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Mathematics & Computation
Machines have helped with 
calculations for a long time

2

Can we use machines to 
reason too?

Calculemus!

Formal Logic: Reasoning made 
into a calculation
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Mathematics & Computation
Formal systems based on axioms and logic: 

for machines & modern mathematicians

Foundational problem: How to choose one’s axioms? 
They should not give rise to contradictions! 

Early 1900s: Crisis in mathematical 
foundations

Contradictions discovered while attempting to 
formalize notions involving infinite sets

3
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• 1928,  Hilbert’s Program:
   “Mechanize” mathematics

• Finite set of axioms and inference  
rules. An algorithm to determine the 
truth of any statement 
Need to find a consistent & complete  

set of axioms

4

• The system should also afford a proof of its own 
consistency  
• Based on “safe” axioms — i.e., axioms involving only 

finite objects — preferably
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Mathematics & Computation

Mechanized math 

Beyond just philosophical interest! 

Can resolve stubborn open problems 

Replace mathematicians with mathe-machines!

5
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Every even number > 2 is 
 the sum of two primes

Goldbach’s Conjecture

6

Letter from Goldbach to Euler 
dated 7 June 1742



C
S 

37
4

Program Collatz (n:integer) 
 while n > 1 { 
	 	  if  Even(n) then n ≔ n/2 
	   else  n ≔ 3n+1 
	 } 

Collatz Conjecture

7



C
S 

37
4

Program Collatz (n:integer) 
 while n > 1 { 
	 	  if  Even(n) then n ≔ n/2 
	   else  n ≔ 3n+1 
	 } 

Collatz Conjecture

7



C
S 

37
4

Program Collatz (n:integer) 
 while n > 1 { 
	 	  if  Even(n) then n ≔ n/2 
	   else  n ≔ 3n+1 
	 } 

Collatz Conjecture

!
     
Conjecture:  Collatz(n) halts for every n > 0

7
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Kurt Gödel

8

“This statement 
can’t be proved”

“The axioms are 
consistent”

• German logician, at age 25 (1931) proved:
“No matter what (consistent) set of axioms are used, a rich 

system will have true statements that can’t be proved”  

• Hilbert’s Program can’t work!

• Shook the foundations of 
– mathematics 
– philosophy 
– science 
– everything
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Alan Turing
• British mathematician 
– cryptanalysis during WWII 

– arguably, father of AI, CS Theory 

– several books, movies

• Mathematically defined computation  

– and proved (1936) that The Halting Problem  
has no general algorithm

9



C
S 

37
4

Halting Problem
• Given program P, input w:

10

w P



C
S 

37
4

Halting Problem
• Given program P, input w:

10

Will  P(w)  halt?

w P
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the Halting Problem?
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• Suppose halting problem had an algorithm...

Program P() 
	 n ≔ 4 
	 forever: 
	 	 if  found-two-primes-that-sum-to(n) 
	 	 then n ≔ n + 2 
	 	 else   halt

Why would we care about  
the Halting Problem?

11

Does P halt ?   ← Solves Goldbach conjecture!
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Why would we care about  
the Halting Problem?

Does Find-proof halt on w? ≡ Is w a provable theorem?

12

Program Find-proof(w) 
!
p ≔ empty-string 
forever 
	 p ≔ successor(p) 
      if  Verify-proof(w,p)  
      then halt

w
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Alas!

There is no program that solves the Halting Problem!  
No use trying to find one!

How can there be problems that can’t be solved?

What is a problem? What is a program?

13
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P solves F if for every x, P(x) outputs F(x) and halts

Problem: 
To compute a function F that 
maps each input (a string) to 

an output bit

Program: 
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)
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Computation

Too restrictive?

Enough to compute functions with longer outputs too:  
P(x,i) outputs the ith bit of F(x)

Enough to model interactive computation too: 
P*(x,state) outputs (y,new_state)

14

P solves F if for every x, P(x) outputs F(x) and halts

Problem: 
To compute a function F that 
maps each input (a string) to 
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• A program is a finite bit string

Computation
Problem: 

To compute a function F that 
maps each input (a string) to 

an output bit

Program: 
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts
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• A program is a finite bit string

• Programs can be enumerated — listed 
sequentially — (say, lexicographically) so 
that every program appears somewhere in 
the list

1 ε
2 0
3 1
4 00
5 01
6 10
7 11
8 000
9 001
10 010
11 011
12 100

Computation
Problem: 

To compute a function F that 
maps each input (a string) to 

an output bit

Program: 
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts
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• A program is a finite bit string

• Programs can be enumerated — listed 
sequentially — (say, lexicographically) so 
that every program appears somewhere in 
the list

• The set of all programs is countable.

1 ε
2 0
3 1
4 00
5 01
6 10
7 11
8 000
9 001
10 010
11 011
12 100

Computation
Problem: 

To compute a function F that 
maps each input (a string) to 

an output bit

Program: 
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts
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• A function assigns a bit to each finite string
1 ε 0

2 0 0

3 1 1

4 00 0

5 01 1

6 10 1

7 11 0

8 000 0

9 001 1

10 010 1

11 011 0

12 100 1

Computation
Problem: 

To compute a function F that 
maps each input (a string) to 

an output bit

Program: 
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts
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• A function assigns a bit to each finite string

• Corresponds to an infinite bit string

1 ε 0

2 0 0

3 1 1

4 00 0

5 01 1

6 10 1

7 11 0

8 000 0

9 001 1

10 010 1

11 011 0

12 100 1

Computation
Problem: 

To compute a function F that 
maps each input (a string) to 

an output bit

Program: 
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts
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• A function assigns a bit to each finite string

• Corresponds to an infinite bit string

• The set of all functions is uncountable! 

• As numerous as, say, real numbers  
in [0,1]

1 ε 0

2 0 0

3 1 1

4 00 0

5 01 1

6 10 1

7 11 0

8 000 0

9 001 1

10 010 1

11 011 0

12 100 1

Computation
Problem: 

To compute a function F that 
maps each input (a string) to 

an output bit

Program: 
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts
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There are uncountably many 
functions!

But only countably many 
programs

Almost every function is uncomputable!

Computation
Problem: 

To compute a function F that 
maps each input (a string) to 

an output bit

Program: 
A finitely described process 
taking a string as input, and 

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts



C
S 

37
4

Uncomputable Problems

18



C
S 

37
4

Uncomputable Problems
But that doesn’t tell us why some  

interesting problems are uncomputable

18



C
S 

37
4

Uncomputable Problems
But that doesn’t tell us why some  

interesting problems are uncomputable
If interesting ≡ has a finite description in English, then  

only countably many interesting problems!

18



C
S 

37
4

Uncomputable Problems
But that doesn’t tell us why some  

interesting problems are uncomputable
If interesting ≡ has a finite description in English, then  

only countably many interesting problems!

Proving that there are uncountably many real numbers: 
“Diagonalization” argument by Cantor

18



C
S 

37
4

Uncomputable Problems
But that doesn’t tell us why some  

interesting problems are uncomputable
If interesting ≡ has a finite description in English, then  

only countably many interesting problems!

Proving that there are uncountably many real numbers: 
“Diagonalization” argument by Cantor

Showing Halting Problem to be uncomputable:  
a similar argument (later)

18
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Uncomputable Problems
Once we know one interesting problem is 

uncomputable, show more using reductions:

Reducing F* to F:  
Use any program P that solves F   

to build a program P* that solves F*

If the Halting Problem can be reduced to F  
then F must be uncomputable!

19
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Theorem [Post’46]: Halting Problem (formulated for “Turing 
Machines”) reduces to PostCP —  a “combinatorial” problem
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Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word  

Can one arrange them (using any number of copies of each 
type) so that the top and bottom strings are identical?

20
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Given: Dominoes, each with a top-word and a bottom-word  

Can one arrange them (using any number of copies of each 
type) so that the top and bottom strings are identical?
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bbb
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a

a
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abb
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b
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Theorem [Post’46]: Halting Problem (formulated for “Turing 
Machines”) reduces to PostCP —  a “combinatorial” problem

PostCP is uncomputable.
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PostCP is uncomputable.
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If PostCP can be reduced to F then F is uncomputable
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PostCP is uncomputable.

http://en.wikipedia.org/wiki/List_of_undecidable_problems
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Post Correspondence Problem

If PostCP can be reduced to F then F is uncomputable

Typically, easier than reducing Halting Problem directly to F 

Many more interesting problems:  
http://en.wikipedia.org/wiki/List_of_undecidable_problems

21

PostCP is uncomputable.

http://en.wikipedia.org/wiki/List_of_undecidable_problems
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Inductive Proofs
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• Example: How many “moves” to assemble a jigsaw puzzle? 

– move = join two clumps 

– clump = connected pieces 

– only successful moves count 

• Theorem: It takes exactly n-1 moves to assemble an n-piece 
jigsaw puzzle (irrespective of which moves)
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Proof by Induction:

Base case:  1-piece puzzle takes 0 moves. ✅

Inductive step: Consider any n > 1 

Assume any (n-1)-piece puzzle requires n-2 moves 

Consider any n-piece puzzle: 

n-2 moves for all but last 

One more move for last 

total = (n-2)+1 = n-124
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piece jigsaw puzzle (irrespective of which moves) 

Proof by Induction:!

Base case:  1-piece puzzle takes 0 moves. ✅ 

Inductive step: Consider any n > 1 

Assume any (n-1)-piece puzzle requires n-2 moves 

Consider any n-piece puzzle: 

n-2 moves for all but last 

One more move for last 

total = (n-2)+1 = n-1

Inductive Proofs
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Why must last move look like this?

Last move could join 
two large clumps

The argument presented implicitly assumes puzzle is built piece-by-piece
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• Base Case: Let n = ⟨some small values⟩.  
Then ⟨show claim holds for n⟩ 

• Induction Step: Consider any arbitrary integer n ⟨greater 
than base-case values⟩. 
 
Induction hypothesis: Assume that for all integers k < n (and 
k ≥ ⟨smallest value⟩), ⟨claim holds for k⟩ 
 
⟨Prove that claim holds for n⟩
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May need a 
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than originally 
asked to prove
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Then ⟨show claim holds for n⟩ 
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Induction hypothesis: Assume that for all integers k < n (and 
k ≥ ⟨smallest value⟩), ⟨claim holds for k⟩ 
 
⟨Prove that claim holds for n⟩

Convention in this 
class: n here (not n+1)

May need a 
stronger claim 
than originally 
asked to prove
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• Base Case: Let n = ⟨some small values⟩.  
Then ⟨show claim holds for n⟩ 

• Induction Step: Consider any arbitrary integer n ⟨greater 
than base-case values⟩. 
 
Induction hypothesis: Assume that for all integers k < n (and 
k ≥ ⟨smallest value⟩), ⟨claim holds for k⟩ 
 
⟨Prove that claim holds for n⟩

Always use strong 
induction!!

Convention in this 
class: you lose all 

points for using weak 
induction when strong 

needed

Convention in this 
class: n here (not n+1)

May need a 
stronger claim 
than originally 
asked to prove
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Induction Template

27

• Base Case: Let n = ⟨some small values⟩.  
Then ⟨show claim holds for n⟩ 

• Induction Step: Consider any arbitrary integer n ⟨greater 
than base-case values⟩. 
 
Induction hypothesis: Assume that for all integers k < n (and 
k ≥ ⟨smallest value⟩), ⟨claim holds for k⟩ 
 
⟨Prove that claim holds for n⟩

Always use strong 
induction!!

Convention in this 
class: you lose all 

points for using weak 
induction when strong 

needed

The clever stuff. Be careful to consider 
arbitrary instance of size n. Relate it to one 
or more instances for which IH is assumed.

Convention in this 
class: n here (not n+1)

May need a 
stronger claim 
than originally 
asked to prove
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• Base Case: Let n = 1.  
Then, any clump with n pieces is just a single piece, and 
it needs 0 = n-1 moves to assemble 

• Induction Step: Consider any arbitrary integer n > 1. 
 
Induction hypothesis: Assume that for all integers k < n (and 
k ≥ 1), any clump with k pieces needs k-1 moves to 
assemble 

Stronger Claim: Any clump 
with n pieces takes exactly 

n-1 moves to assemble

⟨Prove that claim holds for n⟩
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• Base Case: Let n = 1.  
Then, any clump with n pieces is just a single piece, and 
it needs 0 = n-1 moves to assemble 

• Induction Step: Consider any arbitrary integer n > 1. 
 
Induction hypothesis: Assume that for all integers k < n (and 
k ≥ 1), any clump with k pieces needs k-1 moves to 
assemble 
Consider an arbitrary clump with n pieces, and an arbitrary 
sequence of moves to assemble it.  
◘ Last move joins 2 clumps of size k and n-k, where 1 ≤ k < n.  
◘ By IH, the two clumps took k-1 and n-k-1 moves each.  
◘ Overall (k-1) + (n-k-1) + 1 = n-1 moves. ✅

Stronger Claim: Any clump 
with n pieces takes exactly 

n-1 moves to assemble
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‣ A single move reduces number of clumps by exactly 1.

‣ m moves reduce it by m

‣ Initially, n clumps (each of one piece)

‣ At the end, 1 clump (of all pieces)

‣ Therefore, if m moves overall, 1 = n - m.
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Simple non-inductive proof

• Sometimes non-inductive proofs work, like in this example!

‣ A single move reduces number of clumps by exactly 1.

‣ m moves reduce it by m

‣ Initially, n clumps (each of one piece)

‣ At the end, 1 clump (of all pieces)

‣ Therefore, if m moves overall, 1 = n - m.

‣ Hence m = n - 1
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If you came in late:
• https://courses.engr.illinois.edu/cs374/ 

• Immediately join Piazza  

• Immediately check access to Moodle 

#

Links to Piazza and Moodle are on course home page
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