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Part I

Administrivia
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Instructional Staff

1 Instructors: Chandra Chekuri and Manoj Prabhakaran

2 7 (or 8) Teaching Assistants

3 16 Undergraduate Course Assistants

4 Office hours: See course webpage

5 Email: Use private notes on Piazza to reach course staff.
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Online resources

1 Webpage: General information, announcements, homeworks,
course policies courses.engr.illinois.edu/cs374

2 Moodle: HW submission, Quizzes, solutions to homeworks,
grades

3 Piazza: Announcements, online questions and discussion,
contacting course staff (via private notes)

See course webpage for links

Important: check Piazza/course web page at least once each day
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Textbooks

1 Prerequisites: CS 173 (discrete math), CS 225 (data structures)
2 Recommended books: (not required)

1 Introduction to Theory of Computation by Sipser
2 Introduction to Automata, Languages and Computation by

Hopcroft, Motwani, Ullman
3 Algorithms by Dasgupta, Papadimitriou & Vazirani.

Available online for free!
4 Algorithm Design by Kleinberg & Tardos

3 Lecture notes/slides/pointers: available on course web-page
4 Additional References

1 Lecture notes of Jeff Erickson, Sariel HarPeled, Mahesh
Viswanathan and others

2 Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.
3 Computers and Intractability: Garey and Johnson.
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Grading Policy: Overview

1 Quizzes: 4%

2 Homeworks: 24%

3 Midterms: 44% (2× 22%)

4 Finals: 28% (covers the full course content)

Midterms dates:

1 Midterm 1: Mon, Sept 28, 7–9pm

2 Midterm 2: Mon, Nov 9, 7–9pm

No conflict exam offered unless you have a valid excuse.
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Homeworks

1 One quiz every week. Due by midnight on Thursday (except
Quiz 0). Short questions to be answered on Moodle. Quizzes to
be done individually.

2 One homework every week: Due on Tuesdays at 10am on
Moodle. Assigned at least a week in advance.

3 Homeworks can be worked on in groups of up to 3 and each
group submits one written solution (except Homework 0).

4 Important: academic integrity policies. See course web page.
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More on Homeworks

1 No extensions or late homeworks accepted.

2 To compensate, four problems will be dropped. Homeworks
typically have three problems each.

3 Important: Read homework faq/instructions on website.
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Discussion Sessions

1 50min problem solving session led by TAs

2 Two times a week

3 Go to your assigned discussion section

4 Bring pen and paper!
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Advice

1 Attend lectures, please ask plenty of questions.

2 Attend discussion sessions.

3 Don’t skip homework and don’t copy homework solutions.

4 Study regularly and keep up with the course.

5 This is a course on problem solving. Solve as many as you can!
Books/notes have plenty.

6 This is also a course on providing rigourous proofs of
correctness. Refresh your 173 background on proofs.

7 Ask for help promptly. Make use of office hours/Piazza.
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Homeworks

1 HW 0 is posted on the class website. Quiz 0 available on
Moodle.

2 Quiz 0 due by Sunday August 30 at midnight

3 HW 0 due on Tuesday September 1 at 10am on Moodle

4 HW 0 to be done and submitted individually.
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Miscellaneous

Please contact instructors if you need special accommodations.

Lectures are being taped. See course webpage.
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Part II

Course Goals and Overview
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High-Level Questions

1 Algorithms
1 What is an algorithm?
2 What is an efficient algorithm?
3 Some fundamental algorithms for basic problems
4 Broadly applicable techniques in algorithm design

2 What is the formal definition of a computer?
1 Is there a formal definition?
2 Is there a “universal” computer?

3 What can computers compute?
1 Are there tasks that our computers cannot do?
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Course Structure

Course divided into three parts:

1 Basic automata theory: finite state machines, regular languages,
hint of context free languages/grammars

2 Algorithms and algorithm design techniques

3 Turing Machines, Undecidability, NP and NP-Completeness
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Algorithm

Wikipedia:

An algorithm is an effective method expressed as a finite list of
well-defined instructions for calculating a function. Starting from an
initial state and initial input (perhaps empty), the instructions
describe a computation that, when executed, proceeds through a
finite number of well-defined successive states, eventually producing
output and terminating at a final ending state.
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Algorithm

Wikipedia continued:

The concept of algorithm has existed for centuries, however a partial
formalization of what would become the modern algorithm began
with attempts to solve the Entscheidungsproblem (the ”decision
problem”) posed by David Hilbert in 1928. Subsequent formalizations
were framed as attempts to define ”effective calculability” or
”effective method”; those formalizations included the
Gödel-Herbrand-Kleene recursive functions of 1930, 1934 and 1935,
Alonzo Church’s lambda calculus of 1936, Emil Post’s ”Formulation
1” of 1936, and Alan Turing’s Turing machines of 1936-37 and 1939.
Giving a formal definition of algorithms, corresponding to the
intuitive notion, remains a challenging problem.
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Algorithm

Key points:

1 Algorithm solves a specific problem.

2 Steps/instructions of an algorithm are simple/primitive and can
be executed “mechanically”

3 Algorithm has a finite description; same description for all
instances of the problem

4 Algorithm implicitly may have state
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Algorithms and Computing

1 Algorithm solves a specific problem.

2 Steps/instructions of an algorithm are simple/primitive and can
be executed “mechanically”

3 Algorithm has a finite description; same description for all
instances of the problem

4 Algorithm implicitly may have state

A computer is a device that

1 “implements” the primitive instructions

2 allows for an “automated” implementation of the entire
algorithm by keeping track of state

A human can be a computer! And they were in WW II!
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Historical motivation for computing

1 Fast (and automated) numerical calculations

2 Automating mathematical theorem proving
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Models of Computation vs Computers

1 Model of Computation: an “idealized mathematical construct”
that describes the primitive instructions and other details

2 Computer: an actual “physical device” that implements a very
specific model of computation

Models and devices:

1 Algorithms: usually at a high level in a model

2 Device construction: usually at a low level

3 Intermediaries: compilers

4 How precise? Depends on the problem!

5 Physics helps implement a model of computer

6 Physics also inspires models of computation
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Adding Numbers

Problem Given two n-digit numbers x and y, compute their sum.

Basic addition

3141
+7798
10939
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Adding Numbers

c = 0
for i = 1 to n do

z = xi + yi

z = z + c
If (z > 10)

c = 1
z = z− 10 (equivalently the last digit of z)

Else c = 0
print z

End For

If (c == 1) print c

1 Primitive instruction is addition of two digits
2 Algorithm requires O(n) primitive instructions
3 Many details for actual implementation on a device

1 How is input represented? How does device take input?
2 How do we implement loops? Does devise have scratch space?
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Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238
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Time analysis of grade school multiplication

1 Each partial product: Θ(n) time

2 Number of partial products: ≤ n

3 Adding partial products: n additions each Θ(n) (Why?)

4 Total time: Θ(n2)

5 Is there a faster way?
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Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer 2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen 1971]

Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!
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Shortest Paths

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 37



Shortest Path Problem

Shortest Path Problem
1 Input: A (undirected or directed) graph G = (V, E) with

non-negative edge lengths. For edge e = (u, v), `(e) = `(u, v)
is its length.

2 n number of nodes and m number of edges

3 Given nodes s, t find shortest path from s to t.

Non-obvioius but efficient algorithm: Dijkstra’s algorithm can be
implemented in O(n log n + m) time
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Longest Path Problem

Longest Path Problem
1 Input: A (undirected or directed) graph G = (V, E) with

non-negative edge lengths. For edge e = (u, v), `(e) = `(u, v)
is its length.

2 Given nodes s, t find longest path from s to t.

Nothing better than an O(2n) time algorithm known!
Essentially the same as the famous TSP problem.
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TSP problem
Lincoln’s tour

Paris

DanvilleUrbana

Monticello

Clinton

Bloomington

Metamora

P
ek
in
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eld

Taylorville

Sullivan

Shelbyville

Mt.
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las

ki

D
ecator

1 Circuit court - ride through
counties staying a few days in
each town.

2 Lincoln was a lawyer traveling
with the Eighth Judicial
Circuit.

3 Picture: travel during 1850.
1 Very close to optimal tour.
2 Might have been optimal

at the time..
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Solving TSP by a Computer
Is it hard?

1 n = number of cities.

2 n2: size of input.

3 Number of possible solutions is

n ∗ (n− 1) ∗ (n− 2) ∗ ... ∗ 2 ∗ 1 = n!.

4 n! grows very quickly as n grows.
n = 10: n! ≈ 3628800
n = 50: n! ≈ 3 ∗ 1064

n = 100: n! ≈ 9 ∗ 10157
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Solving TSP by a Computer
Fastest computer...

1 A good super computer can do (some what out dated)

2.5 ∗ 1015

operations a second.
2 Assume: computer checks 2.5 ∗ 1015 solutions every second,

then...
1 n = 20 =⇒ 2 hours.
2 n = 25 =⇒ 200 years.
3 n = 37 =⇒ 2 ∗ 1020 years!!!
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What is a good algorithm?
Running time...

Input size n2 ops n3 ops n4 ops n! ops

5 0 secs 0 secs 0 secs 0 secs
20 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 3 · 109 years

100 0 secs 0 secs 0 secs never
8000 0 secs 0 secs 1 secs never

16000 0 secs 0 secs 26 secs never
32000 0 secs 0 secs 6 mins never
64000 0 secs 0 secs 111 mins never

200,000 0 secs 3 secs 7 days never
2,000,000 0 secs 53 mins 202.943 years never

108 4 secs 12.6839 years 109 years never
109 6 mins 12683.9 years 1013 years never
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What is a good algorithm?
Running time...
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Efficient algorithms

Question:
What is an efficient algorithm?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of the
input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound
way to define efficiency. Has been useful for several decades.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 37



Efficient algorithms

Question:
What is an efficient algorithm?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of the
input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound
way to define efficiency. Has been useful for several decades.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 37



Efficient algorithms

Question:
What is an efficient algorithm?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of the
input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound
way to define efficiency. Has been useful for several decades.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 37



Efficient algorithms

Question:
What is an efficient algorithm?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of the
input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound
way to define efficiency. Has been useful for several decades.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 37



Problems and Algorithms

Many many different problems.

1 Add two numbers: obvious algorithm essentially optimal.

2 Multiplying two numbers: simple and obvious algorithm efficient.
Much faster non-trivial algorithms exist.

3 Shortest Path: an efficient algorithm known but not obvious.

4 TSP: No efficient alogorithm known, conjectured to not exist
(the famous P 6= NP conjecture)

5 Some problems: no algorithm exists!
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