
“CS 374” Fall 2015 — Homework 6
Due Tuesday, October 20, 2015 at 10am

••• Some important course policies •••

• You may work in groups of up to three people. However, each problem should be submitted by
exactly one person, and the beginning of the homework should clearly state the names and NetIDs
of each person contributing.

• You may use any source at your disposal—paper, electronic, or human—but you must cite
every source that you use. See the academic integrity policies on the course web site for more
details.

• Submit your pdf solutions in Moodle. See instructions on the course website and submit a
separate pdf for each problem. Ideally, your solutions should be typeset in LaTex. If you hand
write your homework make sure that the pdf scan is easy to read. Illegible scans will receive no
points.

• Avoid the Three Deadly Sins! There are a few dangerous writing (and thinking) habits that will
trigger an automatic zero on any homework or exam problem. Yes, we are completely serious.

– Give complete solutions, not just examples.
– Declare all your variables.
– Never use weak induction.

• Unlike previous editions of this and other theory courses we are not using the “I don’t know”
policy.

See the course web site for more information.

If you have any questions about these policies,
please don’t hesitate to ask in class, in office hours, or on Piazza.

“CS 374” Homework 6 Fall 2015

1. We have seen some variants of the maximum weight subset problem under constraints during the
lecture on greedy algorithms. Consider the following problem which generalizes the two variants
we saw. The input is a rooted tree T = (V, E). Each edge e ∈ E has a non-negative integer capacity
u(e). For a given e ∈ E let Te be the sub-tree of T under the edge e. The items of interest are the
leaves L of T . Each leaf v has a non-negative weight w(v). The goal is to find a maximum weight
subset S ⊆ L such that the following holds: for each edge e the number of leaves in S that are in
the sub-tree Te is at most u(e); formally |S ∩ L(Te)| ≤ u(e) for each e ∈ E where L(Te) is the set of
leaves of Te. Describe a greedy algorithm for this problem and prove its correctness.

2. A long straight country road can be modeled as a line starting at 0. The road has n houses at
locations x1, x2, . . . , xn on the line. The city wants to build fire stations along the road such that
every house is within distance D from some fire station. Fire stations cannot be built at arbitrary
locations. The city has figured m potential locations on the road at y1, y2, . . . , ym. For simplicity
assume that all the x and y values are distinct.

• Describe a greedy algorithm that finds the minimum number of fire stations that the city
can build to satisfy the desired constraint that every house is within distance D from a fire
station. Your algorithm has to detect if a feasible solution does not exist. Briefly justify the
correctness of your algorithm by aruging why there is an optimum solution that agrees with
the first choice of your greedy algorithm.

• The city has realized subsequently that not all locations are equal in terms of the cost of
building a fire station. Asssume that c j is the cost of building fire station at location y j.
Describe a dynamic programming algorithm that minimizes the total cost of building the fire
stations under the same constraint as before. Do you see why a greedy algorithm may not
work for this cost version?

3. Graphs are a powerful tool to model many phenomena. The edges of a graph model pairwise
relationships. It is natural to consider higher order relationships. Indeed hypergraphs provide one
such modeling tool. A hypergraph G = (V,E) consists of a finite set of nodes/vertices V and a
finite set of hyper-edges E . A hyperedge e ∈ E is simply a subset of nodes and the cardinality of the
subset can be larger than two. An undirected graph is a hypergraph where each hyper-edge is of
size exactly two. Here is an example. V = {1, 2, 3, 4, 5} and E = {{1, 2}, {2, 3, 4}, {1, 3, 4, 5}, {2, 5}}.
The representation size of a hypergraph is |V |+

∑

e∈E |e|. An alternating sequence of nodes and
edges x1, e1, x2, e2, . . . , ek−1, xk where x i ∈ V for 1≤ i ≤ k and e j ∈ E for 1≤ j ≤ k− 1 is called a
path from u to v if (i) x1 = u and xk = v and (ii) for 1≤ j < k, x j ∈ e j and x j+1 ∈ e j .

• Given a hypergraph G = (V,E) and two nodes u, v ∈ V we say that u is connected to v if
there is path from u to v. We say that a hypergraph is connected if each pair of nodes u, v
in G are connected. Describe an algorithm that given a hypergraph G checks whether G is
connected in linear time. In essense describe a reduction of this problem to the standard
graph connectivity problem. You need to prove the correctness of your algorithm.

2

“CS 374” Homework 6 Fall 2015

• Suppose we want to quickly spread a message from one person to another person during an
emergency on a social network called AppsWhat which is organized as a collection of groups.
Messages sent by a group member are broadcast to the entire group. AppsWhat knows
the members and the list of groups on its service. The goal is to find the fewest messages
that need to be sent such that a person u can reach a person v. Model this problem using
hypergraphs and describe a linear-time algorithm for it. You can assume that BFS solves the
shortest path problem in a regular unweighted graph in time that is linear in the graph’s size.
No proof necessary for this part.

3

