Strings, Languages, and Regular expressions Lecture 2

Strings

- **alphabet** Σ = finite set of symbols
- **string** = finite sequence of symbols of Σ
- **length** of a string *w* is denoted *lw*.
- **empty string** is denoted " ε ".

$$|\varepsilon| = 0$$
 $|cat|=3$

Could formalize as a function $w: [n] \rightarrow \Sigma$ where |w| = n

 $\Sigma = \text{set of ascii}$

characters

Variable conventions (for this lecture)

- a, b, c, ... elements of Σ (i.e., strings of length 1)
- w, x, y, z, ... strings of length 0 or more
- A, B, C,... sets of strings

Much ado about nothing

- ε is a string containing no symbols. It is not a set.
- {ε} is a set containing one string: the empty string ε. It is a set, not a string.
- Ø is the empty set. It contains no strings.

374

Concatenation & its properties

- *xy* denotes the **concatenation** of strings *x* and *y* (sometimes written *x*·*y*)
- Associative: (uv)w = u(vw) and we write uvw.
- Identity element ε : $\varepsilon w = w\varepsilon = w$
- Can be used to *define* strings (set of all strings Σ^*) inductively
- NOT commutative: $ab \neq ba$

If |x|=m, |y|=n $xy : [m+n] \rightarrow \Sigma$ such that xy(i) = x(i) if $i \le m$ xy(i) = y(i-m) else

Substring, Prefix, Suffix, Exponents

- v is a substring of w iff there exist strings x, y, such that w = xvy.
 - If $x = \varepsilon$ (w = vy) then v is a **prefix** of w.
 - If $y = \varepsilon$ (w = xv) then v is a **suffix** of w.
- If w is a string, then w^n is defined inductively by:

-
$$w^n = \varepsilon$$
 if $n = 0$

-
$$w^n = ww^{n-1}$$
 if $n > 0$

(blah)4 = blahblahblahblah

374

Set Concatenation

• If X and Y are sets of strings, then

$$XY = \{xy \mid x \in X, y \in Y\}$$

e.g. $X = \{$ fido, rover, spot $\}, Y = \{$ fluffy, tabby $\}$
then $XY = \{$ fidofluffy, fidotabby, roverfluffy, ... $\}$
 $|XY| = 6$
 $A = \{a,aa\}, B = \emptyset$
 $AB = \emptyset$
 $AB = \emptyset$

374

S

Σⁿ is the set of all strings over Σ of length exactly n.
 Defined inductively as:

 $- \Sigma^0 = \{\varepsilon\}$

374

S

8

$$- \Sigma^n = \Sigma \Sigma^{n-1} \text{ if } n > 0$$

• Σ^* is the set of all finite length strings:

$$\Sigma^* = \bigcup_{n \ge 0} \ \Sigma^n$$

• Σ^+ is the set of all <u>nonempty</u> finite length strings:

$$\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$$

- $|\Sigma^n| = |\Sigma|^n$
- $|\mathcal{O}^n| = ?$
 - $\quad Ø^0 = \{\varepsilon\}$

$$- \quad \mathcal{O}^n = \mathcal{O}\mathcal{O}^{n-1} = \mathcal{O} \text{ if } n > 0$$

• $|\mathcal{Q}^n| = 1$ if n = 0 $|\mathcal{Q}^n| = 0$ if n > 0

• Σ^* is the set of all finite length strings:

• *x* is a string iff $x = \varepsilon$ or x = au where |u| = |x| - 1the formal definition of a

"string"

no longest

string!

• $|\Sigma^*| = ?$

374

10

– Infinity. More precisely, κ_0

$$-|\Sigma^*| = |\Sigma^+| = |\mathbb{N}| = \aleph_0$$

- How long is the longest string in Σ^* ? igslash
- How many infinitely long strings in Σ^* ? {none

• Σ^+ is the set of all <u>nonempty</u> finite length strings:

 $\Sigma^+ = \bigcup_{n \ge 1} \Sigma^n$

- $\Sigma^{+} = ?$
 - $-\Sigma\Sigma^*$
 - $-\Sigma^*\Sigma$
 - $-\Sigma\Sigma^*\Sigma$
 - $-\Sigma \cup \Sigma^2 \Sigma^*$

Enumerating Strings

- Canonical (standard) ordering is the lexicographical (dictionary) ordering
 - Order by length (starting with 0)
 - Order the |Σ|ⁿ strings of length n by comparing characters left to right

	3	0
	0	1
	1	1
	00	2
	01	2
	10	2 2 2 2 3
	11	2
	000	3
	001	3
0	010	3
0 1 2 3 4 5	011	3
2	100	3
3	101	3 3
4	110	3
5	111	3
6	1000	4
7	1001	4
6 7 8 9 0	1010	4
9	1011	4 4 4
0	1100	4

3

5

8

Inductive Definitions

- Often operations on strings are formally defined inductively
 - e.g., w^n in terms of w^{n-1}

$$\varepsilon^{R} = \varepsilon$$
$$(au)^{R} = u^{R}a$$

- Another example: w^R (w reversed) inducting on
 Well-defined:
 - If |w| = 0, $w^{\mathbb{R}} = \varepsilon$ |u| < |w| $a \in \Sigma, u \in \Sigma^*$
 - If $|w| \ge 1$, $w^{R} = u^{R}a$ where w = au

- e.g.
$$(cat)^{R} = (c \cdot at)^{R} = (at)^{R} \cdot c = (a \cdot t)^{R} \cdot c$$

= $(t)^{R} \cdot a \cdot c = (t \cdot \varepsilon)^{R} \cdot ac = \varepsilon^{R} \cdot tac = tac$

374

S

Inductive Proofs

- Inductive proofs follow inductive definitions
- **Theorem**: $(uv)^{R} = v^{R}u^{R}$
- **Proof**: By induction

$$\varepsilon^{R} = \varepsilon$$
$$(au)^{R} = u^{R}a$$

But on what? |u|, |v|, |u+v|, double induction on |u|, |v|? |u| (or |v|) is good enough:

Base case:
$$|u| = 0$$
: i.e., $u = \varepsilon$.
Then: $(uv)^{R} = v^{R}$
& $v^{R}u^{R} = v^{R}\varepsilon^{R} = v^{R}\varepsilon = v^{R}$
Definition of Reversal:
base-case

Inductive Proofs

- Inductive proofs follow inductive definitions
- Theorem: $(uv)^{R} = v^{R}u^{R}$
- **Proof**: By induction

$$\varepsilon^{\mathsf{R}} = \varepsilon$$
$$(au)^{\mathsf{R}} = u^{\mathsf{R}}a$$

<u>Inductive step</u>: Let n > 0. Assume $(wv)^R = v^R w^R \forall w, |w| < n$

Consider any *u* with |u| = n. So u = aw, $a \in \Sigma$, $w \in \Sigma^*$.

m S U 15

Languages

Computation

Problem:

Recall

To compute a function F that maps each input (a string) to an output bit

Program:

A finitely described process taking a string as input, and outputting a bit (or not halting)

 \mathbf{r} computes F if for every x, $\mathbf{P}(\mathbf{x})$ outputs F(x) and halts

Too restrictive?

Enough to compute functions with longer outputs too: P(x,i) outputs the ith bit of F(x)

Enough to model *interactive* computation too: P*(x,state) outputs (y,new_state)

Language

- A function from Σ* to {0,1} can be identified with the set of strings mapped to 1
- A *language* is a subset of Σ^*
 - Computational problem for a language: given a string in Σ^* , decide if it belongs to the language
- Examples of languages : Ø, Σ*, Σ, {ε}, set of strings of odd length, set of strings encoding valid C programs, set of strings encoding valid C programs that halt, ...
- There are uncountably many languages (but each language has countably many strings)

1	З	0
2	0	0
3	1	1
3 4	00	0
5	01	1
6	10	1
6 7 8 9	11	0
8	000	0
9	001	1
10	010	1
11	011	0
12	100	1
13	101	0
14	110	0
15	111	1
16	1000	1
17	1001	0
18	1010	0
19	1011	1
20	1100	0

Operations on Languages

- Already seen concatenation: $L_1L_2 = \{ xy \mid x \in L_1, y \in L_2 \}$
- Set operations:
 - Complement: $\overline{L} = \Sigma^* L = \{ x \in \Sigma^* \mid x \notin L \}$
 - Union: $L_1 \cup L_2$
 - Intersection, difference (can be based on the above two)
- L^n inductively defined: $L^0 = \{\varepsilon\}, L^n = LL^{n-1}$

•
$$L^* = \bigcup_{n \ge 0} L^n$$
, and $L^+ = LL^*$

•
$$\{\epsilon\}^* = ? \quad Ø^* = ?$$

Complexity of Languages

- How *computable* is a language?
- Singleton languages
 - -L such that |L| = 1. Example: $L = \{374\}$
 - An algorithm can have the single string hard-coded into it
- More generally, finite languages
 - Algorithm can have all the strings hard-coded into it
- Many interesting languages are uncomputable
- But many others are neither too easy nor impossible...

374

 \mathcal{O}

Regular Languages

Regular Languages

- The set of regular languages over some alphabet Σ is defined inductively by:
- Ø is a regular language
- $\{\varepsilon\}$ is a regular language
- {*a*} is a regular language for each $a \in \Sigma$
- If L_1, L_2 are regular, then $L_1 \cup L_2$ is regular
- If L_1 , L_2 are regular, then $L_1 L_2$ is regular
- If L is regular, then L^* is regular

22

374

 \mathcal{O}

Regular Languages Examples

- $L = \{w\}$ where $w \in \Sigma^*$ is any fixed string
 - e.g., $L = \{aba\} = \{a\}\{b\}\{a\}$ and $\{a\}\&\{b\}$ are both regular
 - Proof by induction on |w|, using concatenation for induction
- L = any finite set of strings
 - e.g., L = set of all strings of length at most 10
 - Proof by induction on |L|, using union for induction (and the above)
 - Beware: Induction applicable only for $|L| \in \mathbb{N}$, not $|L| = \aleph_0$

Regular Languages Examples

- Infinite sets, but of strings with "regular" patterns
 - $-\Sigma^*$ (recall: L^* is regular if L is)
 - $-\Sigma^{+}=\Sigma\Sigma^{*}$
 - All binary integers, without leading 0's
 - $L = \{1\}\{0,1\}^* \cup \{0\}$
 - All binary integers which are multiples of 37
 - later

Regular Expressions

Regular Expressions

- A short-hand to denote a regular language as strings that match a *pattern*
- Useful in
 - text search (editors, Unix/grep)
 - compilers: lexical analysis
- Dates back to 50's: Stephen Kleene, who has a star named after him*

The star named after him is the Kleene star "*"

Inductive Definition

A regular expression r over alphabet Σ is one of the following (L(r) is the language it represents):

Atomic expressions (Base cases)		
Ø	$L(\emptyset) = \emptyset$	
Е	$L(\varepsilon) = \{ \varepsilon \}$	
a for $a \in \Sigma$	$L(a) = \{ a \}$	

Inductively defined expressions		alt notation
$(r_1 + r_2)$	$L(r_1 + r_2) = L(r_1) \cup L(r_2)$	$(r_1 r_2)$ or
(r_1r_2)	$L(r_1 r_2) = L(r_1) L(r_2)$	$(r_1 \cup r_2)$
$(r)^{*}$	$L(r^*) = L(r)^*$	

Any regular language has a regular expression and vice versa

Regular Expressions

- Can omit many parentheses
 - By following precedence rules :
 * before *concatenation* before +
 - e.g. $r^*s + t \equiv ((r^*)s) + t$

- By associativity: $(r+s)+t \equiv r+s+t$, $(rs)t \equiv rst$

More short-hand notation

- e.g., $r^+ \equiv rr^*$ (note: + is in superscript)

Regular Expressions: Examples

- (0+1)*001(0+1)*
 - All binary strings containing the substring 001
- $0^* + (0^*10^*10^*10^*)^*$
 - All binary strings with $#1s \equiv 0 \mod 3$
- $(01)^* + (10)^* + 1(01)^* + 0(10)^*$
 - Alternating 0s and 1s. Also, $(1+\epsilon)(01)^*(0+\epsilon)$
- $(01+1)*(0+\varepsilon)$
 - All binary strings without two consecutive 0s

Exercise: create regular expressions

• All binary strings with either the pattern 001 or the pattern 100 occurring somewhere

one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*

• All binary strings with an even number of 1s

A non-regular Language

An inductively defined language

Define L over $\{0,1\}$ * by:

- $-\varepsilon \in L$
- if $w \in L$, then $0w1 \in L$

What do strings in *L* look like?

Give a characterization of *L* and prove it correct.

Can you find a regular expression for L?

will show impossible!

An inductively defined language

Define L over $\{0,1\}$ * by:

- $-\varepsilon \in L$
- if $w \in L$, then $0w1 \in L$

Conjecture: $L = \{ 0^i 1^i : i \ge 0 \}$

How can we prove this is correct? Prove (by induction) that $(a) L \subset (0!1! a > 0)$

(a)
$$L \subseteq \{ 0^i 1^i : i \ge 0 \}$$

(b)
$$L \supseteq \{ 0^i 1^i : i \ge 0 \}$$

$L \subseteq \{ 0^i 1^i : i \ge 0 \}$

Show by induction on |w|, that if $w \in L$, then w is of the form $0^i 1^i$.

Base case: |w|=0. Then $w = \varepsilon = 0^0 1^0$

Inductive Step: Let n > 0. <u>Assume:</u> for all k < n, any w in L with |w| = k, is of form $0^i 1^i$

<u>Prove</u>: Any w in L with |w| = n is of form $0^i 1^i$

Inductive step

Consider arbitrary $w \in L$, with |w| = n.

Then w = 0u1 where $u \in L$ has size n-2 < n(by definition of L)

By induction, u is of form $0^{i}1^{i}$.

Then $w = 0u1 = 00^{i}1^{i}1 = 0^{i+1}1^{i+1}$, the required form

$L\supseteq \{ 0^i 1^i : i \ge 0 \}$

Show by induction on n, that if w is of the form $0^n 1^n$, then $w \in L$.

Base case: n=0.

Then $w = 0^0 1^0 = \varepsilon$, which is in *L* by definition

Inductive step: Let n > 0, and assume for all k < n that $0^k 1^k \in L$ $0^n 1^n = 00^{n-1} 1^{n-1} 1 = 0u1$, with $u \in L$ by induction. Since $u \in L$, so is $0u1 = 0^n 1^n$ by definition of L