
Strings, Languages, and  
Regular expressions

Lecture 2
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Definitions for strings
• alphabet Σ = finite set of symbols 
• string = finite sequence of symbols of Σ 
• length of a string w is denoted |w|. 
• empty string is denoted “ε”.
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e.g., Σ = {0,1},  
Σ = {α, β, …, ω},  
Σ = set of ascii 

characters

|cat|=3|ε| = ?0

Variable conventions (for this lecture)!
a, b, c, ...    elements of Σ (i.e., strings of length 1) 
w, x, y, z, ... strings of length 0 or more 
A, B, C,...    sets of strings

Could formalize 
as a function  

w: [n]→Σ 
where  |w| = n
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Much ado about nothing

• ε is a string containing no symbols.  It is not a set. 

• {ε} is a set containing one string:  the empty 
string ε. It is a set, not a string. 

• Ø is the empty set.  It contains no strings.
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Concatenation & its properties
• xy denotes the  concatenation of strings x and y 

(sometimes written x⋅y) 

• Associative:  (uv)w = u(vw) and we write uvw. 

• Identity element ε :   εw = wε = w 

• Can be used to define strings 
(set of all strings Σ*) inductively 

• NOT commutative:     ab ≠ ba
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If |x|=m, |y|=n  
xy : [m+n]→ Σ  
such that  
xy(i) = x(i) if i≤m  
xy(i) = y(i-m) else 
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Substring, Prefix, Suffix, 
Exponents

• v is a substring of w iff there exist strings x, y, 
such that w = xvy. 

– If x = ε  (w = vy) then v is a prefix of w. 

– If y = ε  (w = xv) then v is a suffix of w. 

• If w is a string, then wn  is defined inductively by: 

–  wn = ε if n = 0 

–  wn = wwn-1 if n > 0

6

(blah)4 =?
blahblahblahblah
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Set Concatenation
• If X and Y are sets of strings, then  

XY = {xy | x ∈ X, y ∈ Y }%

e.g.  X = { fido, rover, spot }, Y = { fluffy, tabby } 

 then XY ={ fidofluffy, fidotabby, roverfluffy, ...}
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|XY| =?6 A = {a,aa}, B = {ε,a} 
|AB| = ?3 

A = {a,aa}, B = Ø 
AB = ?Ø 
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Σn, Σ*, and Σ+

• Σn is the set of all strings over Σ of length exactly n. 
Defined inductively as: 

–  Σ0 = {ε} 

–  Σn = ΣΣn-1 if n > 0 

• Σ* is the set of all finite length strings:  

Σ* = ∪n≥0  Σn %

• Σ+ is the set of all nonempty finite length strings: 

Σ+ = ∪n≥1  Σn 
8
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Σn, Σ*, and Σ+

• |Σn| = ? 

• |Øn| = ?    

–  Ø0 = {ε} 

–  Øn = ØØn-1 = Ø if n > 0 

• |Øn| = 1  if n = 0 
|Øn| = 0  if n > 0

9

|Σ|n
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Σn, Σ*, and Σ+

• Σ* is the set of all finite length strings: 

Σ* = ∪n≥0  Σn %

• x is a string iff x=ε or x=au where |u|=|x|-1 

• |Σ*| = ? 
– Infinity. More precisely, ℵ0 

– |Σ*| = |Σ+| = |N| = ℵ0 

• How long is the longest string in Σ*? 

• How many infinitely long strings in Σ*?
10

no longest 
string!

none

This can be 
the formal 

definition of a 
“string”
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Σn, Σ*, and Σ+

• Σ+ is the set of all nonempty finite length strings: 

Σ+ = ∪n≥1  Σn %

• Σ+ = ?%

– Σ Σ*%

– Σ* Σ %

– Σ Σ* Σ%

– Σ  ∪  Σ2 Σ*

11
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• Canonical (standard) ordering is the 
lexicographical (dictionary) ordering 

• Order by length (starting with 0) 

• Order the |Σ|n strings of length n 
by comparing characters left to 
right

1 ε 0
2 0 1
3 1 1
4 00 2
5 01 2
6 10 2
7 11 2
8 000 3
9 001 3
10 010 3
11 011 3
12 100 3
13 101 3
14 110 3
15 111 3
16 1000 4
17 1001 4
18 1010 4
19 1011 4
20 1100 4

Enumerating Strings
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Inductive Definitions

• Often operations on strings are formally defined 
inductively 
– e.g., wn in terms of wn-1%

– Another example: wR (w reversed) inducting on 
length 
• If |w| = 0, wR = ε   

• If |w| ≥ 1, wR = uRa  where w = au 

– e.g. (cat)R = (c⋅at)R = (at)R⋅c = (a⋅t)R⋅c  
 = (t)R⋅a⋅c = (t⋅ε)R⋅ac = εR⋅tac = tac

a ∈ Σ, u ∈ Σ* 

Well-defined:  
|u|<|w|

εR = ε  
(au)R = uRa 
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Inductive Proofs

But on what? |u|, |v|, |u+v|, double induction on |u|,|v|? 

|u| (or |v|) is good enough: 

Base case: |u| = 0: i.e., u = ε.  
Then: (uv)R = vR 
   &      vRuR = vRεR = vRε  = vR ☑️

• Inductive proofs follow inductive definitions 
• Theorem: (uv)R = vRuR%

• Proof: By induction

Definition of Reversal:  
base-case

εR = ε  
(au)R = uRa 
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Inductive Proofs

Inductive step: Let n > 0. Assume (wv)R=vRwR  ∀w, |w|<n 

Consider any u with |u| = n. So u = aw, a ∈ Σ, w ∈ Σ*.  

(uv)R = (awv)R = (a(wv))R = (wv)Ra  
         = vRwRa 
         = vR(aw)R 
         = vRuR

Definition of Reversal: 
inductive-case

Inductive Hypothesis: |w|<n

Definition of Reversal: 
inductive-case

• Inductive proofs follow inductive definitions 
• Theorem: (uv)R = vRuR%

• Proof: By induction
εR = ε  

(au)R = uRa 



Languages
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Computation

Too restrictive? 

Enough to compute functions with longer outputs too:  
P(x,i) outputs the ith bit of F(x) 

Enough to model interactive computation too: 
P*(x,state) outputs (y,new_state)

17

P computes F if for every x, P(x) outputs F(x) and halts

Problem: 
To compute a function F that 
maps each input (a string) to 

an output bit

Program: 
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

Rec
all
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Language
• A function from Σ* to {0,1} can be identified 

with the set of strings mapped to 1 

• A language is a subset of Σ*  

– Computational problem for a language: 
given a string in Σ*, decide if it belongs 
to the  language 

• Examples of languages : Ø, Σ*, Σ, {ε},  
set of strings of odd length, set of strings 
encoding valid C programs,  set of strings 
encoding valid C programs that halt, …  

• There are uncountably many languages (but 
each language has countably many strings)

18

1 ε 0

2 0 0
3 1 1
4 00 0
5 01 1
6 10 1
7 11 0
8 000 0
9 001 1
10 010 1
11 011 0
12 100 1
13 101 0

14 110 0
15 111 1
16 1000 1
17 1001 0
18 1010 0
19 1011 1
20 1100 0
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Operations on Languages

• Already seen concatenation: L1L2 = { xy | x ∈ L1, y ∈ L2 }  

• Set operations: 
– Complement: L̅ =  Σ* - L  =  { x ∈ Σ* |  x ∉ L} 

– Union: L1 ∪ L2 

– Intersection, difference (can be based on the above 
two) 

• Ln inductively defined: L0 = {ε}, Ln = LLn-1%

• L* = ∪n≥0  Ln,   and  L+ = LL*%

• {ε}* =  ?    Ø* = ? 
19
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Complexity of Languages

• How computable is a language? 
• Singleton languages 
– L such that |L| = 1. Example: L = {374} 

– An algorithm can have the single string hard-coded 
into it 

• More generally, finite languages 
– Algorithm can have all the strings hard-coded into it 

• Many interesting languages are uncomputable 
• But many others are neither too easy nor impossible…

20



Regular Languages
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Regular Languages
• The set of regular languages over some 

alphabet Σ is defined inductively by: 

•  Ø is a regular language 

• {ε} is a regular language 

• {a} is a regular language for each a ∈  Σ 

• If L1, L2 are regular, then L1 ∪ L2 is regular 

• If L1, L2 are regular, then L1 L2 is regular 

• If L is regular, then L* is regular
22



CS
 3

74

Regular Languages Examples
• L = {w} where w ∈ Σ* is any fixed string 
– e.g., L = {aba} = {a}{b}{a} and {a}&{b} are both regular 

– Proof by induction on |w|, using concatenation for induction 

• L = any finite set of strings 
– e.g., L = set of all strings of length at most 10 

– Proof by induction on |L|, using union for induction (and the 
above) 

– Beware: Induction applicable only for |L| ∈ N, not |L|= ℵ0

23
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Regular Languages Examples
• Infinite sets, but of strings with “regular” patterns 
– Σ* (recall: L* is regular if L is) 

– Σ+ = ΣΣ* 
– All binary integers, without leading 0’s 

• L = {1}{0,1}* ∪ {0} 

– All binary integers which are multiples of 37 
• later

24



Regular Expressions

25
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Regular Expressions
• A short-hand to denote a regular language as 

strings that match a pattern 
• Useful in  
– text search (editors, Unix/grep) 
– compilers: lexical analysis 

• Dates back to 50’s:  Stephen Kleene,  
who has a star named after him*

26
* The star named after him is the Kleene star “*”
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Inductive Definition
A regular expression r over alphabet Σ is one of the 

following (L(r) is the language it represents):

27
Any regular language has a regular expression and vice versa

Atomic expressions (Base cases)

Ø %
ε"

a  for a ∈ Σ 

L(Ø) = Ø%
L(ε) = { ε }%
L(a) = { a }

Inductively defined expressions

(r1+r2)%
(r1r2)%
(r)*

L(r1+r2) = L(r1) ∪ L(r2) %
L(r1r2) = L(r1)L(r2) %

L(r*) = L(r)*

alt notation 
(r1|r2) or 
(r1∪r2)
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Regular Expressions
• Can omit many parentheses 
– By following precedence rules :  

* before concatenation before + %

• e.g.  r*s + t  ≡ ((r*) s) + t"

– By associativity: (r+s)+t ≡ r+s+t, (rs)t ≡ rst"

• More short-hand notation 

– e.g., r+ ≡ rr* (note: + is in superscript)

28
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Regular Expressions: Examples
• (0+1)*001(0+1)*%

– All binary strings containing the substring 001 
• 0*  +  (0*10*10*10*)*%

– All binary strings with #1s ≡ 0 mod 3 

• (01)*  +  (10)*  +  1(01)* +  0(10)*%

– Alternating 0s and 1s. Also, (1+ε)(01)*(0+ε) 
• (01+1)*(0+ε)%

– All binary strings without two consecutive 0s
29



CS
 3

74

Exercise:  create regular 
expressions

!

• All binary strings with either the pattern 001 or 
the pattern 100 occurring somewhere 

!

!

• All binary strings with an even number of 1s

30

one answer:   (0+1)*001(0+1)*  +   (0+1)*100(0+1)*

one answer:   0*(10*10*)*



A non-regular 
language

31
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An inductively defined language

What do strings in L look like?   

Give a characterization of L and prove it correct. 

Can you find a regular expression for L ?

32

Define L over {0,1}*  by: 
– ε ∈  L 
– if w ∈  L, then 0w1  ∈  L

will show impossible!
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An inductively defined language

33

Define L over {0,1}*  by: 
– ε ∈  L 
– if w ∈  L, then 0w1  ∈  L

Conjecture: L = { 0i1i : i ≥ 0 } 
How can we prove this is correct? 
Prove (by induction) that 
 (a) L ⊆ { 0i1i : i ≥ 0 } 
 (b) L ⊇ { 0i1i : i ≥ 0 }



CS
 3

74

L ⊆ { 0i1i : i ≥ 0 }

Show by induction on |w|, that if w ∈ L, then w is 
of the form 0i1i. 

Base case:  |w|= 0.   
   Then w = ε = 0010 

Inductive Step: Let n > 0. 
Assume: for all k < n,  

   any w in L with |w|= k, is of form 0i1i 
 

Prove: Any w in L with |w|= n is of form 0i1i
34
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Inductive step
Consider arbitrary w ∈ L, with |w| = n. 

Then w = 0u1 where u ∈ L has size n-2 < n  
   (by definition of L) 

By induction, u is of form 0i1i.   

Then w = 0u1 = 00i1i1 = 0i+11i+1,  the required form

35
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L ⊇ { 0i1i : i ≥ 0 }

Show by induction on n, that if w is of the form 
0n1n, then w ∈ L. 

Base case:  n= 0.   
Then w = 0010 = ε, which is in L by definition 

Inductive step:!
Let n > 0, and assume for all k < n that 0k1k ∈ L 
0n1n = 00n-11n-11= 0u1, with u ∈ L by induction. 
Since u ∈ L, so is 0u1 = 0n1n  by definition of L

36


