{a\} \&\{b\}$ are both regular
- Proof by induction on $|w|$, using concatenation for induction
- $L=$ any finite set of strings
- e.g., $L=$ set of all strings of length at most 10
- Proof by induction on $|L|$, using union for induction (and the above)
- Beware: Induction applicable only for $|L| \in \mathbb{N}$, not $|L|=\kappa_{0}$

Regular Languages Examples

- Infinite sets, but of strings with "regular" patterns
$-\Sigma^{*}$ (recall: L^{*} is regular if L is)
$-\Sigma^{+}=\Sigma \Sigma^{*}$
- All binary integers, without leading O's
- $L=\{1\}\{0,1\}^{*} \cup\{0\}$
- All binary integers which are multiples of 37
- later

Regular Expressions

Regular Expressions

- A short-hand to denote a regular language as strings that match a pattern
- Useful in
- text search (editors, Unix/grep)
- compilers: lexical analysis
- Dates back to 50's: Stephen Kleene, who has a star named after him*

* The star named after him is the Kleene star "*"

Inductive Definition

A regular expression r over alphabet Σ is one of the following ($\llcorner(r)$ is the language it represents):

Atomic expressions (Base cases)

Ø	$\mathrm{L}(\emptyset)=\varnothing$
ε	$\mathrm{L}(\varepsilon)=\{\varepsilon\}$
a for $a \in \Sigma$	$\mathrm{~L}(a)=\{a\}$

Inductively defined expressions

$$
\begin{array}{c|c}
\left(r_{1}+r_{2}\right) & \mathrm{L}\left(r_{1}+r_{2}\right)=\mathrm{L}\left(r_{1}\right) \cup \mathrm{L}\left(r_{2}\right) \\
\left(r_{1} r_{2}\right) & \mathrm{L}\left(r_{1} r_{2}\right)=\mathrm{L}\left(r_{1}\right) \mathrm{L}\left(r_{2}\right) \\
(r)^{*} & \mathrm{~L}\left(r^{*}\right)=\mathrm{L}(r)^{*}
\end{array}
$$

Any regular language has a regular expression and vice versa

Regular Expressions

- Can omit many parentheses
- By following precedence rules: * before concatenation before +
- e.g. $r^{*} s+t \equiv\left(\left(r^{*}\right) s\right)+t$
- By associativity: $(r+s)+t \equiv r+s+t,(r s) t \equiv r s t$
- More short-hand notation
- e.g., $r^{+} \equiv r r^{*}$ (note: + is in superscript)

Regular Expressions: Examples

- $(0+1)^{*} 001(0+1)^{*}$
- All binary strings containing the substring 001
- $0^{*}+\left(0^{*} 10^{*} 10^{*} 10^{*}\right)^{*}$
- All binary strings with $\# 1 \mathrm{~s} \equiv 0 \bmod 3$
- $(01)^{*}+(10)^{*}+1(01)^{*}+0(10)^{*}$
- Alternating Os and 1s. Also, $(1+\varepsilon)(01)^{*}(0+\varepsilon)$
- $(01+1) *(0+\varepsilon)$
- All binary strings without two consecutive Os

Exercise: create regular expressions

- All binary strings with either the pattern 001 or the pattern 100 occurring somewhere
one answer: $(0+1)^{*} 001(0+1)^{*}+(0+1)^{*} 100(0+1)^{*}$
- All binary strings with an even number of 1 s one answer: $0 *\left(10^{*} 10^{*}\right)^{*}$

A non-regular language

An inductively defined language

Define L over $\{0,1\}^{*}$ by:

$$
\begin{aligned}
& -\varepsilon \in L \\
& \text { - if } w \in L, \text { then } 0 w 1 \in L
\end{aligned}
$$

What do strings in L look like?
Give a characterization of L and prove it correct.
Can you find a regular expression for L ? will show impossible!

An inductively defined language

Define L over $\{0,1\}^{*}$ by:

$$
\begin{aligned}
& -\varepsilon \in L \\
& \text { - if } w \in L \text {, then } 0 w 1 \in L
\end{aligned}
$$

Conjecture: $L=\left\{0^{i} 1^{i}: i \geq 0\right\}$
How can we prove this is correct?
Prove (by induction) that
(a) $L \subseteq\left\{0^{i} 1^{i}: i \geq 0\right\}$
(b) $L \supseteq\left\{0^{i} 1^{i}: i \geq 0\right\}$

$$
L \subseteq\left\{0^{i} 1^{i}: i \geq 0\right\}
$$

Show by induction on $|w|$, that if $w \in L$, then w is of the form $0^{i} 1^{i}$.

Base case: $|w|=0$.

$$
\text { Then } w=\varepsilon=0^{0} 1^{0}
$$

Inductive Step: Let $n>0$.
Assume: for all $k<n$, any w in L with $|w|=k$, is of form $0^{i} 1^{i}$

Prove: Any w in L with $|w|=n$ is of form $0^{i} 1^{i}$

Inductive step

Consider arbitrary $w \in L$, with $|w|=n$.

Then $w=0 u 1$ where $u \in L$ has size $n-2<n$

(by definition of L)

By induction, u is of form $0^{i} 1^{i}$.

Then $w=0 u 1=00^{i} 1^{i} 1=0^{i+1} 1^{i+1}$, the required form

$$
L \supseteq\left\{0^{i} 1^{i}: i \geq 0\right\}
$$

Show by induction on n, that if w is of the form $0^{n} 1^{n}$, then $w \in L$.

Base case: $n=0$.

Then $w=0^{0} 1^{0}=\varepsilon$, which is in L by definition

Inductive step:

Let $n>0$, and assume for all $k<n$ that $0^{k} 1^{k} \in L$ $0^{n} 1^{n}=00^{n-1} 1^{n-1} 1=0 u 1$, with $u \in L$ by induction. Since $u \in L$, so is $0 u 1=0^{n} 1^{n}$ by definition of L

