
CS 374: Algorithms & Models of Computation

Chandra Chekuri Manoj Prabhakaran

University of Illinois, Urbana-Champaign

Fall 2015

Chandra & Manoj (UIUC) CS374 1 Fall 2015 1 / 37



CS 374: Algorithms & Models of Computation,

Fall 2015

Administrivia, Introduction
Lecture 1
August 25, 2015

Chandra & Manoj (UIUC) CS374 2 Fall 2015 2 / 37



Part I

Administrivia

Chandra & Manoj (UIUC) CS374 3 Fall 2015 3 / 37



Instructional Staff

1 Instructors: Chandra Chekuri and Manoj Prabhakaran

2 7 (or 8) Teaching Assistants

3 16 Undergraduate Course Assistants

4 Office hours: See course webpage

5 Email: Use private notes on Piazza to reach course staff.

Chandra & Manoj (UIUC) CS374 4 Fall 2015 4 / 37



Online resources

1 Webpage: General information, announcements, homeworks,
course policies courses.engr.illinois.edu/cs374

2 Moodle: HW submission, Quizzes, solutions to homeworks,
grades

3 Piazza: Announcements, online questions and discussion,
contacting course staff (via private notes)

See course webpage for links

Important: check Piazza/course web page at least once each day

Chandra & Manoj (UIUC) CS374 5 Fall 2015 5 / 37

courses.engr.illinois.edu/cs374


Textbooks

1 Prerequisites: CS 173 (discrete math), CS 225 (data structures)
2 Recommended books: (not required)

1 Introduction to Theory of Computation by Sipser
2 Introduction to Automata, Languages and Computation by

Hopcroft, Motwani, Ullman
3 Algorithms by Dasgupta, Papadimitriou & Vazirani.

Available online for free!
4 Algorithm Design by Kleinberg & Tardos

3 Lecture notes/slides/pointers: available on course web-page
4 Additional References

1 Lecture notes of Jeff Erickson, Sariel HarPeled, Mahesh
Viswanathan and others

2 Introduction to Algorithms: Cormen, Leiserson, Rivest, Stein.
3 Computers and Intractability: Garey and Johnson.

Chandra & Manoj (UIUC) CS374 6 Fall 2015 6 / 37



Grading Policy: Overview

1 Quizzes: 4%

2 Homeworks: 24%

3 Midterms: 44% (2× 22%)

4 Finals: 28% (covers the full course content)

Midterms dates:

1 Midterm 1: Mon, Sept 28, 7–9pm

2 Midterm 2: Mon, Nov 9, 7–9pm

No conflict exam offered unless you have a valid excuse.

Chandra & Manoj (UIUC) CS374 7 Fall 2015 7 / 37



Homeworks

1 One quiz every week. Due by midnight on Thursday (except
Quiz 0). Short questions to be answered on Moodle. Quizzes to
be done individually.

2 One homework every week: Due on Tuesdays at 10am on
Moodle. Assigned at least a week in advance.

3 Homeworks can be worked on in groups of up to 3 and each
group submits one written solution (except Homework 0).

4 Important: academic integrity policies. See course web page.

Chandra & Manoj (UIUC) CS374 8 Fall 2015 8 / 37



More on Homeworks

1 No extensions or late homeworks accepted.

2 To compensate, four problems will be dropped. Homeworks
typically have three problems each.

3 Important: Read homework faq/instructions on website.

Chandra & Manoj (UIUC) CS374 9 Fall 2015 9 / 37



Discussion Sessions

1 50min problem solving session led by TAs

2 Two times a week

3 Go to your assigned discussion section

4 Bring pen and paper!

Chandra & Manoj (UIUC) CS374 10 Fall 2015 10 / 37



Advice

1 Attend lectures, please ask plenty of questions.

2 Attend discussion sessions.

3 Don’t skip homework and don’t copy homework solutions.

4 Study regularly and keep up with the course.

5 This is a course on problem solving. Solve as many as you can!
Books/notes have plenty.

6 This is also a course on providing rigourous proofs of
correctness. Refresh your 173 background on proofs.

7 Ask for help promptly. Make use of office hours/Piazza.

Chandra & Manoj (UIUC) CS374 11 Fall 2015 11 / 37



Homeworks

1 HW 0 is posted on the class website. Quiz 0 available on
Moodle.

2 Quiz 0 due by Sunday August 30 at midnight

3 HW 0 due on Tuesday September 1 at 10am on Moodle

4 HW 0 to be done and submitted individually.

Chandra & Manoj (UIUC) CS374 12 Fall 2015 12 / 37



Miscellaneous

Please contact instructors if you need special accommodations.

Lectures are being taped. See course webpage.

Chandra & Manoj (UIUC) CS374 13 Fall 2015 13 / 37



Part II

Course Goals and Overview

Chandra & Manoj (UIUC) CS374 14 Fall 2015 14 / 37



High-Level Questions

1 Algorithms
1 What is an algorithm?
2 What is an efficient algorithm?
3 Some fundamental algorithms for basic problems
4 Broadly applicable techniques in algorithm design

2 What is the formal definition of a computer?
1 Is there a formal definition?
2 Is there a “universal” computer?

3 What can computers compute?
1 Are there tasks that our computers cannot do?

Chandra & Manoj (UIUC) CS374 15 Fall 2015 15 / 37



Course Structure

Course divided into three parts:

1 Basic automata theory: finite state machines, regular languages,
hint of context free languages/grammars

2 Algorithms and algorithm design techniques

3 Turing Machines, Undecidability, NP and NP-Completeness

Chandra & Manoj (UIUC) CS374 16 Fall 2015 16 / 37



Algorithm

Wikipedia:

An algorithm is an effective method expressed as a finite list of
well-defined instructions for calculating a function. Starting from an
initial state and initial input (perhaps empty), the instructions
describe a computation that, when executed, proceeds through a
finite number of well-defined successive states, eventually producing
output and terminating at a final ending state.

Chandra & Manoj (UIUC) CS374 17 Fall 2015 17 / 37



Algorithm

Wikipedia continued:

The concept of algorithm has existed for centuries, however a partial
formalization of what would become the modern algorithm began
with attempts to solve the Entscheidungsproblem (the ”decision
problem”) posed by David Hilbert in 1928. Subsequent formalizations
were framed as attempts to define ”effective calculability” or
”effective method”; those formalizations included the
Gödel-Herbrand-Kleene recursive functions of 1930, 1934 and 1935,
Alonzo Church’s lambda calculus of 1936, Emil Post’s ”Formulation
1” of 1936, and Alan Turing’s Turing machines of 1936-37 and 1939.
Giving a formal definition of algorithms, corresponding to the
intuitive notion, remains a challenging problem.

Chandra & Manoj (UIUC) CS374 18 Fall 2015 18 / 37



Algorithm

Key points:

1 Algorithm solves a specific problem.

2 Steps/instructions of an algorithm are simple/primitive and can
be executed “mechanically”

3 Algorithm has a finite description; same description for all
instances of the problem

4 Algorithm implicitly may have state

Chandra & Manoj (UIUC) CS374 19 Fall 2015 19 / 37



Algorithms and Computing

1 Algorithm solves a specific problem.

2 Steps/instructions of an algorithm are simple/primitive and can
be executed “mechanically”

3 Algorithm has a finite description; same description for all
instances of the problem

4 Algorithm implicitly may have state

A computer is a device that

1 “implements” the primitive instructions

2 allows for an “automated” implementation of the entire
algorithm by keeping track of state

A human can be a computer! And they were in WW II!

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 37



Algorithms and Computing

1 Algorithm solves a specific problem.

2 Steps/instructions of an algorithm are simple/primitive and can
be executed “mechanically”

3 Algorithm has a finite description; same description for all
instances of the problem

4 Algorithm implicitly may have state

A computer is a device that

1 “implements” the primitive instructions

2 allows for an “automated” implementation of the entire
algorithm by keeping track of state

A human can be a computer! And they were in WW II!

Chandra & Manoj (UIUC) CS374 20 Fall 2015 20 / 37



Historical motivation for computing

1 Fast (and automated) numerical calculations

2 Automating mathematical theorem proving

Chandra & Manoj (UIUC) CS374 21 Fall 2015 21 / 37



Models of Computation vs Computers

1 Model of Computation: an “idealized mathematical construct”
that describes the primitive instructions and other details

2 Computer: an actual “physical device” that implements a very
specific model of computation

Models and devices:

1 Algorithms: usually at a high level in a model

2 Device construction: usually at a low level

3 Intermediaries: compilers

4 How precise? Depends on the problem!

5 Physics helps implement a model of computer

6 Physics also inspires models of computation

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 37



Models of Computation vs Computers

1 Model of Computation: an “idealized mathematical construct”
that describes the primitive instructions and other details

2 Computer: an actual “physical device” that implements a very
specific model of computation

Models and devices:

1 Algorithms: usually at a high level in a model

2 Device construction: usually at a low level

3 Intermediaries: compilers

4 How precise? Depends on the problem!

5 Physics helps implement a model of computer

6 Physics also inspires models of computation

Chandra & Manoj (UIUC) CS374 22 Fall 2015 22 / 37



Adding Numbers

Problem Given two n-digit numbers x and y, compute their sum.

Basic addition

3141
+7798
10939

Chandra & Manoj (UIUC) CS374 23 Fall 2015 23 / 37



Adding Numbers

c = 0
for i = 1 to n do

z = xi + yi

z = z + c
If (z > 10)

c = 1
z = z− 10 (equivalently the last digit of z)

Else c = 0
print z

End For

If (c == 1) print c

1 Primitive instruction is addition of two digits
2 Algorithm requires O(n) primitive instructions
3 Many details for actual implementation on a device

1 How is input represented? How does device take input?
2 How do we implement loops? Does devise have scratch space?

Chandra & Manoj (UIUC) CS374 24 Fall 2015 24 / 37



Adding Numbers

c = 0
for i = 1 to n do

z = xi + yi

z = z + c
If (z > 10)

c = 1
z = z− 10 (equivalently the last digit of z)

Else c = 0
print z

End For

If (c == 1) print c

1 Primitive instruction is addition of two digits
2 Algorithm requires O(n) primitive instructions
3 Many details for actual implementation on a device

1 How is input represented? How does device take input?
2 How do we implement loops? Does devise have scratch space?

Chandra & Manoj (UIUC) CS374 24 Fall 2015 24 / 37



Multiplying Numbers

Problem Given two n-digit numbers x and y, compute their
product.

Grade School Multiplication
Compute “partial product” by multiplying each digit of y with x and
adding the partial products.

3141
×2718
25128
3141

21987
6282
8537238

Chandra & Manoj (UIUC) CS374 25 Fall 2015 25 / 37



Time analysis of grade school multiplication

1 Each partial product: Θ(n) time

2 Number of partial products: ≤ n

3 Adding partial products: n additions each Θ(n) (Why?)

4 Total time: Θ(n2)

5 Is there a faster way?

Chandra & Manoj (UIUC) CS374 26 Fall 2015 26 / 37



Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer 2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen 1971]

Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 37



Fast Multiplication

Best known algorithm: O(n log n · 2O(log∗ n)) time [Furer 2008]

Previous best time: O(n log n log log n) [Schonhage-Strassen 1971]

Conjecture: there exists an O(n log n) time algorithm

We don’t fully understand multiplication!
Computation and algorithm design is non-trivial!

Chandra & Manoj (UIUC) CS374 27 Fall 2015 27 / 37



Shortest Paths

Chandra & Manoj (UIUC) CS374 28 Fall 2015 28 / 37



Shortest Path Problem

Shortest Path Problem
1 Input: A (undirected or directed) graph G = (V, E) with

non-negative edge lengths. For edge e = (u, v), `(e) = `(u, v)
is its length.

2 n number of nodes and m number of edges

3 Given nodes s, t find shortest path from s to t.

Non-obvioius but efficient algorithm: Dijkstra’s algorithm can be
implemented in O(n log n + m) time

Chandra & Manoj (UIUC) CS374 29 Fall 2015 29 / 37



Longest Path Problem

Longest Path Problem
1 Input: A (undirected or directed) graph G = (V, E) with

non-negative edge lengths. For edge e = (u, v), `(e) = `(u, v)
is its length.

2 Given nodes s, t find longest path from s to t.

Nothing better than an O(2n) time algorithm known!
Essentially the same as the famous TSP problem.

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 37



Longest Path Problem

Longest Path Problem
1 Input: A (undirected or directed) graph G = (V, E) with

non-negative edge lengths. For edge e = (u, v), `(e) = `(u, v)
is its length.

2 Given nodes s, t find longest path from s to t.

Nothing better than an O(2n) time algorithm known!
Essentially the same as the famous TSP problem.

Chandra & Manoj (UIUC) CS374 30 Fall 2015 30 / 37



TSP problem
Lincoln’s tour

Paris

DanvilleUrbana

Monticello

Clinton

Bloomington

Metamora

P
ek
in

S
p

rin
gfi

eld

Taylorville

Sullivan

Shelbyville

Mt.

Pu
las

ki

D
ecator

1 Circuit court - ride through
counties staying a few days in
each town.

2 Lincoln was a lawyer traveling
with the Eighth Judicial
Circuit.

3 Picture: travel during 1850.
1 Very close to optimal tour.
2 Might have been optimal

at the time..

Chandra & Manoj (UIUC) CS374 31 Fall 2015 31 / 37



Solving TSP by a Computer
Is it hard?

1 n = number of cities.

2 n2: size of input.

3 Number of possible solutions is

n ∗ (n− 1) ∗ (n− 2) ∗ ... ∗ 2 ∗ 1 = n!.

4 n! grows very quickly as n grows.
n = 10: n! ≈ 3628800
n = 50: n! ≈ 3 ∗ 1064

n = 100: n! ≈ 9 ∗ 10157

Chandra & Manoj (UIUC) CS374 32 Fall 2015 32 / 37



Solving TSP by a Computer
Fastest computer...

1 A good super computer can do (some what out dated)

2.5 ∗ 1015

operations a second.
2 Assume: computer checks 2.5 ∗ 1015 solutions every second,

then...
1 n = 20 =⇒ 2 hours.
2 n = 25 =⇒ 200 years.
3 n = 37 =⇒ 2 ∗ 1020 years!!!

Chandra & Manoj (UIUC) CS374 33 Fall 2015 33 / 37



What is a good algorithm?
Running time...

Input size n2 ops n3 ops n4 ops n! ops

5 0 secs 0 secs 0 secs 0 secs
20 0 secs 0 secs 0 secs 16 mins
30 0 secs 0 secs 0 secs 3 · 109 years

100 0 secs 0 secs 0 secs never
8000 0 secs 0 secs 1 secs never

16000 0 secs 0 secs 26 secs never
32000 0 secs 0 secs 6 mins never
64000 0 secs 0 secs 111 mins never

200,000 0 secs 3 secs 7 days never
2,000,000 0 secs 53 mins 202.943 years never

108 4 secs 12.6839 years 109 years never
109 6 mins 12683.9 years 1013 years never

Chandra & Manoj (UIUC) CS374 34 Fall 2015 34 / 37



What is a good algorithm?
Running time...

Chandra & Manoj (UIUC) CS374 35 Fall 2015 35 / 37



Efficient algorithms

Question:
What is an efficient algorithm?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of the
input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound
way to define efficiency. Has been useful for several decades.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 37



Efficient algorithms

Question:
What is an efficient algorithm?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of the
input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound
way to define efficiency. Has been useful for several decades.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 37



Efficient algorithms

Question:
What is an efficient algorithm?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of the
input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound
way to define efficiency. Has been useful for several decades.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 37



Efficient algorithms

Question:
What is an efficient algorithm?

In this class efficiency is broadly equated to polynomial time.
O(n), O(n log n), O(n2), O(n3), O(n100), . . . where n is size of the
input.

Why? Is n100 really efficient/practical? Etc.

Short answer: polynomial time is a robust, mathematically sound
way to define efficiency. Has been useful for several decades.

Chandra & Manoj (UIUC) CS374 36 Fall 2015 36 / 37



Problems and Algorithms

Many many different problems.

1 Add two numbers: obvious algorithm essentially optimal.

2 Multiplying two numbers: simple and obvious algorithm efficient.
Much faster non-trivial algorithms exist.

3 Shortest Path: an efficient algorithm known but not obvious.

4 TSP: No efficient alogorithm known, conjectured to not exist
(the famous P 6= NP conjecture)

5 Some problems: no algorithm exists!

Chandra & Manoj (UIUC) CS374 37 Fall 2015 37 / 37


	Administrivia
	Course Goals and Overview
	Addition and Multiplication


