
Strings, Languages, and  
Regular expressions

Lecture 2

1

Strings

2

CS
 3

74

Definitions for strings
• alphabet Σ = finite set of symbols
• string = finite sequence of symbols of Σ
• length of a string w is denoted |w|.
• empty string is denoted “ε”.

3

e.g., Σ = {0,1},  
Σ = {α, β, …, ω},  
Σ = set of ascii

characters

|cat|=3|ε| = ?0

Variable conventions (for this lecture)!
a, b, c, ... elements of Σ (i.e., strings of length 1)
w, x, y, z, ... strings of length 0 or more
A, B, C,... sets of strings

Could formalize
as a function  

w: [n]→Σ 
where |w| = n

CS
 3

74

Much ado about nothing

• ε is a string containing no symbols. It is not a set.

• {ε} is a set containing one string: the empty
string ε. It is a set, not a string.

• Ø is the empty set. It contains no strings.

4

CS
 3

74

Concatenation & its properties
• xy denotes the concatenation of strings x and y

(sometimes written x⋅y)

• Associative: (uv)w = u(vw) and we write uvw.

• Identity element ε : εw = wε = w

• Can be used to define strings 
(set of all strings Σ*) inductively

• NOT commutative: ab ≠ ba

5

If |x|=m, |y|=n  
xy : [m+n]→ Σ  
such that  
xy(i) = x(i) if i≤m  
xy(i) = y(i-m) else

CS
 3

74

Substring, Prefix, Suffix,
Exponents

• v is a substring of w iff there exist strings x, y,
such that w = xvy.

– If x = ε (w = vy) then v is a prefix of w.

– If y = ε (w = xv) then v is a suffix of w.

• If w is a string, then wn is defined inductively by:

– wn = ε if n = 0

– wn = wwn-1 if n > 0

6

(blah)4 =?
blahblahblahblah

CS
 3

74

Set Concatenation
• If X and Y are sets of strings, then

XY = {xy | x ∈ X, y ∈ Y }%

e.g. X = { fido, rover, spot }, Y = { fluffy, tabby }

 then XY ={ fidofluffy, fidotabby, roverfluffy, ...}

7

|XY| =?6 A = {a,aa}, B = {ε,a}
|AB| = ?3

A = {a,aa}, B = Ø
AB = ?Ø

CS
 3

74

Σn, Σ*, and Σ+

• Σn is the set of all strings over Σ of length exactly n.
Defined inductively as:

– Σ0 = {ε}

– Σn = ΣΣn-1 if n > 0

• Σ* is the set of all finite length strings:

Σ* = ∪n≥0 Σn %

• Σ+ is the set of all nonempty finite length strings:

Σ+ = ∪n≥1 Σn
8

CS
 3

74

Σn, Σ*, and Σ+

• |Σn| = ?

• |Øn| = ?

– Ø0 = {ε}

– Øn = ØØn-1 = Ø if n > 0

• |Øn| = 1 if n = 0 
|Øn| = 0 if n > 0

9

|Σ|n

CS
 3

74

Σn, Σ*, and Σ+

• Σ* is the set of all finite length strings:

Σ* = ∪n≥0 Σn %

• x is a string iff x=ε or x=au where |u|=|x|-1

• |Σ*| = ?
– Infinity. More precisely, ℵ0

– |Σ*| = |Σ+| = |N| = ℵ0

• How long is the longest string in Σ*?

• How many infinitely long strings in Σ*?
10

no longest
string!

none

This can be
the formal

definition of a
“string”

CS
 3

74

Σn, Σ*, and Σ+

• Σ+ is the set of all nonempty finite length strings:

Σ+ = ∪n≥1 Σn %

• Σ+ = ?%

– Σ Σ*%

– Σ* Σ %

– Σ Σ* Σ%

– Σ ∪ Σ2 Σ*

11

CS
 3

74

12

• Canonical (standard) ordering is the
lexicographical (dictionary) ordering

• Order by length (starting with 0)

• Order the |Σ|n strings of length n
by comparing characters left to
right

1 ε 0
2 0 1
3 1 1
4 00 2
5 01 2
6 10 2
7 11 2
8 000 3
9 001 3
10 010 3
11 011 3
12 100 3
13 101 3
14 110 3
15 111 3
16 1000 4
17 1001 4
18 1010 4
19 1011 4
20 1100 4

Enumerating Strings

CS
 3

74

13

Inductive Definitions

• Often operations on strings are formally defined
inductively
– e.g., wn in terms of wn-1%

– Another example: wR (w reversed) inducting on
length
• If |w| = 0, wR = ε

• If |w| ≥ 1, wR = uRa where w = au

– e.g. (cat)R = (c⋅at)R = (at)R⋅c = (a⋅t)R⋅c  
 = (t)R⋅a⋅c = (t⋅ε)R⋅ac = εR⋅tac = tac

a ∈ Σ, u ∈ Σ*

Well-defined:  
|u|<|w|

εR = ε  
(au)R = uRa

CS
 3

74

14

Inductive Proofs

But on what? |u|, |v|, |u+v|, double induction on |u|,|v|?

|u| (or |v|) is good enough:

Base case: |u| = 0: i.e., u = ε.  
Then: (uv)R = vR 
 & vRuR = vRεR = vRε = vR ☑️

• Inductive proofs follow inductive definitions
• Theorem: (uv)R = vRuR%

• Proof: By induction

Definition of Reversal:  
base-case

εR = ε  
(au)R = uRa

CS
 3

74

15

Inductive Proofs

Inductive step: Let n > 0. Assume (wv)R=vRwR ∀w, |w|<n

Consider any u with |u| = n. So u = aw, a ∈ Σ, w ∈ Σ*.

(uv)R = (awv)R = (a(wv))R = (wv)Ra  
 = vRwRa 
 = vR(aw)R 
 = vRuR

Definition of Reversal:
inductive-case

Inductive Hypothesis: |w|<n

Definition of Reversal:
inductive-case

• Inductive proofs follow inductive definitions
• Theorem: (uv)R = vRuR%

• Proof: By induction
εR = ε  

(au)R = uRa

Languages

16

CS
 3

74

Computation

Too restrictive?

Enough to compute functions with longer outputs too:  
P(x,i) outputs the ith bit of F(x)

Enough to model interactive computation too: 
P*(x,state) outputs (y,new_state)

17

P computes F if for every x, P(x) outputs F(x) and halts

Problem: 
To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

Rec
all

CS
 3

74

Language
• A function from Σ* to {0,1} can be identified

with the set of strings mapped to 1

• A language is a subset of Σ*

– Computational problem for a language:
given a string in Σ*, decide if it belongs
to the language

• Examples of languages : Ø, Σ*, Σ, {ε},  
set of strings of odd length, set of strings
encoding valid C programs, set of strings
encoding valid C programs that halt, …

• There are uncountably many languages (but
each language has countably many strings)

18

1 ε 0

2 0 0
3 1 1
4 00 0
5 01 1
6 10 1
7 11 0
8 000 0
9 001 1
10 010 1
11 011 0
12 100 1
13 101 0

14 110 0
15 111 1
16 1000 1
17 1001 0
18 1010 0
19 1011 1
20 1100 0

CS
 3

74

Operations on Languages

• Already seen concatenation: L1L2 = { xy | x ∈ L1, y ∈ L2 }

• Set operations:
– Complement: L̅ = Σ* - L = { x ∈ Σ* | x ∉ L}

– Union: L1 ∪ L2

– Intersection, difference (can be based on the above
two)

• Ln inductively defined: L0 = {ε}, Ln = LLn-1%

• L* = ∪n≥0 Ln, and L+ = LL*%

• {ε}* = ? Ø* = ?
19

CS
 3

74

Complexity of Languages

• How computable is a language?
• Singleton languages
– L such that |L| = 1. Example: L = {374}

– An algorithm can have the single string hard-coded
into it

• More generally, finite languages
– Algorithm can have all the strings hard-coded into it

• Many interesting languages are uncomputable
• But many others are neither too easy nor impossible…

20

Regular Languages

21

CS
 3

74

Regular Languages
• The set of regular languages over some

alphabet Σ is defined inductively by:

• Ø is a regular language

• {ε} is a regular language

• {a} is a regular language for each a ∈ Σ

• If L1, L2 are regular, then L1 ∪ L2 is regular

• If L1, L2 are regular, then L1 L2 is regular

• If L is regular, then L* is regular
22

CS
 3

74

Regular Languages Examples
• L = {w} where w ∈ Σ* is any fixed string
– e.g., L = {aba} = {a}{b}{a} and {a}&{b} are both regular

– Proof by induction on |w|, using concatenation for induction

• L = any finite set of strings
– e.g., L = set of all strings of length at most 10

– Proof by induction on |L|, using union for induction (and the
above)

– Beware: Induction applicable only for |L| ∈ N, not |L|= ℵ0

23

CS
 3

74

Regular Languages Examples
• Infinite sets, but of strings with “regular” patterns
– Σ* (recall: L* is regular if L is)

– Σ+ = ΣΣ*
– All binary integers, without leading 0’s

• L = {1}{0,1}* ∪ {0}

– All binary integers which are multiples of 37
• later

24

Regular Expressions

25

CS
 3

74

Regular Expressions
• A short-hand to denote a regular language as

strings that match a pattern
• Useful in
– text search (editors, Unix/grep)
– compilers: lexical analysis

• Dates back to 50’s: Stephen Kleene,  
who has a star named after him*

26
* The star named after him is the Kleene star “*”

CS
 3

74

Inductive Definition
A regular expression r over alphabet Σ is one of the

following (L(r) is the language it represents):

27
Any regular language has a regular expression and vice versa

Atomic expressions (Base cases)

Ø %
ε"

a for a ∈ Σ

L(Ø) = Ø%
L(ε) = { ε }%
L(a) = { a }

Inductively defined expressions

(r1+r2)%
(r1r2)%
(r)*

L(r1+r2) = L(r1) ∪ L(r2) %
L(r1r2) = L(r1)L(r2) %

L(r*) = L(r)*

alt notation 
(r1|r2) or
(r1∪r2)

CS
 3

74

Regular Expressions
• Can omit many parentheses
– By following precedence rules :  

* before concatenation before + %

• e.g. r*s + t ≡ ((r*) s) + t"

– By associativity: (r+s)+t ≡ r+s+t, (rs)t ≡ rst"

• More short-hand notation

– e.g., r+ ≡ rr* (note: + is in superscript)

28

CS
 3

74

Regular Expressions: Examples
• (0+1)*001(0+1)*%

– All binary strings containing the substring 001
• 0* + (0*10*10*10*)*%

– All binary strings with #1s ≡ 0 mod 3

• (01)* + (10)* + 1(01)* + 0(10)*%

– Alternating 0s and 1s. Also, (1+ε)(01)*(0+ε)
• (01+1)*(0+ε)%

– All binary strings without two consecutive 0s
29

CS
 3

74

Exercise: create regular
expressions

!

• All binary strings with either the pattern 001 or
the pattern 100 occurring somewhere

!

!

• All binary strings with an even number of 1s

30

one answer: (0+1)*001(0+1)* + (0+1)*100(0+1)*

one answer: 0*(10*10*)*

A non-regular
language

31

CS
 3

74

An inductively defined language

What do strings in L look like?

Give a characterization of L and prove it correct.

Can you find a regular expression for L ?

32

Define L over {0,1}* by:
– ε ∈ L
– if w ∈ L, then 0w1 ∈ L

will show impossible!

CS
 3

74

An inductively defined language

33

Define L over {0,1}* by:
– ε ∈ L
– if w ∈ L, then 0w1 ∈ L

Conjecture: L = { 0i1i : i ≥ 0 }
How can we prove this is correct?
Prove (by induction) that
 (a) L ⊆ { 0i1i : i ≥ 0 }
 (b) L ⊇ { 0i1i : i ≥ 0 }

CS
 3

74

L ⊆ { 0i1i : i ≥ 0 }

Show by induction on |w|, that if w ∈ L, then w is
of the form 0i1i.

Base case: |w|= 0.
 Then w = ε = 0010

Inductive Step: Let n > 0. 
Assume: for all k < n,

 any w in L with |w|= k, is of form 0i1i 
 

Prove: Any w in L with |w|= n is of form 0i1i
34

CS
 3

74

Inductive step
Consider arbitrary w ∈ L, with |w| = n.

Then w = 0u1 where u ∈ L has size n-2 < n
 (by definition of L)

By induction, u is of form 0i1i.

Then w = 0u1 = 00i1i1 = 0i+11i+1, the required form

35

CS
 3

74

L ⊇ { 0i1i : i ≥ 0 }

Show by induction on n, that if w is of the form
0n1n, then w ∈ L.

Base case: n= 0.
Then w = 0010 = ε, which is in L by definition

Inductive step:!
Let n > 0, and assume for all k < n that 0k1k ∈ L
0n1n = 00n-11n-11= 0u1, with u ∈ L by induction.
Since u ∈ L, so is 0u1 = 0n1n by definition of L

36

