
Understanding
Computation

1

C
S

37
4

Mathematics & Computation
Machines have helped with
calculations for a long time

2

Can we use machines to
reason too?

C
S

37
4

Mathematics & Computation
Machines have helped with
calculations for a long time

2

Can we use machines to
reason too?

C
S

37
4

Mathematics & Computation
Machines have helped with
calculations for a long time

2

Can we use machines to
reason too?

Calculemus!

C
S

37
4

Mathematics & Computation
Machines have helped with
calculations for a long time

2

Can we use machines to
reason too?

Calculemus!

Formal Logic: Reasoning made
into a calculation

C
S

37
4

Mathematics & Computation

3

C
S

37
4

Mathematics & Computation
Formal systems based on axioms and logic:

for machines & modern mathematicians

3

C
S

37
4

Mathematics & Computation
Formal systems based on axioms and logic:

for machines & modern mathematicians

Foundational problem: How to choose one’s axioms?

3

C
S

37
4

Mathematics & Computation
Formal systems based on axioms and logic:

for machines & modern mathematicians

Foundational problem: How to choose one’s axioms?
They should not give rise to contradictions!

3

C
S

37
4

Mathematics & Computation
Formal systems based on axioms and logic:

for machines & modern mathematicians

Foundational problem: How to choose one’s axioms?
They should not give rise to contradictions!

Early 1900s: Crisis in mathematical
foundations

3

C
S

37
4

Mathematics & Computation
Formal systems based on axioms and logic:

for machines & modern mathematicians

Foundational problem: How to choose one’s axioms?
They should not give rise to contradictions!

Early 1900s: Crisis in mathematical
foundations

Contradictions discovered while attempting to
formalize notions involving infinite sets

3

C
S

37
4

David Hilbert
• 1928, Hilbert’s Program:
 “Mechanize” mathematics

4

C
S

37
4

David Hilbert
• 1928, Hilbert’s Program:
 “Mechanize” mathematics

• Finite set of axioms and inference  
rules. An algorithm to determine the
truth of any statement
Need to find a consistent & complete  

set of axioms

4

C
S

37
4

David Hilbert
• 1928, Hilbert’s Program:
 “Mechanize” mathematics

• Finite set of axioms and inference  
rules. An algorithm to determine the
truth of any statement
Need to find a consistent & complete  

set of axioms

4

• The system should also afford a proof of its own
consistency
• Based on “safe” axioms — i.e., axioms involving only

finite objects — preferably

C
S

37
4

Mathematics & Computation

Mechanized math

Beyond just philosophical interest!

Can resolve stubborn open problems

Replace mathematicians with mathe-machines!

5

C
S

37
4

Every even number > 2 is 
 the sum of two primes

Goldbach’s Conjecture

6

Letter from Goldbach to Euler
dated 7 June 1742

C
S

37
4

Program Collatz (n:integer)
 while n > 1 {
	 	 if Even(n) then n ≔ n/2
	 else n ≔ 3n+1
	 }

Collatz Conjecture

7

C
S

37
4

Program Collatz (n:integer)
 while n > 1 {
	 	 if Even(n) then n ≔ n/2
	 else n ≔ 3n+1
	 }

Collatz Conjecture

7

C
S

37
4

Program Collatz (n:integer)
 while n > 1 {
	 	 if Even(n) then n ≔ n/2
	 else n ≔ 3n+1
	 }

Collatz Conjecture

!

Conjecture: Collatz(n) halts for every n > 0

7

C
S

37
4

Kurt Gödel

8

• German logician, at age 25 (1931) proved:
“No matter what (consistent) set of axioms are used, a rich

system will have true statements that can’t be proved”

C
S

37
4

Kurt Gödel

8

“This statement
can’t be proved”

• German logician, at age 25 (1931) proved:
“No matter what (consistent) set of axioms are used, a rich

system will have true statements that can’t be proved”

C
S

37
4

Kurt Gödel

8

“This statement
can’t be proved”

“The axioms are
consistent”

• German logician, at age 25 (1931) proved:
“No matter what (consistent) set of axioms are used, a rich

system will have true statements that can’t be proved”

C
S

37
4

Kurt Gödel

8

“This statement
can’t be proved”

“The axioms are
consistent”

• German logician, at age 25 (1931) proved:
“No matter what (consistent) set of axioms are used, a rich

system will have true statements that can’t be proved”

• Hilbert’s Program can’t work!

C
S

37
4

Kurt Gödel

8

“This statement
can’t be proved”

“The axioms are
consistent”

• German logician, at age 25 (1931) proved:
“No matter what (consistent) set of axioms are used, a rich

system will have true statements that can’t be proved”

• Hilbert’s Program can’t work!

• Shook the foundations of
– mathematics
– philosophy
– science
– everything

C
S

37
4

Alan Turing
• British mathematician
– cryptanalysis during WWII

– arguably, father of AI, CS Theory

– several books, movies

9

C
S

37
4

Alan Turing
• British mathematician
– cryptanalysis during WWII

– arguably, father of AI, CS Theory

– several books, movies

• Mathematically defined computation

– and proved (1936) that The Halting Problem
has no general algorithm

9

C
S

37
4

Halting Problem
• Given program P, input w:

10

w P

C
S

37
4

Halting Problem
• Given program P, input w:

10

Will P(w) halt?

w P

C
S

37
4

• Suppose halting problem had an algorithm...

Why would we care about  
the Halting Problem?

11

C
S

37
4

• Suppose halting problem had an algorithm...

Program P()
	 n ≔ 4
	 forever:
	 	 if found-two-primes-that-sum-to(n)
	 	 then n ≔ n + 2
	 	 else halt

Why would we care about  
the Halting Problem?

11

C
S

37
4

• Suppose halting problem had an algorithm...

Program P()
	 n ≔ 4
	 forever:
	 	 if found-two-primes-that-sum-to(n)
	 	 then n ≔ n + 2
	 	 else halt

Why would we care about  
the Halting Problem?

11

Does P halt ?

C
S

37
4

• Suppose halting problem had an algorithm...

Program P()
	 n ≔ 4
	 forever:
	 	 if found-two-primes-that-sum-to(n)
	 	 then n ≔ n + 2
	 	 else halt

Why would we care about  
the Halting Problem?

11

Does P halt ? ← Solves Goldbach conjecture!

C
S

37
4

Why would we care about  
the Halting Problem?

Does Find-proof halt on w? ≡ Is w a provable theorem?

12

Program Find-proof(w)
!
p ≔ empty-string
forever
	 p ≔ successor(p)
 if Verify-proof(w,p)
 then halt

w

C
S

37
4

Alas!

13

C
S

37
4

Alas!

There is no program that solves the Halting Problem!  
No use trying to find one!

13

C
S

37
4

Alas!

There is no program that solves the Halting Problem!  
No use trying to find one!

How can there be problems that can’t be solved?

13

C
S

37
4

Alas!

There is no program that solves the Halting Problem!  
No use trying to find one!

How can there be problems that can’t be solved?

What is a problem? What is a program?

13

C
S

37
4

Computation

14

P solves F if for every x, P(x) outputs F(x) and halts

Problem: 
To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

C
S

37
4

Computation

Too restrictive?

14

P solves F if for every x, P(x) outputs F(x) and halts

Problem: 
To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

C
S

37
4

Computation

Too restrictive?

Enough to compute functions with longer outputs too:  
P(x,i) outputs the ith bit of F(x)

14

P solves F if for every x, P(x) outputs F(x) and halts

Problem: 
To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

C
S

37
4

Computation

Too restrictive?

Enough to compute functions with longer outputs too:  
P(x,i) outputs the ith bit of F(x)

Enough to model interactive computation too: 
P*(x,state) outputs (y,new_state)

14

P solves F if for every x, P(x) outputs F(x) and halts

Problem: 
To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

C
S

37
4

15

• A program is a finite bit string

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts

C
S

37
4

15

• A program is a finite bit string

• Programs can be enumerated — listed
sequentially — (say, lexicographically) so
that every program appears somewhere in
the list

1 ε
2 0
3 1
4 00
5 01
6 10
7 11
8 000
9 001
10 010
11 011
12 100

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts

C
S

37
4

15

• A program is a finite bit string

• Programs can be enumerated — listed
sequentially — (say, lexicographically) so
that every program appears somewhere in
the list

• The set of all programs is countable.

1 ε
2 0
3 1
4 00
5 01
6 10
7 11
8 000
9 001
10 010
11 011
12 100

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts

C
S

37
4

16

• A function assigns a bit to each finite string
1 ε 0

2 0 0

3 1 1

4 00 0

5 01 1

6 10 1

7 11 0

8 000 0

9 001 1

10 010 1

11 011 0

12 100 1

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts

C
S

37
4

16

• A function assigns a bit to each finite string

• Corresponds to an infinite bit string

1 ε 0

2 0 0

3 1 1

4 00 0

5 01 1

6 10 1

7 11 0

8 000 0

9 001 1

10 010 1

11 011 0

12 100 1

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts

C
S

37
4

16

• A function assigns a bit to each finite string

• Corresponds to an infinite bit string

• The set of all functions is uncountable!

• As numerous as, say, real numbers  
in [0,1]

1 ε 0

2 0 0

3 1 1

4 00 0

5 01 1

6 10 1

7 11 0

8 000 0

9 001 1

10 010 1

11 011 0

12 100 1

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts

C
S

37
4

17

There are uncountably many
functions!

But only countably many
programs

Almost every function is uncomputable!

Computation
Problem: 

To compute a function F that
maps each input (a string) to

an output bit

Program: 
A finitely described process
taking a string as input, and

outputting a bit (or not halting)

P solves F if for every x, P(x) outputs F(x) and halts

C
S

37
4

Uncomputable Problems

18

C
S

37
4

Uncomputable Problems
But that doesn’t tell us why some  

interesting problems are uncomputable

18

C
S

37
4

Uncomputable Problems
But that doesn’t tell us why some  

interesting problems are uncomputable
If interesting ≡ has a finite description in English, then  

only countably many interesting problems!

18

C
S

37
4

Uncomputable Problems
But that doesn’t tell us why some  

interesting problems are uncomputable
If interesting ≡ has a finite description in English, then  

only countably many interesting problems!

Proving that there are uncountably many real numbers:
“Diagonalization” argument by Cantor

18

C
S

37
4

Uncomputable Problems
But that doesn’t tell us why some  

interesting problems are uncomputable
If interesting ≡ has a finite description in English, then  

only countably many interesting problems!

Proving that there are uncountably many real numbers:
“Diagonalization” argument by Cantor

Showing Halting Problem to be uncomputable:  
a similar argument (later)

18

C
S

37
4

Uncomputable Problems

19

C
S

37
4

Uncomputable Problems
Once we know one interesting problem is

uncomputable, show more using reductions:

19

C
S

37
4

Uncomputable Problems
Once we know one interesting problem is

uncomputable, show more using reductions:

Reducing F* to F:  
Use any program P that solves F  

to build a program P* that solves F*

19

C
S

37
4

Uncomputable Problems
Once we know one interesting problem is

uncomputable, show more using reductions:

Reducing F* to F:  
Use any program P that solves F  

to build a program P* that solves F*

If the Halting Problem can be reduced to F  
then F must be uncomputable!

19

C
S

37
4

Post Correspondence Problem

20

Theorem [Post’46]: Halting Problem (formulated for “Turing
Machines”) reduces to PostCP — a “combinatorial” problem

C
S

37
4

Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word  

Can one arrange them (using any number of copies of each
type) so that the top and bottom strings are identical?

20

abb

a

ba

bbb

a

ab

abb

baa

b

bbb

abb

a

ba

bbb

abb

a

a

ab

abb

baa

b

bbb

Theorem [Post’46]: Halting Problem (formulated for “Turing
Machines”) reduces to PostCP — a “combinatorial” problem

C
S

37
4

Post Correspondence Problem

Given: Dominoes, each with a top-word and a bottom-word  

Can one arrange them (using any number of copies of each
type) so that the top and bottom strings are identical?

20

abb

a

ba

bbb

a

ab

abb

baa

b

bbb

abb

a

ba

bbb

abb

a

a

ab

abb

baa

b

bbb

Theorem [Post’46]: Halting Problem (formulated for “Turing
Machines”) reduces to PostCP — a “combinatorial” problem

PostCP is uncomputable.

C
S

37
4

Post Correspondence Problem

21

PostCP is uncomputable.

C
S

37
4

Post Correspondence Problem

If PostCP can be reduced to F then F is uncomputable

21

PostCP is uncomputable.

http://en.wikipedia.org/wiki/List_of_undecidable_problems

C
S

37
4

Post Correspondence Problem

If PostCP can be reduced to F then F is uncomputable

Typically, easier than reducing Halting Problem directly to F

21

PostCP is uncomputable.

http://en.wikipedia.org/wiki/List_of_undecidable_problems

C
S

37
4

Post Correspondence Problem

If PostCP can be reduced to F then F is uncomputable

Typically, easier than reducing Halting Problem directly to F

Many more interesting problems:  
http://en.wikipedia.org/wiki/List_of_undecidable_problems

21

PostCP is uncomputable.

http://en.wikipedia.org/wiki/List_of_undecidable_problems

Induction

22

C
S

37
4

Inductive Proofs

23

• Example: How many “moves” to assemble a jigsaw puzzle?

– move = join two clumps

– clump = connected pieces

– only successful moves count

• Theorem: It takes exactly n-1 moves to assemble an n-piece
jigsaw puzzle (irrespective of which moves)

C
S

37
4

Inductive Proofs

24

C
S

37
4

Inductive Proofs
• Theorem: It takes exactly n-1 moves to assemble an n-

piece jigsaw puzzle (irrespective of which moves)

24

C
S

37
4

Inductive Proofs
• Theorem: It takes exactly n-1 moves to assemble an n-

piece jigsaw puzzle (irrespective of which moves)

Proof by Induction:

24

C
S

37
4

Inductive Proofs
• Theorem: It takes exactly n-1 moves to assemble an n-

piece jigsaw puzzle (irrespective of which moves)

Proof by Induction:

Base case: 1-piece puzzle takes 0 moves. ✅

24

C
S

37
4

Inductive Proofs
• Theorem: It takes exactly n-1 moves to assemble an n-

piece jigsaw puzzle (irrespective of which moves)

Proof by Induction:

Base case: 1-piece puzzle takes 0 moves. ✅

Inductive step: Consider any n > 1

Assume any (n-1)-piece puzzle requires n-2 moves

Consider any n-piece puzzle:

n-2 moves for all but last

One more move for last

total = (n-2)+1 = n-124

C
S

37
4

Inductive Proofs
• Theorem: It takes exactly n-1 moves to assemble an n-

piece jigsaw puzzle (irrespective of which moves)

Proof by Induction:

Base case: 1-piece puzzle takes 0 moves. ✅

Inductive step: Consider any n > 1

Assume any (n-1)-piece puzzle requires n-2 moves

Consider any n-piece puzzle:

n-2 moves for all but last

One more move for last

total = (n-2)+1 = n-124

C
S

37
4

Inductive Proofs
• Theorem: It takes exactly n-1 moves to assemble an n-

piece jigsaw puzzle (irrespective of which moves)

Proof by Induction:

Base case: 1-piece puzzle takes 0 moves. ✅

Inductive step: Consider any n > 1

Assume any (n-1)-piece puzzle requires n-2 moves

Consider any n-piece puzzle:

n-2 moves for all but last

One more move for last

total = (n-2)+1 = n-124

C
S

37
4

Inductive Proofs
• Theorem: It takes exactly n-1 moves to assemble an n-

piece jigsaw puzzle (irrespective of which moves)

Proof by Induction:

Base case: 1-piece puzzle takes 0 moves. ✅

Inductive step: Consider any n > 1

Assume any (n-1)-piece puzzle requires n-2 moves

Consider any n-piece puzzle:

n-2 moves for all but last

One more move for last

total = (n-2)+1 = n-124 ✅

C
S

37
4

• Theorem: It takes exactly n-1 moves to assemble an n-
piece jigsaw puzzle (irrespective of which moves)

Proof by Induction:!

Base case: 1-piece puzzle takes 0 moves. ✅

Inductive step: Consider any n > 1

Assume any (n-1)-piece puzzle requires n-2 moves

Consider any n-piece puzzle:

n-2 moves for all but last

One more move for last

total = (n-2)+1 = n-1

Inductive Proofs

25

UNPROOF!

C
S

37
4

• Theorem: It takes exactly n-1 moves to assemble an n-
piece jigsaw puzzle (irrespective of which moves)

Proof by Induction:!

Base case: 1-piece puzzle takes 0 moves. ✅

Inductive step: Consider any n > 1

Assume any (n-1)-piece puzzle requires n-2 moves

Consider any n-piece puzzle:

n-2 moves for all but last

One more move for last

total = (n-2)+1 = n-1 ✅

Inductive Proofs

25

UNPROOF!

C
S

37
4

Inductive Proofs

26

Why must last move look like this?

C
S

37
4

Inductive Proofs

26

Why must last move look like this?

Last move could join
two large clumps

C
S

37
4

Inductive Proofs

26

Why must last move look like this?

Last move could join
two large clumps

The argument presented implicitly assumes puzzle is built piece-by-piece

C
S

37
4

Induction Template

27

• Base Case: Let n = ⟨some small values⟩.  
Then ⟨show claim holds for n⟩

• Induction Step: Consider any arbitrary integer n ⟨greater
than base-case values⟩. 
 
Induction hypothesis: Assume that for all integers k < n (and
k ≥ ⟨smallest value⟩), ⟨claim holds for k⟩ 
 
⟨Prove that claim holds for n⟩

C
S

37
4

Induction Template

27

• Base Case: Let n = ⟨some small values⟩.  
Then ⟨show claim holds for n⟩

• Induction Step: Consider any arbitrary integer n ⟨greater
than base-case values⟩. 
 
Induction hypothesis: Assume that for all integers k < n (and
k ≥ ⟨smallest value⟩), ⟨claim holds for k⟩ 
 
⟨Prove that claim holds for n⟩

May need a
stronger claim
than originally
asked to prove

C
S

37
4

Induction Template

27

• Base Case: Let n = ⟨some small values⟩.  
Then ⟨show claim holds for n⟩

• Induction Step: Consider any arbitrary integer n ⟨greater
than base-case values⟩. 
 
Induction hypothesis: Assume that for all integers k < n (and
k ≥ ⟨smallest value⟩), ⟨claim holds for k⟩ 
 
⟨Prove that claim holds for n⟩

Convention in this
class: n here (not n+1)

May need a
stronger claim
than originally
asked to prove

C
S

37
4

Induction Template

27

• Base Case: Let n = ⟨some small values⟩.  
Then ⟨show claim holds for n⟩

• Induction Step: Consider any arbitrary integer n ⟨greater
than base-case values⟩. 
 
Induction hypothesis: Assume that for all integers k < n (and
k ≥ ⟨smallest value⟩), ⟨claim holds for k⟩ 
 
⟨Prove that claim holds for n⟩

Always use strong
induction!!

Convention in this
class: you lose all

points for using weak
induction when strong

needed

Convention in this
class: n here (not n+1)

May need a
stronger claim
than originally
asked to prove

C
S

37
4

Induction Template

27

• Base Case: Let n = ⟨some small values⟩.  
Then ⟨show claim holds for n⟩

• Induction Step: Consider any arbitrary integer n ⟨greater
than base-case values⟩. 
 
Induction hypothesis: Assume that for all integers k < n (and
k ≥ ⟨smallest value⟩), ⟨claim holds for k⟩ 
 
⟨Prove that claim holds for n⟩

Always use strong
induction!!

Convention in this
class: you lose all

points for using weak
induction when strong

needed

The clever stuff. Be careful to consider
arbitrary instance of size n. Relate it to one
or more instances for which IH is assumed.

Convention in this
class: n here (not n+1)

May need a
stronger claim
than originally
asked to prove

C
S

37
4

Example

28

• Base Case: Let n = 1.  
Then, any clump with n pieces is just a single piece, and
it needs 0 = n-1 moves to assemble

• Induction Step: Consider any arbitrary integer n > 1. 
 
Induction hypothesis: Assume that for all integers k < n (and
k ≥ 1), any clump with k pieces needs k-1 moves to
assemble

Stronger Claim: Any clump
with n pieces takes exactly

n-1 moves to assemble

⟨Prove that claim holds for n⟩

C
S

37
4

Example

29

• Base Case: Let n = 1.  
Then, any clump with n pieces is just a single piece, and
it needs 0 = n-1 moves to assemble

• Induction Step: Consider any arbitrary integer n > 1. 
 
Induction hypothesis: Assume that for all integers k < n (and
k ≥ 1), any clump with k pieces needs k-1 moves to
assemble
Consider an arbitrary clump with n pieces, and an arbitrary
sequence of moves to assemble it.  
◘ Last move joins 2 clumps of size k and n-k, where 1 ≤ k < n.  
◘ By IH, the two clumps took k-1 and n-k-1 moves each.  
◘ Overall (k-1) + (n-k-1) + 1 = n-1 moves. ✅

Stronger Claim: Any clump
with n pieces takes exactly

n-1 moves to assemble

C
S

37
4

Simple non-inductive proof

30

C
S

37
4

Simple non-inductive proof

• Sometimes non-inductive proofs work, like in this example!

30

C
S

37
4

Simple non-inductive proof

• Sometimes non-inductive proofs work, like in this example!

‣ A single move reduces number of clumps by exactly 1.

30

C
S

37
4

Simple non-inductive proof

• Sometimes non-inductive proofs work, like in this example!

‣ A single move reduces number of clumps by exactly 1.

‣ m moves reduce it by m

30

C
S

37
4

Simple non-inductive proof

• Sometimes non-inductive proofs work, like in this example!

‣ A single move reduces number of clumps by exactly 1.

‣ m moves reduce it by m

‣ Initially, n clumps (each of one piece)

‣ At the end, 1 clump (of all pieces)

30

C
S

37
4

Simple non-inductive proof

• Sometimes non-inductive proofs work, like in this example!

‣ A single move reduces number of clumps by exactly 1.

‣ m moves reduce it by m

‣ Initially, n clumps (each of one piece)

‣ At the end, 1 clump (of all pieces)

‣ Therefore, if m moves overall, 1 = n - m.

30

C
S

37
4

Simple non-inductive proof

• Sometimes non-inductive proofs work, like in this example!

‣ A single move reduces number of clumps by exactly 1.

‣ m moves reduce it by m

‣ Initially, n clumps (each of one piece)

‣ At the end, 1 clump (of all pieces)

‣ Therefore, if m moves overall, 1 = n - m.

‣ Hence m = n - 1

30

C
S

37
4

If you came in late:
• https://courses.engr.illinois.edu/cs374/

• Immediately join Piazza

• Immediately check access to Moodle

#

Links to Piazza and Moodle are on course home page

31

https://courses.engr.illinois.edu/cs374/

