Here are several problems that are easy to solve in $O(n)$ time, essentially by brute force. Your task is to design algorithms for these problems that are significantly faster.

1. (a) Suppose $A[1 \ldots n]$ is an array of n distinct integers, sorted so that $A[1]<A[2]<\cdots<A[n]$. Each integer $A[i]$ could be positive, negative, or zero. Describe a fast algorithm that either computes an index i such that $A[i]=i$ or correctly reports that no such index exists..
(b) Now suppose $A[1 . . n]$ is a sorted array of n distinct positive integers. Describe an even faster algorithm that either computes an index i such that $A[i]=i$ or correctly reports that no such index exists. [Hint: This is really easy.]
2. Suppose we are given an array $A[1 . . n]$ such that $A[1] \geq A[2]$ and $A[n-1] \leq A[n]$. We say that an element $A[x]$ is a local minimum if both $A[x-1] \geq A[x]$ and $A[x] \leq A[x+1]$. Describe and analyze a fast algorithm that returns the index of one local minimum.
3. (a) Suppose you are given two sorted arrays $A[1 . . n]$ and $B[1 . . n]$ containing distinct integers. Describe a fast algorithm to find the median (meaning the nth smallest element) of the union $A \cup B$.
(b) To think about on your own: Now suppose you are given two sorted arrays $A[1 . . m]$ and $B[1 . . n]$ and an integer k. Describe a fast algorithm to find the k th smallest element in the union $A \cup B$.
